Phys 506 lecture 40: Nagaoka ferromagnetism

1 Nagaoka ferromagnetism

We begin with the general form of the Hubbard model Hamiltonian:
H=> tjehe.+ele,)+UD ningy.
ij i
Note that we now have a hopping matrix. The condition on ¢;; is that ¢;; > 0, otherwise arbitrary

and tij = tji.

Suppose the lattice has N sites. Consider the limit U — oo and N, = # of electrons = N — 1

With U = oo there is no double occupancy. So we can use the following set of states as a basis
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This state has spins {01, 02,...,0n} for the N — 1 electrons and a hole at site 1.

Two sites |i,0) and |j, 7) are said to be connected if <j7' éZTTéjT + éj¢6j¢‘i0> # 0. We say (io) «—

(j7) the state |ic) is connected to the state |j7).
If (ic) <— (j7) then all o, = 7, except & = i and j
05 =T; UZ':TjZO

In taking (6IT6 T éLé ;1) [io) into |j7) form, we peed to move the é;r.oj operator from the j location
to the i location. This brings a factor of (—1)7~*! due to the minus signs on interchanging each
creation operator.

So (el¢;, + ¢l ¢,)) lio) = (=1)|j7) hence
(o

We say a lattice satisfies the connectivity condition if for every state |io) with a fixed value of S, there
is a finite chain

tij(eloe,n + éLéﬂ)‘ia> = —ty

(io1) «— (joo) «— (ko3) +— - «— (I, 0p)

that connects each state (io1) to (loy,).
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This turns out to be true for any lattice where for each site ¢ we have either ¢;;¢;5t,; # 0 for some
Jk or t;;tjtity; for jkl and there is at least one site other than site ¢ that is connected to all other
sites via a path of ¢’s that does not pass through site i.

We won't prove this here, but the square lattice, triangular lattice, simple cubic, bcec, fcc, etc. all
satisfy this. The one-dimensional lattice with nn hopping does not.

2 Variational argument for the ground state
Let [¢) = 3=, %io |ic) be a unit norm state. 1;, are numbers and (¢[¢) = 3= ;) [¢io|* = 1
Choose

= 3 ailifo)

where all spins are up except for a hole at site i. |¢) has s = S0 = % Let ¢; = (32, |vio]?)'/?
be real. Then (¢|¢) = 1. Also

< Ztlﬂ Cir JT+CWCJ¢ > ZZ ~tijVjrVie 2 Z —tij) @5 i

i oT ij

< th ehejy +elég) ¢>

The inequality comes from the Schwartz inequality

(alb) =Y atba < |3 laal? [ [bsl?
a [ B

a-b<lallb|

Proof:
(a — Abla — A\b) > 0

la®> = 2Xa - b+ A2[b|2 >0
< — —
a-b 2)\’(1‘ 2 1
which is true for all ). Let’s choose —||Z|‘ . Then,

1 1
h< = — =
a-b< lallbl + 5allb] = ol

For us, choose a, = 9jr and b; = v;,. Then,

\/@:@ \/@:qs
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If |+) is a ground state

<¢ > tijlehe +ele) ¢> = E,..
ij
But, then |¢) has energy
<¢ > tij(Ehén +éle) ¢> < Egs,

ij

so we must have equality. If |¢) is a ground state, then |¢) is also a ground state. Hence, the system
has a ferromagnetic ground state. There is an alternate proof using the Perron-Frobenius theorem.

3 Frobenius-Perron-theorem-based proof

Let M be a matrix with M;; > 0 for i # j (M;; can be anything). If M;; is connected, then the
eigenstate of M with maximal eigenvalue is unique and has all basis vectors with strictly positive
coefficients.

Proof: Let m be the smallest diagonal element M;; > m. Then, consider M;; = M;; + |m|d;;.
This matrix has M;; > 0 foralli and j and E' = E + |m)|.

Suppose v; is an eigenvector of M’ and some 1); are less than zero and E’ is the largest eigenvalue.
Then,

> M = E'yy
J
Now consider ¢; = [;|. It can be shown that

> Mjé; < E'¢s
J

because all m;; > 0 and ¢; > 0 so all terms on the LHS are greater than 0 but not necessarily so for
>_; Mj;1; since ¢; could be less than zero = ¢; would have a larger eigenvalue than £’ which
is a contradiction so we must have ¢; > 0 for the largest eigenvalue.

Furthermore, if M ; 1s connected, then ¢; > 0 for all 7. Consider
> Mjé; = E'¢s
J

and suppose ¢}, = 0. But k is connected to some %’ by a nonzero Mj,,
= (pos) + M}, ¢ = E' ¢y,

since ' # 0 = ¢, # 0. To prove the Nagaoka theorem we apply to M = —H.
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4 Summary

For U = coand M = N —1 and t;; all nonnegative, the ground state includes a state with s = N1

2
If lattice is connected, the ground state is unique so the ground state is s = &1,

For a bipartitite lattice, result holds for both signs of ¢, since we can change the sign of ¢ with a
unitary transformation.

Find result (ferromagnet) holds also for U finite but U,,;; can be very large.
If M = N — 2, the ground state is usually a spin singlet (not proven in general).
Important question: Does ferromagnetism survive a finite density away from half-filling?

For 1D it never does for finite U. For d — oo unsaturated-ferromagnetism appears to be present.




