
Phys 506 lecture 40: Nagaoka ferromagnetism

1 Nagaoka ferromagnetism

We begin with the general form of the Hubbard model Hamiltonian:

H =
∑
ij

tij(ĉ
†
i↑ĉj↑ + ĉ†1↓ĉj↓) + U

∑
i

ni↑ni↓.

Note that we now have a hopping matrix. The condition on tij is that tij ≥ 0, otherwise arbitrary
and tij = tji.

Suppose the lattice has N sites. Consider the limit U → ∞ and Ne = # of electrons = N − 1
.

With U =∞ there is no double occupancy. So we can use the following set of states as a basis

|i, σ⟩ = (−1)iĉ†1σ1
ĉ†2σ2

ĉ†3σ3
· · · ĉ†i−1,σ−1ĉ

†
i+1,σ+1 · · · ĉ

†
iN ,σN

|0⟩

This state has spins {σ1, σ2, . . . , σN} for the N − 1 electrons and a hole at site i.

Two sites |i, σ⟩ and |j, τ⟩ are said to be connected if
〈
jτ

∣∣∣ĉ†i↑ĉj↑ + ĉ†i↓ĉj↓

∣∣∣iσ〉 ̸= 0. We say (iσ) ←→
(jτ) the state |iσ⟩ is connected to the state |jτ⟩.

If (iσ)←→ (jτ) then all σα = τα except α = i and j

σj = τi σi = τj = 0

In taking (ĉ†i↑ĉj↑ + ĉ†i↓ĉj↓) |iσ⟩ into |jτ⟩ form, we need to move the ĉ†jσj
operator from the j location

to the i location. This brings a factor of (−1)j−i+1 due to the minus signs on interchanging each
creation operator.

So (ĉ†i↑ĉj↑ + ĉ†i↓ĉj↓) |iσ⟩ = (−1) |jτ⟩ hence〈
jτ

∣∣∣tij(ĉ†i↑ĉj↑ + ĉ†i↓ĉj↓)
∣∣∣iσ〉 = −tij

We say a lattice satisfies the connectivity condition if for every state |iσ⟩with a fixed value of Sz there
is a finite chain

(iσ1)←→ (jσ2)←→ (kσ3)←→ · · · ←→ (l, σn)

that connects each state (iσ1) to (lσn).

1



Quantum Mechanics II Lecture 40

This turns out to be true for any lattice where for each site i we have either tijtjktki ̸= 0 for some
jk or tijtjktkltli for jkl and there is at least one site other than site i that is connected to all other
sites via a path of t’s that does not pass through site i.

We won’t prove this here, but the square lattice, triangular lattice, simple cubic, bcc, fcc, etc. all
satisfy this. The one-dimensional lattice with nn hopping does not.

2 Variational argument for the ground state

Let |ψ⟩ =
∑

(iσ) ψiσ |iσ⟩ be a unit norm state. ψiσ are numbers and ⟨ψ|ψ⟩ =
∑

(iσ) |ψiσ|2 = 1.

Choose
|ϕ⟩ =

∑
i

ϕi |i{σ}⟩

where all spins are up except for a hole at site i. |ϕ⟩ has s = smax = N−1
2 . Let ϕi = (

∑
σ |ψiσ|2)1/2

be real. Then ⟨ϕ|ϕ⟩ = 1. Also〈
ψ

∣∣∣∣∣∣
∑
ij

tij(ĉ
†
i↑ĉj↑ + ĉ†i↓ĉj↓)

∣∣∣∣∣∣ψ
〉

=
∑
στ

∑
ij

(−tij)ψ∗
jτψiσ ≥

∑
ij

(−tij)ϕ∗jϕi

=

〈
ϕ

∣∣∣∣∣∣
∑
ij

tij(ĉ
†
i↑ĉj↑ + ĉ†i↓ĉj↓)

∣∣∣∣∣∣ϕ
〉
.

The inequality comes from the Schwartz inequality

⟨a|b⟩ =
∑
α

a∗αbα ≤
√∑

α

|aα|2
√∑

β

|bβ|2

a · b ≤ |a||b|

Proof:
⟨a− λb|a− λb⟩ ≥ 0

|a|2 − 2λa · b+ λ2|b|2 ≥ 0

a · b ≤ 1

2λ
|a|2 + λ

2
|b|2

which is true for all λ. Let’s choose |a|
|b| . Then,

a · b ≤ 1

2
|a||b|+ 1

2
|a||b| = |a||b|

For us, choose aσ = ψjτ and bτ = ψiσ. Then,√∑
σ

|aσ|2 = ϕj

√∑
σ

|bσ|2 = ϕi.
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If |ψ⟩ is a ground state 〈
ψ

∣∣∣∣∣∣
∑
ij

tij(ĉ
†
i↑ĉj↑ + ĉ†i↓ĉj↓)

∣∣∣∣∣∣ψ
〉

= Egs.

But, then |ϕ⟩ has energy 〈
ϕ

∣∣∣∣∣∣
∑
ij

tij(ĉ
†
i↑ĉj↑ + ĉ†i↓ĉj↓)

∣∣∣∣∣∣ϕ
〉
≤ Egs,

so wemust have equality. If |ψ⟩ is a ground state, then |ϕ⟩ is also a ground state. Hence, the system
has a ferromagnetic ground state. There is an alternate proof using the Perron-Frobenius theorem.

3 Frobenius-Perron-theorem-based proof

Let M be a matrix with Mij ≥ 0 for i ̸= j (Mii can be anything). If Mij is connected, then the
eigenstate ofM with maximal eigenvalue is unique and has all basis vectors with strictly positive
coefficients.

Proof: Let m be the smallest diagonal element Mij ≥ m. Then, consider M ′
ij = Mij + |m|δij .

This matrix hasM ′
ij ≥ 0 for all i and j and E′ = E + |m|.

Suppose ψi is an eigenvector ofM ′ and some ψ1 are less than zero and E′ is the largest eigenvalue.
Then, ∑

j

M ′
ijψj = E′ψi

Now consider ϕi = |ψi|. It can be shown that∑
j

M ′
ijϕj ≤ E′ϕi

because allm′
ij ≥ 0 and ϕj ≥ 0 so all terms on the LHS are greater than 0 but not necessarily so for∑

j M
′
ijψj since ψj could be less than zero =⇒ ϕi would have a larger eigenvalue than E′ which

is a contradiction so we must have ϕi ≥ 0 for the largest eigenvalue.

Furthermore, ifM ′
ij is connected, then ϕi ≥ 0 for all i. Consider∑

j

M ′
ijϕj = E′ϕi

and suppose ϕk = 0. But k is connected to some k′ by a nonzeroM ′
kk′

=⇒ (pos) +M ′
kk′ϕk′ = E′ϕk

since E′ ̸= 0 =⇒ ϕk ̸= 0. To prove the Nagaoka theorem we apply toM = −H .
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4 Summary

For U =∞ andM = N −1 and tij all nonnegative, the ground state includes a state with s = N−1
2 .

If lattice is connected, the ground state is unique so the ground state is s = N−1
2 .

For a bipartitite lattice, result holds for both signs of t, since we can change the sign of t with a
unitary transformation.

Find result (ferromagnet) holds also for U finite but Ucrit can be very large.

IfM = N − 2, the ground state is usually a spin singlet (not proven in general).

Important question: Does ferromagnetism survive a finite density away from half-filling?

For 1D it never does for finite U . For d→∞ unsaturated-ferromagnetism appears to be present.
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