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Tunnel junctions 1n electronics

« Sandwich of metal-barrier-
metal with current moving
perpendicular to the planes

* Nonlinear current-voltage
characteristics

 Josephson junctions, diodes,
spintronic devices, etc.

* Band insulators: A10, MgO

e (Correlated materials: FeSi,
SrTi0,

* Near MIT: V,0,, Ta,N
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Theoretical Approaches

Ohm’s law: R_=pA/L, holds for bulk materials

Landauer approach: calculate resistance by determining
the reflection and transmission coefficients for
quasiparticles moving through the inhomogeneous
device (G, =2¢e°T/h[1-T])

Works well for ballistic metals, diffusive metals, and
infinitesimally thin tunnel barriers (“delta functions”).

Real tunnel barriers have finite thickness---quasiparticle
picture breaks down inside the insulating barrier.

As the barrier thickness approaches the bulk limit, the
transport become incoherent (thermally activated) in an
insulator.
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Need a theory that can
incorporate all forms of transport
(ballistic, diffusive, and
incoherent, and correlated) on an
equal footing

* A self-consistent recursive Green’s function approach
called dynamical mean field theory can handle all of
these wrinkles.

J. K. Freericks, Georgetown University, Junction Resistance Poster, 2004



Lead

Barrier

Our model

 The metallic leads can be

ballistic normal metals,
mean-field theory
ferromagnets, or BCS
superconductors.

Scattering in the barrier is
included via charge

scattering with “defects”
(Falicov-Kimball model)

Scattering can also be
included in the leads 1f
desired.
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Spinless Falicov-Kimball Model

2(2 TC +EZWI, + UzCiTCI,WI,
i i

<ij>

<- static spin W

mobile spin ->

exactly solvable model in the local approximation using
dynamical mean field theory.

*possesses homogeneous, commensurate/incommensurate CDW
phases, phase segregation, and metal-insulator transitions.

A self-consistent recursive Green’s function approach solves the many-body
problem
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Interacting DOS
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Junction resistance

» The linear-response resistance can be
calculated 1in equilibrium using a Kubo-
Greenwood approach.

 We must work 1n real space because there 1s
no translational symmetry.

* Rn 1s calculated by inverting the
conductivity matrix and summing all matrix
elements of the mverse.
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Resistance for U=6 (correlated isulator)
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Thouless energy

e The Thouless energy measures the quantum energy associated with
the time that an electron spends 1nside the barrier region of width L
(Energy extracted from the resistance).

ETh — h/tDwell

* A unifying form for the Thouless energy can be determined from the
resistance of the barrier region and the electronic density of states:

o h

Th — _

2¢* [ doN (w) A,
dw

e This form produces both the ballistic £r, = th / L and the
diffusive L, = nD/ I forms of the Thouless energy.
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Temperature dependence
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Temperature dependence (1)
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Tunnel diagnostic/engineering

* The junction can be optimized for tunneling
properties if the operating temperature and barrier
properties are known.

It may be possible to use the Thouless energy to
investigate the presence of pinholes as well.
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Benefits of junctions near a MIT

 Junction reproducibility on a chip may be
easier with a thicker barrier.

Likely to have a smaller junction
capacitance (faster switching for the same
value of the resistance).
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