Phys 506 lecture 40: Nagaoka ferromagnetism

1 Nagaoka ferromagnetism

We begin with the general form of the Hubbard model Hamiltonian:

$$H = \sum_{ij} t_{ij} (\hat{c}_{i\uparrow}^{\dagger} \hat{c}_{j\uparrow} + \hat{c}_{1\downarrow}^{\dagger} \hat{c}_{j\downarrow}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Note that we now have a hopping matrix. The condition on t_{ij} is that $t_{ij} \ge 0$, otherwise arbitrary and $t_{ij} = t_{ji}$.

Suppose the lattice has N sites. Consider the limit $U \to \infty$ and $N_e = \#$ of electrons = N - 1

With $U = \infty$ there is no double occupancy. So we can use the following set of states as a basis

$$|i,\sigma\rangle = (-1)^i \hat{c}_{1\sigma_1}^{\dagger} \hat{c}_{2\sigma_2}^{\dagger} \hat{c}_{3\sigma_3}^{\dagger} \cdots \hat{c}_{i-1,\sigma-1}^{\dagger} \hat{c}_{i+1,\sigma+1}^{\dagger} \cdots \hat{c}_{i_N,\sigma_N}^{\dagger} |0\rangle$$

This state has spins $\{\sigma_1, \sigma_2, \dots, \sigma_N\}$ for the N - 1 electrons and a hole at site *i*.

Two sites $|i, \sigma\rangle$ and $|j, \tau\rangle$ are said to be connected if $\langle j\tau | \hat{c}^{\dagger}_{i\uparrow} \hat{c}_{j\uparrow} + \hat{c}^{\dagger}_{i\downarrow} \hat{c}_{j\downarrow} | i\sigma \rangle \neq 0$. We say $(i\sigma) \leftrightarrow (j\tau)$ the state $|i\sigma\rangle$ is connected to the state $|j\tau\rangle$.

If $(i\sigma) \longleftrightarrow (j\tau)$ then all $\sigma_{\alpha} = \tau_{\alpha}$ except $\alpha = i$ and j

$$\sigma_j = \tau_i \quad \sigma_i = \tau_j = 0$$

In taking $(\hat{c}_{i\uparrow}^{\dagger}\hat{c}_{j\uparrow} + \hat{c}_{i\downarrow}^{\dagger}\hat{c}_{j\downarrow})|i\sigma\rangle$ into $|j\tau\rangle$ form, we need to move the $\hat{c}_{j\sigma_j}^{\dagger}$ operator from the *j* location to the *i* location. This brings a factor of $(-1)^{j-i+1}$ due to the minus signs on interchanging each creation operator.

So $(\hat{c}_{i\uparrow}^{\dagger}\hat{c}_{j\uparrow}+\hat{c}_{i\downarrow}^{\dagger}\hat{c}_{j\downarrow})|i\sigma\rangle = (-1)|j\tau\rangle$ hence

$$\left\langle j\tau \left| t_{ij} (\hat{c}_{i\uparrow}^{\dagger} \hat{c}_{j\uparrow} + \hat{c}_{i\downarrow}^{\dagger} \hat{c}_{j\downarrow}) \right| i\sigma \right\rangle = -t_{ij}$$

We say a lattice satisfies the *connectivity condition* if for every state $|i\sigma\rangle$ with a fixed value of S_z there is a finite chain

$$(i\sigma_1) \longleftrightarrow (j\sigma_2) \longleftrightarrow (k\sigma_3) \longleftrightarrow \cdots \longleftrightarrow (l,\sigma_n)$$

that connects each state $(i\sigma_1)$ to $(l\sigma_n)$.

This turns out to be true for any lattice where for each site *i* we have either $t_{ij}t_{jk}t_{ki} \neq 0$ for some jk or $t_{ij}t_{jk}t_{kl}t_{li}$ for jkl and there is at least one site other than site *i* that is connected to all other sites via a path of *t*'s that does not pass through site *i*.

We won't prove this here, but the square lattice, triangular lattice, simple cubic, bcc, fcc, etc. all satisfy this. The one-dimensional lattice with nn hopping does not.

2 Variational argument for the ground state

Let $|\psi\rangle = \sum_{(i\sigma)} \psi_{i\sigma} |i\sigma\rangle$ be a unit norm state. $\psi_{i\sigma}$ are numbers and $\langle \psi | \psi \rangle = \sum_{(i\sigma)} |\psi_{i\sigma}|^2 = 1$.

