Phys 506 lecture 41: Antiferromagnetism

1 Introduction

Recall the general Hubbard Hamiltonian
H=> toyel,tyy+ > Usharig,
Tyo T

where 2 € A where A is a collection of points, like lattice sites. Then |A| is the number of points in
A (what we used to call N'). Note that U, can now depend on the lattice site.

Further note that t,, = t,, are elements of a real hopping matrix which is also connected. This
means that there is a path of bonds ¢, # 0 between any two points in A.

2 Attractive case

Theorem 1: (Attractive Case) Assume U, < 0 for all x € A and M is an even number of electrons.
Then, the ground state includes one with s = 0. If U, < 0 for all x € A, then the ground state is
unique.

Some comments: Note, as U — 0 this is true, since we have discrete levels from the band struc-
ture €(k) and we fill with 1| in each level. We only have degeneracies with higher spins states if
the band structure has degeneracies at the Fermi level.

As U — —oo it is true since the ground state is constructed out of the bound 1| states on each
site which are lowest in energy.

Proof: Since S? and S* are conserved, we can work in the S% = 0 subspace with Ny = N| = %
A
Then, let {1, } be basis functions for n spinless electrons. There are (’n’> = m such basis func-

tions. We choose these basis functions to all be real.

The ground state |¢)) can be written as

9) = Wap uf @ ¥
af
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where W is an m x m matrix. Without loss of generality, we can say W is Hermitian so that W5 =
W*
B

o

W) = Y (@2 @ u)) T WigWas (4] @)

afBvyo

= Z ’Waﬁ‘Q = Z WasWaa = Tr(WQ)
aB

where we made use of orthonormality of the basis functions and the Hermiticity of W. Then,

(W|2|w) = 3 Wasws @ DTSty @ity + 2, ) Was(uf @)
¢¢> v55a7>

apyd zy
¢¢> 76085 + Wags <1/’¢ > taylhyéy

= < <1/’T D byl
afyd

=

<¢‘T‘¢> = (WisKayWag + WigK g, Wa,)
aBy
=Tr(KW?) + Tr(W?KT) = 2Tr(KW?)

Define:

A-|- A
chx y

Then,

since K7 = KT and W2K' = (KW1?) = (KW?)!. We can also calculate

(6[Ofe) = S0 7 W @) Woghuria, (6] @ 0],
T afs
—ZU Z 6< 7><"‘/’fﬁz¢1/ff>W5

Define (Ly)ap = (*|fiz|1)”). Note (Lz)ap = (Lz)ga since all ¢’s are real.
(v[ofe) = ZU Z A Wos(La) gs
= ZULE Z W,Ba T cw 76([/:17)65

x afys
= > Uy Te(WL,WL,).

So E(W) = (¢|H¢) = 2Tr(KW?) + > U, Te(WL,W L,) when Tr(W?) = 1. Now consider a
positive semidefinite matrix |W| where |IW| = vW?2, which is determined by diagonalizing W and
forming

lwi| 0 0
0 |LU2| 0
WI=10 0 |ul
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In general, |W| # |W,3|. That holds only in the basis where |W| is diagonal. Let’s examine E (W)
in the diagonal basis. Obviously Tr(KW?) = Tr(K|W|?) and

Tr((WL,WL,) = Z WiW;(Le)ij(Lz) ji

J

= D WiWjl(La)il* < D IWillWjlI(La)is
ij i

< Tr(|W|Lo|W | La).

Since U, < 0, we have E(|W]|) < E(W). Among all ground states, there is one with W = |IW/|.
Note that normalization says

[e.e]
Te(W?) =) WP =1 = Te|W|=)_|uw|; #0,
i=1 i
so we work in coordinate representation for v,

Yo = by - 10).

Then Te(W) = >_, Waa # 0. Therefore, the vector ¢f ® 9 is in the ground state expansion. But
S = 0 for this state so the ground state has a spin singlet state.

The proof of uniqueness is straightforward, but we don’t have enough time to do so here.

3 Proof in the repulsive case

Theorem 2: Assume U, = U > 0 is independent of z. Assume |A| is even A is bipartite. Let
M = |A| = half-filled band. Then S = 1(|B| — |A|) = 0 (for most bipartite lattices)

Proof: Need to do the partial particle-hole transformation which changes U — —U, N} — |A|— Ny,
Ny — N,. This gives us Ny + N, = [A| = |A| = Ny + N; = |A| = N; = N, but the ground
state for the attractive case with Ny = N| has S = 0 and is unique by theorem 1. Hence J = 0 is
the unique ground state for the repulsive case.

Consider the case of a very large U. No double occupancy is allowed. Then, at U = oo all spin
configurations are degenerate. But what about finite, but large U?

The singlet state is shifted down in energy proportional to t?/U. In general, we find that the Hamil-
tonian for large U maps onto

. 2 .o 1
H(U—>oo)—>U§y:txy (Sx.Sy—4>

for large U at half filling. The ground state of this Hamiltonian is known to have S = 1(|B| — |A|)
and since the ground state is nondegenerate, S cannot change.
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1
— 5=(1Bl- 4]
at half-filling for the Hubbard model!




