
Phys 506 lecture 6: Schrodinger factorization
method

We know that in quantum mechanics only a handful of problems can be exactly
solved. In 1940, Schrodinger described a general approach for such problems that was
algebraic. It generalized the operator method for the simple harmonic oscillator to
all of those other exactly solvable problems. In the next few lectures, we will explore
this method and how to apply it to these different systems. It is a truly different way
to solve these problems. But there is one caveat. At this stage, we do not how to
generalize it to solve any problem (using a computer). I view this as an exciting new
opportunity in a field where we thought we already knew everything! This comment
is with regards to performing the factorization directly. There is a way to do it nu-
merically that also employs the conventional Schrödinger differential equation.

1 Introduction to the factorization method
It is easiest to jump into the method, which will seem quite abstract at first, and then
make it more concrete as we discover how to solve some problems. The approach we
give now is somewhat formulaic at first. We will derive some other methodologies that
will appear less so. The strategy is to write Ĥ = Ĥ0 in a factorized form

Ĥ0 = Â†
0Â0 + E0.

Here, Â and Â† are operators that are Hermitian conjugates of each other. E is a
number with dimensions of energy. Since Â†

0Â0 is a positive semidefinite operator, we
know that the ground state satisfies Â0 |ϕ0⟩ = 0 and E0 is its energy (just like what
we did with the SHO). But now, we devise a set of new "auxiliary" Hamiltonians Ĥj

and auxiliary ground states |ϕj⟩ via the following procedure

Ĥ1 = Â†
1Â1 + E1 · · · Ĥj = Â†

jÂj + Ej

with
Âj |ϕj⟩ = 0 and Ĥj |ϕj⟩ = Ej |ϕj⟩

At this point, this seems the an exercise in futility, but we connect the auxiliary
Hamiltonians via the additional requirement that

Ĥj = Âj−1Â
†
j−1 + Ej−1

So the chain is constructed as follows:
Ĥ = Ĥ0 = Â†

0Â0 + E0

Ĥ1 = Â0Â
†
0 + E0 ⇒ Â†

1Â1 + E1

Ĥ2 = Â1Â
†
1 + E1 ⇒ Â†

2Â2 + E2
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and so on. We also require that Ej+1 > Ej. This may sound odd, but it forbids us
from choosing E1 = E0 and Â†

1 = Â0, because that is always a choice we could
make. It also tells us we must have Ej > Ej−1 > · · · > E2 > E1 for this method to
work—the energy levels must be nondegenerate. This is a well-known consequence of
the node theorem in one dimension, but arises naturally here.

Now, our situation is quite complex, for not only do we need to find a way to fac-
torize our original Ĥ, once we have Â0, we next determine a new auxiliary Hamiltonian
from Ĥ1 = Â0Â

†
0+E0 = Ĥ0+

[
Â0, Â

†
0

]
. Since this is usually a different potential than

in Ĥ0, we need to find a way to factorize H1 too.
This is a problem that is hard in general. But it turns out we can find a strategy

to do this for all of the exactly solvable problems. It turns out all exactly solvable
problems have the same form for the ladder operators—they only differ in the numerical
constants in them—this allows us to do these factorizations easily. For the moment
just assume we can do this. Let’s investigate some consequences.

2 Consequences of the factorization method

Assume |ψ⟩ is an eigenstate of Ĥ with eigenvalue E. Hence, Ĥ|ψ⟩ = E|ψ⟩. Our
first step is to work out the intertwining identity: Ĥj+1Âj = ÂjĤj for the auxiliary
Hamiltonians.

Proof:

Ĥj+1Âj =
(
Â†

j+1Âj+1 + Ej+1

)
Âj =

(
ÂjÂ

†
j + Ej

)
Âj

= ÂjÂ
†
jÂj + ÂjEj = Âj

(
Â†

jÂj + Ej

)
= ÂjĤj.