Choose

$$|\phi\rangle = \sum_i \phi_i \, |i\{\sigma\}\rangle$$

where all spins are up except for a hole at site *i*. $|\phi\rangle$ has $s = s_{max} = \frac{N-1}{2}$. Let $\phi_i = (\sum_{\sigma} |\psi_{i\sigma}|^2)^{1/2}$ be real. Then $\langle \phi | \phi \rangle = 1$. Also

$$\left\langle \psi \left| \sum_{ij} t_{ij} (\hat{c}_{i\uparrow}^{\dagger} \hat{c}_{j\uparrow} + \hat{c}_{i\downarrow}^{\dagger} \hat{c}_{j\downarrow}) \right| \psi \right\rangle = \sum_{\sigma\tau} \sum_{ij} (-t_{ij}) \psi_{j\tau}^{*} \psi_{i\sigma} \ge \sum_{ij} (-t_{ij}) \phi_{j}^{*} \phi_{i}$$
$$= \left\langle \phi \left| \sum_{ij} t_{ij} (\hat{c}_{i\uparrow}^{\dagger} \hat{c}_{j\uparrow} + \hat{c}_{i\downarrow}^{\dagger} \hat{c}_{j\downarrow}) \right| \phi \right\rangle.$$

The inequality comes from the Schwartz inequality

$$\begin{aligned} \langle a|b\rangle &= \sum_{\alpha} a_{\alpha}^* b_{\alpha} \leq \sqrt{\sum_{\alpha} |a_{\alpha}|^2} \sqrt{\sum_{\beta} |b_{\beta}|^2} \\ a \cdot b \leq |a| |b| \end{aligned}$$

Proof:

$$\begin{split} \langle a - \lambda b | a - \lambda b \rangle &\geq 0 \\ |a|^2 - 2\lambda a \cdot b + \lambda^2 |b|^2 &\geq 0 \\ a \cdot b &\leq \frac{1}{2\lambda} |a|^2 + \frac{\lambda}{2} |b|^2 \end{split}$$

which is true for all λ . Let's choose $\frac{|a|}{|b|}$. Then,

$$a \cdot b \leq \frac{1}{2}|a||b| + \frac{1}{2}|a||b| = |a||b|$$

For us, choose $a_{\sigma} = \psi_{j\tau}$ and $b_{\tau} = \psi_{i\sigma}$. Then,

$$\sqrt{\sum_{\sigma} |a_{\sigma}|^2} = \phi_j \quad \sqrt{\sum_{\sigma} |b_{\sigma}|^2} = \phi_i.$$

If $|\psi\rangle$ is a ground state

$$\left\langle \psi \left| \sum_{ij} t_{ij} (\hat{c}_{i\uparrow}^{\dagger} \hat{c}_{j\uparrow} + \hat{c}_{i\downarrow}^{\dagger} \hat{c}_{j\downarrow}) \right| \psi \right\rangle = E_{gs}.$$

But, then $|\phi\rangle$ has energy

$$\left\langle \phi \left| \sum_{ij} t_{ij} (\hat{c}_{i\uparrow}^{\dagger} \hat{c}_{j\uparrow} + \hat{c}_{i\downarrow}^{\dagger} \hat{c}_{j\downarrow}) \right| \phi \right\rangle \leq E_{gs},$$

so we must have equality. If $|\psi\rangle$ is a ground state, then $|\phi\rangle$ is also a ground state. Hence, the system has a ferromagnetic ground state. There is an alternate proof using the Perron-Frobenius theorem.

3 Frobenius-Perron-theorem-based proof

Let *M* be a matrix with $M_{ij} \ge 0$ for $i \ne j$ (M_{ii} can be anything). If M_{ij} is connected, then the eigenstate of *M* with maximal eigenvalue is unique and has all basis vectors with strictly positive coefficients.

Proof: Let *m* be the smallest diagonal element $M_{ij} \ge m$. Then, consider $M'_{ij} = M_{ij} + |m|\delta_{ij}$. This matrix has $M'_{ij} \ge 0$ for all *i* and *j* and E' = E + |m|.

Suppose ψ_i is an eigenvector of M' and some ψ_1 are less than zero and E' is the largest eigenvalue. Then,

$$\sum_{j} M'_{ij} \psi_j = E' \psi_i$$

Now consider $\phi_i = |\psi_i|$. It can be shown that

$$\sum_{j} M'_{ij} \phi_j \le E' \phi_i$$

because all $m'_{ij} \ge 0$ and $\phi_j \ge 0$ so all terms on the LHS are greater than 0 but not necessarily so for $\sum_j M'_{ij}\psi_j$ since ψ_j could be less than zero $\implies \phi_i$ would have a larger eigenvalue than E' which is a contradiction so we must have $\phi_i \ge 0$ for the largest eigenvalue.

Furthermore, if M'_{ij} is connected, then $\phi_i \ge 0$ for all *i*. Consider

$$\sum_{j} M'_{ij} \phi_j = E' \phi_i$$

and suppose $\phi_k = 0$. But k is connected to some k' by a nonzero $M'_{kk'}$

$$\implies (pos) + M'_{kk'}\phi_{k'} = E'\phi_k$$

since $E' \neq 0 \implies \phi_k \neq 0$. To prove the Nagaoka theorem we apply to M = -H.

4 Summary

For $U = \infty$ and M = N - 1 and t_{ij} all nonnegative, the ground state includes a state with $s = \frac{N-1}{2}$. If lattice is connected, the ground state is unique so the ground state is $s = \frac{N-1}{2}$.

For a bipartitite lattice, result holds for both signs of t, since we can change the sign of t with a unitary transformation.

Find result (ferromagnet) holds also for U finite but U_{crit} can be very large.

If M = N - 2, the ground state is usually a spin singlet (not proven in general).

Important question: Does ferromagnetism survive a finite density away from half-filling?

For 1D it never does for finite *U*. For $d \to \infty$ unsaturated-ferromagnetism appears to be present.