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Military Relevance
• Strongly correlated electron materials have properties 

(conductivity, magnetism, superconductivity) that can be 
tuned by varying pressure, temperature, or doping. 

• They have potential for use in so-called smart materials 
technologies.

• Materials like plutonium have strong electron 
correlations, which may play a role in nuclear stockpile 
stewardship.

• Many military applications involve subjecting materials 
and devices to strong electromagnetic fields, where 
nonequilibrium and nonlinear effects are important.
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Dynamical mean field theory
• Models of strongly correlated 

materials are difficult to solve.
• Significant progress has been made 

over the past 15 years by examining 
the limit of large spatial dimensions.

• In this case, the lattice problem can 
be mapped onto a self-consistent 
impurity (single-site) problem, in a 
time-dependent field that mimics the 
hopping of electrons onto and off 
of the lattice sites.

J. K. Freericks, Georgetown University, UCG, 2004 Presentation

Impurity site

Lattice



Falicov-Kimball Model
• Two kinds of particles: (i) 

mobile electrons and (ii) 
localized electrons.

• When both electrons are 
on the same site they 
interact with a correlation 
energy U.

• Many-body physics 
enters from an annealed 
average over all 
localized electron 
configurations.
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DOS (conduction electrons)
• The Falicov-Kimball model is 

not a Fermi liquid.
• On a Bethe lattice, it has a 

Mott transition at U=2 and 
half filling.

• The conduction-electron DOS 
is independent of 
temperature, and 
continuously decreases to 
zero at the chemical potential 
as U increases. Then a true 
gap forms which increases 
with U.
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DOS (localized electrons)
• The localized electrons interact with the conduction 

electrons when they sit on the same lattice site.
• Since the hopping of the conduction electrons on the 

lattice is mimicked by a time-dependent field (called λ) for 
the impurity, the localized electrons feel an additional 
time-dependent field (called χ) when the conduction 
electrons are sitting on the impurity site.

• The first time dependent field λ(t,t’) is a function of the 
difference of the time coordinates (and measures the 
probability for a conduction electron to hop onto the site at 
time t and hop off at time t’), while the second field χ(t,t’) is 
proportional to a delta function in t-t’, but multiplied by a 
function of time.

• Hence there is no overall time-translation invariance 
for the localized electrons.
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Keldysh formalism

• Problems without time-translation invariance can be solved 
with a so-called Keldysh formalism.

• Green’s functions are defined with time arguments that run 
over the Keldysh contour.

• The electrons evolve in the fields forwards in time, then 
de-evolve in the fields backwards in time.

• Functional derivatives are then used to determine the 
Green’s functions and other correlation functions of 
interest.
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Computational Algorithm

• The key element in calculating the real-time Green’s function is to 
calculate the Feynman determinant of a continuous integral 
operator defined on the Keldysh contour.

• This operator is first discretized on a grid to be represented by finite-
dimensional matrices.

• The matrix varies for each value of time (both in size and in its matrix 
elements).

• Hence we need to generate, and calculate the determinant of a large 
number (approximately 500) general complex matrices of size up to 
about 2500X2500.

• Since the only information needed to generate the matrices is the 
dynamical mean field λ, the interaction strength U, and the 
temperature, this procedure is easily parallelized. 
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Parallel implementation

(1) Solve for the conduction electron Green’s function to 
determine the dynamical mean field λ on the master 
node.
(2) Broadcast the field λ(t,t’), the interaction U, and the 
temperature T to all slave nodes.
(3) Send each slave node a value of time to calculate 
the Green’s function at that time. This involves 
generating a matrix and calculating its determinant. 
(LAPACK routines are used for efficiency.)
(4) Send data back to the master for storage; repeat for 
a new value of time.
(5) Process the real-time data to construct the Fourier 
transform, and extract the interacting DOS of the 
localized electrons.
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Numerical issues
• The Green’s function decays exponentially in time, so we 

need to compute the real time Green’s function out to 
long enough times where it becomes small enough that 
it can be neglected for larger times in the Fourier 
transforms.