Consider the set of states defined by |ϕj+1⟩ = ÂjÂj−1 · · · Â1Â0|ψ⟩. We want to compute
⟨ϕj+1|ϕj+1) = ⟨ψ|Â†

0Â
†
1 · · · Â

†
jÂj · · · Â1Â0|ψ⟩ ⩾ 0 for all j. Start with j = 1 :

⟨ϕ1|ϕ1⟩ = ⟨ψ|Â†
0Â0|ψ⟩ = ⟨ψ|

(
Ĥ − E0

)
|ψ⟩

= E − E0 ≥ 0

⇒ E = E0 or E > E0.

⟨ϕ2|ϕ2⟩ = ⟨ψ|Â†
0Â

†
1Â1Â0|ψ⟩

= ⟨ψ|Â†
0

(
Ĥ1 − E1

)
Â0|ψ⟩ but Ĥ1Â0 = Â0Ĥ0

= ⟨ψ|Â†
0Â0

(
Ĥ0 − E1

)
|ψ⟩

= ⟨ψ|Â†
0Â0|ψ⟩ (E − E1) = (E − E1) (E − E0) ⩾ 0

⇒ E = E1 or E > E1.

Continuing in the same fashion, we have E = Ej or E > Ej max (if the number of
bound states terminates with a continuum of states above).

So, let’s assume |ψ⟩ = |ψj⟩ is a bound state and E = Ej. Then ⟨ϕj+1|ϕj+1⟩ =

(E − Ej) (E − Ej−1) · · · (E − E1) (E − E0) = 0. So ÂjÂj−1 · · · Â1Â0|ψ⟩ = 0. We

rewrite this as Âj |ϕj⟩ = 0. Now examine Ĥj |ϕj⟩ =
(
Â†

jÂj + Ej

)
|ϕj⟩ = Ej|ϕj⟩. This
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implies that |ϕj⟩ is an eigenstate of Ĥj with eigenvalue Ej. We find the eigenstate |ψ⟩
via

|ψj⟩ =
Â†

1Â
†
2 . . . Â

†
j−1|ϕj⟩√

(Ej − E0) (Ej − E1) · · · (Ej − Ej−1)

Now take the Hermitian conjugate of the intertwining relation:

ÂjĤj = Ĥj+1Âj ⇒ Â†
jĤj+1 = ĤjÂ

†
j

so
Ĥ |ψj⟩ = Ĥ0Â

†
0Â

†
1 . . . Â

†
j−1 |ϕj⟩

= Â†
0Ĥ1Â

†
1 · · · Â

†
j−1 |ϕj⟩

...

= Â†
0Â

†
1 · · · Â

†
j−1Ĥj |ϕj⟩

= EjÂ
†
0Â

†
1 · · · Â

†
j−1 |ϕj⟩ = Ej |ψj⟩

Hence, it is an eigenstate as claimed!

3 Superpotential
So how do we make this work? Let’s try an ansatz

Âj =
p̂√
2m

− iℏ√
2m

kjWj

(
k′jx̂

)
where Wj

(
k′jx̂

)
is called the superpotential and is a real valued function of k′jx̂, and

we have that ki and k′j are real "wavevectors." Then

Â†
jÂj =

p̂2

2m
+

ℏ2k2j
2m

W 2
j

(
k′jx̂

)
− iℏ

2m
kj

[
p̂j,Wj

(
k′jx̂

)]
.

4 Simple harmonic oscillator

So, if we can find W such that V (x̂) = ℏ2k0
2m

W 2
0 (k

′
0x̂)− iℏk0

2m
[p̂,W0 (k

′
0x̂)] +E0, then we

have had our first factorization. It turns out soluble problems have the superpotentials
having the same functional form, which is a property called shape invariance, and is
best illustrated with an example. If there is ambiguity, we must have kW (x) > 0 as
x→ ∞ and kW (x) < 0 as x→ −∞, otherwise the wave function is not normalizable.

