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Metal-Insulator Transition (MIT)Metal-Insulator Transition (MIT)

● Physics – local Coulomb repulsion U that forbids 
double occupancy of the electrons creating an 
insulator, when there is one electron per site on 
average
● Experiment - variety of materials (MnO, NiO, NiS, 
YBa2Cu3O6), for which band structure calculations 
underestimate the gap or yield a metal
● Hubbard model – analyzed with many methods 
(NRG, QMC, etc.) well understood, difficult to 
develop an approximation which would describe both 
the weakly correlated Fermi liquid phase and strongly 
correlated insulating phase
● DMFT - Much progress has been made with 
Dynamical Mean Field Theory (DMFT), i.e. the limit 
of infinite dimensions, but numerics are complicated 
and delicate
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MIT at half fillingMIT at half filling

● Hubbard model - MIT occurs only at 
half filling 
● Within DMFT, noninteracting 
density of states (DOS):
● Hypercubic lattice – Gaussian, 

infinite bandwidth
● Bethe lattice – semicircle, finite 

bandwidth

● Hypercubic: DOS can vanish only when the self-energy diverges, at a single 
point forming a pseudogap, i.e. MIT occurs when self-energy develops a 
pole

● Bethe: well defined gap, same scenario – MIT occurs when the self-energy 
develops a pole at the chemical potential

● What happens if MIT occurs in a system where particle-hole symmetry is 
broken? (Jorge Hirsch)

● Most real materials do not have particle-hole symmetry 
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How to choose the model?How to choose the model?

● Needed a modified model 
which has MIT away from half-
filling
● Falicov-Kimball model 
● Binary alloy picture 
● Exhibit MIT for a wide range of 
fillings 0<w1<1 
● Numerics are under excellent 
control
● Scale effective bandwidth for 
different lattices 
● TaxN – example 
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Binary alloy pictureBinary alloy picture

● TaxN – binary alloy: 
A(Ta atoms)+            
B(vacancies)
● Vacancies interact 
with conduction e- and 
may trap them
● MIT is observed at 
x=0.6 (Ta:N ratio)
● Potential problem: 
localization due to 
disorder becomes 
increasingly important 
as x decreases

L. Yu et al. Phys. Rev. B 65, 24110 (2002)



DMFTDMFT

G =∫d  1
−−i

G0=[G −1−1]−1

G =1−w1G0w1
1

G0−1−U

Feed in noninteracting 
density of states 

Converge
Hilbert transformation: 

Dyson's equation:

Exact impurity solution: 

● In the limit d→∞ FK model solved exactly1 with DMFT 2 
● Self-energy          has no momentum dependence
● Non-interacting DOS in infinite dimensions: 

● Bethe                       - finite bandwidth
● Hypercubic                            - infinite bandwidth



Bethe =4−2/2
HC =exp−2/2/2
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DOS away from half-filling DOS away from half-filling ((ww11=0.25=0.25))

● Algorithm converges to about 13 digits
 Interacting DOS are defined 

● Insulating phase – real gap or pseudogap (blow up)
● No quasiparticle peak, no T-dependence

int =−Im[G ]/



MIT and pole in self-energyMIT and pole in self-energy

● Uc(gap) – critical U for the gap 
opening
● Uc(pole) – critical U for the pole 
formation
● Half-filling – Uc(gap)=Uc(pole) 
always – self-energy develops a 
pole at MIT 
● Pole may indicate MIT
● Residue is a universal plot for all 
fillings on both lattices (scaling 
holds)
● Can residue of the pole be an 
order parameter? 



MIT and pole in self-energy (Im part)MIT and pole in self-energy (Im part)

● Bethe lattice
● Non-Fermi liqud 
● Pole is formed 
together with 
opened gap 
● Pole shows as 
delta function in  
Im[Σ]



Gap and pole in self-energyGap and pole in self-energy

● Green's function 
satisfies the cubic 
equation (Bethe)

G3−2 xG21x2−U 2

4
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● Condition for the 
development of the pole 
in the self-energy 
● Condition for band 
edges yields  critical U 
for the gap opening

Different U's away from 
half-filling

The scenarios for the MIT 
on HC and Bethe lattices 

are NOT the same



Pole formation (Bethe lattice)Pole formation (Bethe lattice)

● Relative U vs. relative 
location of the pole in 
the gap
● Half-filling – pole is in 
the middle of the gap
●

 For w1≠0.5 the pole 
first appears at one of 
the band edges at   
U=Uc(pole) then drifts 
closer to the center 
● There is no smooth 
transition between half-
filled and particle-hole 
asymmetric cases 



Evolution of self-energy (Re part)Evolution of self-energy (Re part)

● Blue – w1=0.5 
● Red – w1=0.25
● U=2 insulator for 
both w1=0.5 and 
w1=0.25
● w1=0.25 - no pole 
● Re[Σ(ω)]              
(Re[G(ω)]) - kinks at 
the new band edges 
● Residue of the pole 
does not describe 
transition on the 
Bethe lattice 



What causes the differences?What causes the differences?