• The systematic error associated with the discretization
size on the real time axis affects the rate of decay of 
the Green’s function at long times and this error 
increases as the temperature is reduced.

• The long-time tails develop oscillatory components
when the interaction strength is large enough, 
precluding an extrapolation out to large times.

• A number of different extrapolation schemes exist to try 
to reduce the discretization size to zero on the real-time 
axis. Criteria need to be developed to choose the 
best extrapolation.
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U=1 (Extrapolation of long-time tails)
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Sum rules

• Exact relations can be computed for the 
first three moments of the localized 
electron DOS [with or without an additional 
Fermi factor f(ω)].

• The Matsubara frequency (imaginary axis) 
Green’s functions can be calculated by an 
independent procedure, and compared 
with the results predicted by the DOS 
through the spectral formula.
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Scaling of ∆t→0 for T=5

• We extrapolate the DOS to ∆t→0 by using a polynomial fit for 
each frequency.  The extrapolated DOS has an error of 0.1% for the 
first moment, 0.03% for the second moment and 0.003% for the 
Matsubara frequency Green’s functions.
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Scaling of ∆t→0 for T=0.15

• We extrapolate the DOS to ∆t→0 by forcing the spectral formula 
for the lowest Matsubara frequency to hold.  The extrapolated 
DOS has an error of 1% for the first moment, 1.5% for the second 
moment and 0.07% for the Matsubara frequency Green’s functions.
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Summary plot for U=1
• The DOS sharpens 

as T→0, but it does 
not sharpen to a 
delta function, rather 
we estimate the 
peak-height is about 
20 at T=0 (see inset).

• Note how broad the 
conduction-electron 
DOS is in comparison 
(dashed line).
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Summary plot for U=2
• At the critical value of 

U for the Mott 
transition, we expect 
the DOS to have a 
pseudogap at T=0.

• The evolution of the 
pseudogap is slow in 
temperature, but can 
be seen in the figure.

• Note how the DOS 
“pinches in”, with the 
peaks pushing close 
to the “gap edge”.
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Real-time data for U=5, T=1
• Note the strong oscillations

that enter at long times, 
which make it hard to 
extrapolate the real-time 
data.

• Surprisingly, the period of 
the oscillations appears to 
be independent of the 
discretization size, only the 
amplitude shrinks as ∆t→0. 

• Unfortunately, a direct 
extrapolation to ∆t=0 on the 
real-time data produces a 
poorer quality DOS than the 
results at a fixed value of ∆t.

• The extrapolation schemes 
for the real frequency DOS
do not work in the Mott 
insulator.
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Summary plot for U=5, T=1
• In the Mott insulator, we 

expect the DOS to have 
a gap at T=0.

• The gap region fills in 
with an exponentially 
small DOS as T 
increases. 

• Being able to 
accurately determine 
the DOS in the gap 
region is very difficult
because there is no
extrapolation procedure 
for large times, and the 
extrapolations on ∆t
don’t work either.
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Summary plot for U=5
• The gap clearly is 

forming as the 
temperature is 
reduced, but we are 
severely limited by 
how low we can go 
in temperature and 
still be able to 
accurately
determine the DOS.

J. K. Freericks, Georgetown University, UCG, 2004 Presentation



Conclusions
• Showed how to implement an efficient parallel 

algorithm to solve the Keldysh problem for 
strongly correlated electrons described by the 
Falicov-Kimball model.

• The procedure was applied to the simplest 
problem---the localized electron spectral 
function. This problem is a useful test case 
because one can examine the accuracy in great 
detail and understand systematics related to 
approximating continuous matrix operators by 
discrete approximants.
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Future work

• Generalize the current approach to solve 
for the nonlinear, nonequilibrium
response of the conduction electrons in a 
strong electromagnetic field.

• Apply the nonequilibrium formalism to 
nanostructure transport and investigate 
both electrical and thermal transport 
within a self-consistent framework.
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