Phys 506 lecture 9: Central Forces

This is a somewhat technical lecture.

1 Average and relative coordinates

Consider two particles interacting via a potential that depends only on the distance between them,

i.e. a central potential:
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It turns out that this problem can be mapped to an effective one-particle problem. We do so by
using “average” and “relative” coordinates. The center of mass coordinate R, which is an operator,

is defined via: . .
5 Miry + Mmara

mi + mg

Because the momentum is proportional to each mass, we can try to define the average momentum
coordinate to be conjugate to the center of mass coordinate as follows:

A~

P = p1 + pa.

Using these definitions for the average coordinates, we find that the usual commutation relations
are still satisfied:
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Now let’s define the relative position as:
I =1 — Io.

We use lowercase symbols to represent the relative coordinates.
Since momentum is proportional to mass, if we define our relative momentum as:

p—_mmz (P1_ P1
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also with a lower-case letter. We can check that the usual commutation relations are again satisfied:

L . . mime [(P1g P2j
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= ihdag V.
Furthermore, it is easy to check that relative and average operators commute:
[Raa IS,B] = [f‘aa P,B] =0.

Note further that we can write

R - my+ma . mi
p1 = (P + p) ;
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mims mi + ms

to express the original momentum operators in terms of the average and relative ones. Hence, we
can show:
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We can simplify this expression by defining the term p = X722 as the reduced mass. As a result,
the kinetic energy term in the Hamiltonian becomes:

SHN R
2m; 2mg  2(mi+ma) 2p

And the full Hamiltonian becomes:

p? 1p?
(mi+ma2) 2 p

~~

center of mass relative motion

=3 + V(i)

We have thus split the Hamiltonian into a center of mass motion part, represented by the term
1_ P2

3 i rma)’ which acts like an effective free particle, and a relative motion term, given by the term

%%2 + V(|#|), which acts like an effective particle in a potential.
Going forward, we focus on the relative part. Our objective now is to rewrite the kinetic energy
in terms of the radial and angular contributions. We will start with the radial momentum.
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2 Radial momentum

We define the radial momentum as:
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where we have used a symmetric form for the combination of terms because it is guaranteed to be
Hermitian. Note that /7 is an operator unit vector in the radial direction.
Using the two identities:
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which you will prove on the homework, we can show:
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As a result, the radial momentum becomes:

Next, notice that:

—_

_%}:%Z erazh =1ih

Hence, we can think of 7 and p, as canonically conjugate operators. Note that p, is Hermitian but is
not self-adjoint, so it has no complete set of eigenstates. However, this does not affect anything we
do. It mainly means we should not expand in terms of eigenstates of the radial momentum—we
never do that.
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3 Separation of variables

We show how to separate the kinetic energy into its radial and angular components.
We first want to compute the radial contribution:

(t-p—ih)

<5 =
=< =

p2==(f-p—ih)

To do so, we can note that since [#, p,.| = ih, we have:
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which implies:

Using this, we get:

153:(

(fafﬂﬁaﬁﬁ - faﬁﬁihéaﬁ - ihﬁaﬁa)
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+ Typy + szz + 27':c7nyp:cpy + 2Txszzpz + 27‘yrzpypz
= 2Ry + Ty + 722)|.
Next, we have the angular contribution, which comes from

(f' X 13)2 = (fxﬁy - fylﬁx)(fxﬁy - fyﬁx) + (fyﬁz - 7ﬁz]ay)(?ﬁyﬁz - fzﬁy)
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As a result, we obtain:
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We will often write the square of the angular momentum operator as L2, similar to what we do for
the radial coordinate.

4 Radial translation operator

The last thing we work on is the radial translation operator. It is just the translation operator
expressed in terms of j,, pg, P, cosf, sinf, cos ¢, and sin ¢. Doing so requires a few subtle points.
We do not go through the full details, but we describe most of the issues. The translation operator

in Cartesian coordinates satisfies _
e_ % (wﬁz +yﬁy "Fzﬁz )
)
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with z, y, and z numbers, not operators. Recall that:

. f e e S A YA ~ ik
Pr = = (PuDx + TyDy + 72P, — ih) = sinf cos ¢ p, + sinfsin ¢ p, + cos p, — =
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We also compute the analogs of pg = & - p and ps = €, - p similar to how we computed p,
(symmetrizing to make them Hermitian):

. - A - A ihcot
Dy = cos cos ¢ p, + cosfsing p, —sinfp, — ———,
ror

Dy = —Sin @ P, + cos @ Py.
Note that pg requires a quantum correction, but py does not. You will show this on the homework.
We use z = rsinf cos ¢, y = rsinfsin ¢, z = r cos @ (here it is the x, y, z of the translations and all
are numbers).
Our strategy is to show that the translation can be written as a translation along z followed by
the rotations by 6 along the y-axis and ¢ along the z-axis.

[2,y,2) = e TR FreT R Puemiid o)

Because L, = 73py — TyDy, Ly = 72Dy — Top- and 7,|0) = 0. But:
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Therefore:
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as expected. Now go back to the original form:
[, y, 2) = e~ #F=emR0Tuem P |0),

But: .
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Note that because we are translating along the z-axis, we will have cos 60) = |0) and sin 6]0) = 0.
Now recall:
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which implies that , commutes with cos § and sin 6.
. A R A . A ik A
Dy = cos ) cos ¢ p, + cosfsin ¢ p, —sinf p, — — cos .
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Note that:

—sinéﬁf,x—i—cosq;fly = —sinqgsinéﬁz—i—sin(zﬁ coséﬁx+cos$coséﬁy—cos$ sinéﬁz

= cosf cosqgﬁx + cosf sinéﬁy — sinéﬁz.

But:
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When this acts on |0), it gives (p, — %) |0) because sin 6 |0) = 0. Furthermore, since sin § commutes
with p, — 2, we find that raising this operator to any power n acting on |0) also gives (p, — %)n

acting on |0). This gives our final result:

[2,9,2) = e Ere T bve 1 =)o)

This is the translation operator in spherical coordinates. Note that it has a form that appears to
be non-unitary, but as we saw, this operator does produce the correct position space state. Indeed,
the quantum connection term is critical to it giving the right behavior. Furthermore, it only works
when operating on the position state at the origin.