● Is it due to the absence of percolation loops on Bethe lattice?
● Local approximation calculations  on the 3d lattice, it has loops, but also has 
finite bandwidth
● Example: U=2.5, w1=0.1, well developed gap DOS but no pole
● Bandwidth matters
● Bethe lattice is more physical than HC



Bulk transport and thermal properties Bulk transport and thermal properties 

● Is pole formation significant? 
● Use Kubo-Greenwood approach
● Invoking Johnson-Mahan theorem3 
for transport coefficients

● dc conductivity

● Thermopower 

 
●Thermal conductivity 

 
●Thermoelectric figure-of-merit 
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Is pole formation significant?Is pole formation significant?

● Example: calculated dc conductivity on the Bethe lattice
● Conductivity shows continuous transition at T=0 
● No influence of the pole on the transport at finite T 
● Other differences between HC and Bethe  lattices?  



Unphysical relaxation time (HC) Unphysical relaxation time (HC) 

● Relaxation times for U = 3.0 
● Relaxation time defines behavior of Lij and transport
● HC – relaxation time is finite outside the band (affects high T results)
● HC – relaxation time is power law “inside” the band gap (low T)
● HC – gap states have exponentially large lifetime, and can contribute 
significantly into current 

=∫d A2 ,



Example: bulk charge transportExample: bulk charge transport

● dc conductivity for U = 2.0
● HC and Bethe have both gap and pole for w1=0.5, otherwise Bethe is an 
insulator (with no pole), HC is still a metal
● No significant differences, except low T (blow up)



Example: bulk charge transport (low T)Example: bulk charge transport (low T)

● dc conductivity for U = 2.0
● HC and Bethe have both gap and pole for w1=0.5, otherwise Bethe is an 
insulator (with no pole), HC is still a metal
● At T=0 HC – exponentially small σ, Bethe - σ=0



Electronic thermal conductivityElectronic thermal conductivity

● Thermal conductivity (electronic part) for U = 2.0
● HC and Bethe have both gap and pole for w1=0.5, otherwise Bethe is an 
insulator (with no pole), HC is still a metal
● HC is linearly increasing at high T – consequence of          behavior



● Thermopower for U = 2.0
● At half-filling thermopower is zero 
● Bethe – S diverges at T→0 (linear response breaks down), HC – S peaks, 
then goes to zero as T→0
● Potential for thermoelectric applications 

Thermopower Thermopower 



● Thermoelectric figure-of-merit (U = 2.0), ZT > 1 needed for thermoelectric 
applications (freon-based refrigerators ZT~4)
● Large ZT's in both cases, different behavior, low T peak on HC
● Suggests use of correlated materials in thermoelectric devices
● How does ZT depend on U?

Thermoelectric figure-of-meritThermoelectric figure-of-merit



● Example: zero T  ZT 
can be made arbitrarily 
high by increasing 
asymmetry  
● At low T – small 
conductivity, even if ZT 
is large, high voltage 
would be needed to have 
cooling power
● Warning: at low T 
lattice component may 
be significant
● At high T lattice 
component is less 
significant, and ZT is still 
relatively high 

Zero temperature Zero temperature ZTZT  



● Effects of particle-hole asymmetry on the Mott transition in the 
infinite dimensional Falicov-Kimball model analyzed
● The scenarios of MIT  are the same on hypercubic and Bethe 
lattices at half-filling only 
● When the particle-hole symmetry is removed (as is often the case in 
real materials) the MIT and formation of the pole in the self-energy 
are unrelated on the Bethe lattice
● There is little or no difference in properties of a correlated insulator 
with or without a pole in the self-energy
● We conjecture that conclusions about the character of the MIT on 
the Bethe lattice will hold for other systems with finite bandwidth 
● Transport properties also suggest that (within DMFT) the Bethe 
lattice is more realistic than hypercubic lattice 
● Our calculations suggest that particle-hole asymmetric correlated 
materials may be useful in thermoelectric devices

ConclusionsConclusions