Let’s work on an example we already know—the simple harmonic oscillator. We
have V (x̂) = 1

2
mω2

0x̂
2. We find

1

2
mω2

0x̂
2 =

ℏ2k20
2m

W 2
0 (k

′
0x̂)−

iℏk0
2m

[p̂,W0 (k
′
0x̂)]

Now, since [p̂, x̂] = −iℏ = number, by inspection, we see that we should try W0 (k
′
0x̂) =

k′0x̂. Then we have

1

2
mω2

0x̂
2 =

ℏ2k20k′02

2m
x̂2 − iℏk0

2m
(−iℏk′0) + E0

=
ℏ2k20k′20
2m

x̂2 − ℏ2k0k′0
2m

+ E0
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This implies that we need mω0 = ℏ |k0k′0| and E0 =
ℏ2k0k′0
2m

So, we choose k0k′0 = mω0

ℏ , in order for W0 (k
′
0x) to have the right sign as |x| → ∞.

This then implies that

Â0 =
p̂√
2m

− iℏ√
2m

mω0x̂

ℏ

=
1√
2m

(p̂− imω0x̂) the same as before!

Now we compute the first auxiliary Hamiltonian in the chain by reversing the order
of the ladder operators

Ĥ1 = Â0Â
†
0 + E0 =

1

2m
(p̂− imω0x̂) (p̂+ imω0x̂) +

1

2
ℏω0

=
p̂2

2m
+

1

2
mω2

0x̂
2 +

1

2m
imω0 [p̂, x̂]︸︷︷︸

−iℏ

+
1

2
ℏω0

=
p̂2

2m
+

1

2
mω2

0x̂
2 +

3

2
ℏω0

⇒ Â1 = Â0 and E1 =
3

2
ℏω0.

Note that this is the only example where Âj is independent of j. One can see that
repeating this procedure gives the whole spectrum. The eigenstates also agree with
what we did before. (Note, we can find the ground state via Â0 |ϕ0⟩ = 0 and determine
the wavefunction by integrating the diff eq.)

5 Particle in a box
Our next example is particle in a box, which Schrodinger called "shooting sparrows
with artillery." Consider V (x̂) = 0 inside a box from −L

2
to L

2
. First recall that

[p̂, f(x̂)] = −iℏf ′(x̂), so [p̂, tan (k′x̂)] = −iℏk′ sec2 (k′x̂). This motivates us to examine
ℏ2k2
2m

W 2 (k′x̂)− iℏk
2m

[p̂,W (k′x̂)] for W = tan. We find that it becomes

ℏ2k2

2m
tan2(k′x̂)− ℏ2kk′

2m
sec2 (k′x̂) .

Now, if we choose k = k′, then

ℏ2(k′)2

2m

(
tan2 (k′x̂)− sec2 (k′x̂)

)
= −ℏ2k′2

2m
= number.

Be sure to use the write trig identity to verify this.
So we choose

Â0 =
1√
2m

(p̂− iℏk′ tan (k′x̂))

and Â†
0Â0 =

1
2m
p̂2− ℏ2k′2

2m
⇒ E0 =

ℏ2(k′)2
2m

. Now we need to choose k′ to have W (k′x)
become infinity at the boundary. Why you may ask—we will find the wavefunction
vanishes when the superpotential diverges, so this is the conventional boundary con-
dition of the wavefunction vanishing at the edges of the box. We can increase k′ until
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k′ = π
L
. At that point tan (k′x̂) will diverge at the boundary. Schrodinger argued

not to increase k′ further. But we will see in the homework that we can lift this re-
striction and still solve the problem. For now, we follow Schrodinger. Hence, we have
E0 =

ℏ2π2

2mL2 . The ground state satisfies[
p̂− iℏ

π

L
tan

(π
L
x̂
)]

|ϕ0⟩ = 0 .

