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Dynamical mean field theory

* Models of strongly correlated

materials are difficult to solve. @ O
» Significant progress has been made
over the past 15 years by examining O

the limit of large spatial dimensions.

* In this case, the lattice problem can L attice
be mapped onto a self-consistent
impurity (single-site) problem, in a \Gb/
time-dependent field that mimics the
hopping of electrons onto and off
of the lattice sites. Impurity site
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Falicov-Kimball Model

Two kinds of particles: (i)
mobile electrons and (ii)
localized electrons.

When both electrons are
on the same site they
Interact with a correlation
energy U.

Many-body physics
enters from an annealed
average over all
localized electron
configurations.
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DOS (conduction electrons)

The Falicov-Kimball model is
not a Fermi liquid.

On a Bethe lattice, it has a 0.3

Mott transition at U=2 and 0.25
half filling. = g0
The conduction-electron DOS 3
is independent of = 0.1°
temperature, and 0.1
continuously decreases to

zero at the chemical potential 0.05
as U increases. Then a true 0
gap forms which increases

with U.

On the hypercubic lattice, it is
a pseudogap that occurs for
U>v2.

2.5 3

-3

-2 -1 0 1 2

Frequency (w/t)

J. K. Freericks, Georgetown University, SCES 2004 Poster

3




DOS (localized electrons)

The localized electrons interact with the conduction
electrons when they sit on the same lattice site.

Since the hopping of the conduction electrons on the
lattice is mimicked by a time-dependent field (called A) for
the impurity, the localized electrons feel an additional
time-dependent field (called ) when the conduction
electrons are sitting on the impurity site.

The first time dependent field A(t,t") is a function of the
difference of the time coordinates (and measures the
probability for a conduction electron to hop onto the site at
time t and hop off at time t'), while the second field y(t,t') is
proportional to a delta function in t-t’, but multiplied by a
function of time.

Hence there is no overall time-translation invariance
for the localized electrons.
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Keldysh formalism
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Problems without time-translation invariance can be solved
with a so-called Keldysh formalism.

Green’s functions are defined with time arguments that run
over the Kadanoff-Baym contour.

The electrons evolve in the fields forwards in time, then
de-evolve in the fields backwards in time.

Functional derivatives are then used to determine the

Green’s functions and other correlation functions of
Interest.
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Computational Algorithm
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The key element in calculating the real-time Green’s function is to
calculate the Feynman determinant of a continuous integral
operator defined on the Kadanoff-Baym contour.

This operator is first discretized on a grid to be represented by finite-
dimensional matrices.

The matrix varies for each value of time (both in size and in its matrix
elements).

Hence we need to generate, and calculate the determinant of a large
number (approximately 500) general complex matrices of size up to
about 2500X2500.

Since the only information needed to generate the matrices is the
dynamical mean field A, the interaction strength U, and the
temperature, this procedure is easily parallelized.
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Parallel implementation

(1) Solve for the conduction electron Green’s function to
detgrmine the dynamical mean field A on the master
node.

(2) Broadcast the field A(t,t'), the interaction U, and the
temperature T to all slave nodes.

(3) Send each slave node a value of time to calculate
the Green’s function at that time. This involves
generating a matrix and calculating its determinant.
(LAPACK routines are used for efficiency.)

(4) Send data back to the master for storage; repeat for
a new value of time.

(5) Process the real-time data to construct the Fourier
transform, and extract the interacting DOS of the
localized electrons.
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Numerical iIssues

The Green'’s function decays exponentially in time, so we
need to compute the real time Green’s function out to
long enough times where it becomes small enough that
it can be neglected for larger times in the Fourier
transforms.

The systematic error associated with the discretization
size on the real time axis affects the rate of decay of
the Green’s function at long times and this error
increases as the temperature is reduced.

The long-time tails develop oscillatory components
when the interaction strength is large enough,
precluding an extrapolation out to large times.

A number of different extrapolation schemes exist to try
to reduce the discretization size to zero on the real-time
axis. Criteria need to be developed to choose the
best extrapolation.
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Sum rules

» Exact relations can be computed for the
first three moments of the localized
electron DOS [with or without an additional

Fermi factor f(w)].