In coordinate space, this becomes −iℏ d
dx
ψ(x) = iℏ π

L
tan

(
π
L
x
)
ψ(x), or

d

dx
lnψ(x) = −π

L
tan

(π
L
x
)
⇒ lnψ(x) =

π

L

∫ x

tan
(π
L
x′
)
dx′

= − ln sec
(π
L
x
)
+ c

ψ(x) = c cos
(π
L
x
)

which is correct. Determining the normalization gives us that c =
√

2
L
.

Now we go onto the higher energy states:

Ĥ1 = Â0Â
†
0 + E0 = Ĥ0 +

[
Â0, Â

†
0

]
=

p̂2

2m
+ 0︸︷︷︸

V (x̂)

+
[
Â0, Â

†
0

]
=

p̂2

2m
+

iℏπ
2mL

[
p̂, tan

(π
L
x̂
)]

× 2

=
p̂2

2m
+

ℏ2π2

2mL2
· 2 sec2

(π
L
x̂
)

=
p̂2

2m
+

ℏ2π2

mL2

(
1 + tan2

(π
L
x
))

V1(x̂) =
ℏ2π2

mL2
tan2

(π
L
x̂
)
+

ℏ2π2

mL2
=

ℏ2k1
2m

W 2
1 (k

′
1x̂) +

iℏk1
2m

[p̂,W1 (k
′
1x)] + E1.

The "shape invariance" requirement suggests that we try the same form: W1 (k
′
1, x̂) =

tan(k′1x̂). This gives

ℏ2k21
2m

tan2 (k′1x̂) +
ℏ2k1k′1
2m

sec2 (k′1x̂)

=
ℏ2k1k′1
2m

+
ℏ2k1
2m

(k1 + k′1) tan
2 (k′1x̂)

⇒ k′1 =
π

L
k1 (k1 + k′1) =

2π2

L2

ℏ2π2

mL2
=

ℏ2k1k′1
2m

+ E1

⇒ k1

(
k1 +

π

L

)
=

2π2

L2
⇒ k1 =

π

L
or − 2π

L

E1 =
ℏ2π2

mL2
− ℏ2k1π

2mL
⇒ pick k1 = −2π

L
for E1 > E0.

So
E1 =

2ℏ2π2

mL2
and Â1 =

1√
2m

(
p̂− iℏ2π

L
tan

(
πx̂

L

))
.
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Let’s find the wavefunction. We have

Â1|ϕ1⟩ = 0 ⇒ −iℏdϕ1

dx
= iℏ

2π

L
tan

(πx
L

)
ϕ2

d

dx
lnϕ1 = −2π

L
tan

πx

L

ϕ1(x) = c′ cos2
(πx
L

)
=

√
8

3L
cos2

(πx
L

)
and |ψ1) =

Â†
0√

E1−E0
|ϕ1⟩

⇒ ψ1(x) =

√
8

3L
· 1√

(4−1)ℏ2π2

2mL2

1√
2m

(
−iℏ d

dx
+ iℏ

π

L
tan

(πx
L

))
cos2

(πx
L

)

=

√
8

3L

L√
3πℏ

· ℏ
(
+i
π

L
· 2 cos

(πx
L

)
sin

πx

L
+ i

π

L
sin

(πx
L

)
cos

(πx
L

))
=

√
2

L
i sin

(
2πx

L

)
✓ up to a phase .

One can continue, but it is tedious to do so term by term. Using an "induction-like"
approach, you can find that

kj = −(j+1)
π

L
, k′j =

π

L
, Ej =

ℏ2 (j + 1)2π2

2mL2
, and ψj(x) =

√
2

L
sin

(
(j + 1)πx

L

)
just as we know from the differential equation approach.

So, why use this approach if it is harder? Two points—

• it isn’t always harder—indeed it can be easier, especially for energies, because
we can find energies without finding the wavefunctions;

• it provides a new perspective as we see everything really comes from [x̂, p̂] = iℏ.
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