* The Matsubara frequency (imaginary axis)
Green’s functions can be calculated by an
independent procedure, and compared
with the results predicted by the DOS
through the spectral formula.
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Bethe Lattice

Numerical results
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U=1 Bethe Lattice
(Extrapolation of long-time tails)
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Scalmg of At—0 for T=5 (Bethe)
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« We extrapolate the DOS to At—0 by using a polynomial fit for
each frequency. The extrapolated DOS has an error of 0.1% for the
first moment, 0.03% for the second moment and 0.003% for the
Matsubara frequency Green'’s functions.
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Scallng of At—>0 for 1=0.15 (Bethe)
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We extrapolate the DOS to At—0 by forcing the spectral formula
for the lowest Matsubara frequency to hold. The extrapolated
DOS has an error of 1% for the first moment, 1.5% for the second
moment and 0.07% for the Matsubara frequency Green’s functions.
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Summary plot for U=1(Bethe)

» The DOS sharpens ° _

as T—0, but it does
not sharpen to a

delta function, rather 4
we estimate the *

=~
3

peak-height is about <& 2

20 at T=0 (see inset). ™

 Note how broad the .
conduction-electron 1
DOS is in comparison
(dashed line). O

LI L L B B L B [TT 7777777 [TTTTTTTTT [TTTTTTTTT [T
—1=5
- — =1 i
—T1=0.5
—T1=0.25
B —1=0.15 —
I | lﬁ‘ — —Conduction DOY
— o*- Lo 1o 1o 1 _]
0 0.20.40.60.8 1
Temperature T [t*]

Frequency w [t]

J. K. Freericks, Georgetown University, SCES 2004 Poster



Summary plot for U=2 (Bethe)

* At the critical value of L I B L I

U for the Mott =
0.6 - -

transition, we expect :Lg,g
the DOS to have a 105

— -Conduction

pseudogap at T=0.

- The evolution of the % 4
pseudogap is slow in
temperature, but can
be seen in the figure. 0.2

* Note how the DOS
“pinches Iin”, with the
peaks pushing close 0 -
to the ugap edge”- -3 -2 —1 0 1 2 )

Frequency w [t7]
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Real-time data for U= 5 T 1( ethe)

Note the strong oscillations 0.4 !
that enter at long times, - — At=0.1
which make it hard to 02 rF —— A t=0.05 4
extrapolate the real-time = oL A 1=0.025 -
data. O

%

Surprisingly, the period of
the oscillations appears to
be independent of the —0.4

—-0.2

discretization size, only the
amplitude shrinks as At—0.
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poorer quality DOS than the ©
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Summary plot for U=5, T=1(Bethe)

In the Mott insulator, we

expect the DOS to have

a gap at T=0. 0.3
The gap region fills in 0.25
with an exponentially = 4>
small DOS as T S s
Increases. <
Being able to 0.
accurately determine 0.05
the DOS in the gap 0 F

region is very difficult , sx1073E
because thereisno % -
extrapolation procedure x 0 [
for large times, and the i
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Summary plot for U 5 (Bethe)

0.35 |

 The gap clearly is
forming as the
temperature is 0.25 [
reduced, but we are _
severely limited by =
how low we cango F g 15 |
In temperature and r
still be able to 0.1 ¢
accurately
determine the DOS.
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Hypercubic Lattice

Numerical results
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Summary plot for U=1(hc)

 The DOS sharpens as
T—0, but it does not
sharpen to a delta
function, rather we
estimate the peak-
height is about 5 at
T=0 (see inset).

* Note how the
conduction-electron
DOS has a dip at the
chemical potential,
which is not seen in
the f-electron DOS
(dashed line).
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Summary plot for U=1.5 (hc)

* Near the critical value

of U for the Mott 071 Fi 55?55552&1@)
transition, we expect 0.6 T=0.3 (6t=0.05)
the DOS to have a 0.5 i Conduction DOS
pseudogap at T=0. *= 0a

* The evolution of the ;31 sl
pseudogap is clear in '
the figure. 0.2 - \///

« Note how the DOS 0.1 - \g/
“pinches in”, with the 0 - \oj . 1| .

peaks pushing close

to the “gap edge”. Frequency o [t']
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Summary plot for U=4 (hc)
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Conclusions

« Showed how to implement an efficient parallel
algorithm to solve the Keldysh problem for
strongly correlated electrons described by the
Falicov-Kimball model.

* The procedure was applied to the simplest
problem---the localized electron spectral
function. This problem is a useful test case
because one can examine the accuracy in great
detail and understand systematics related to
approximating continuous matrix operators by
discrete approximants.
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Future work

* Generalize this approach to solve for the
nonlinear, nonequilibrium response of
the conduction electrons in a strong
electromagnetic field.

* Apply the nonequilibrium formalism to
nanostructure transport and investigate
both electrical and thermal transport
within a self-consistent framework.
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