

Effects of particle-hole asymmetry on the Mott-Hubbard Metal-Insulator Transition

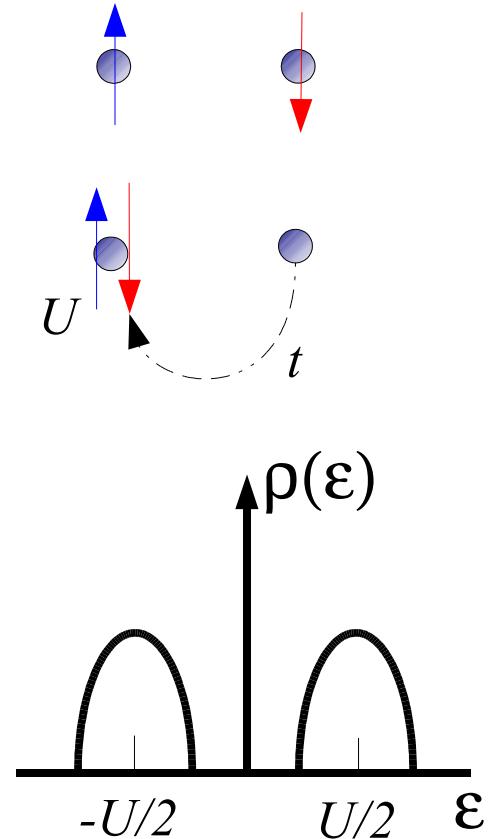
Denis Demchenko
Department of Physics
Georgetown University
Washington, DC 20057

Co-authors: Jim Freericks and Alexander Joura
(Department of Physics, Georgetown University)

Acknowledgments:
NSF NIRT – DMR 0210717
ONR – N00014-99-1-0328

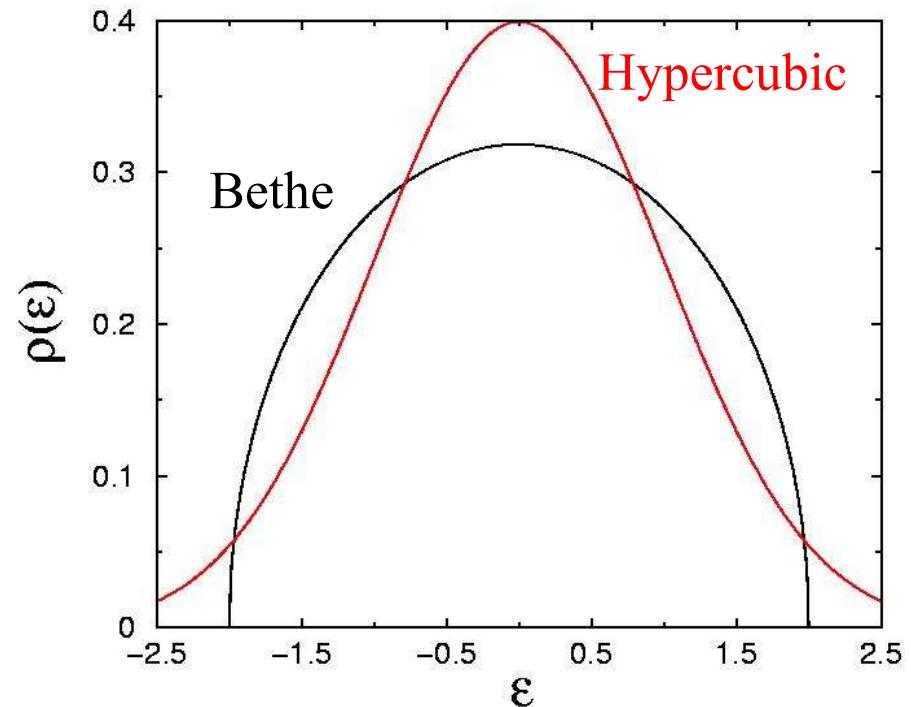
Metal-Insulator Transition (MIT)

- Physics – local Coulomb repulsion U that forbids double occupancy of the electrons creating an insulator, when there is one electron per site on average
- Experiment - variety of materials (MnO , NiO , NiS , $\text{YBa}_2\text{Cu}_3\text{O}_6$), for which band structure calculations underestimate the gap or yield a metal
- Hubbard model – analyzed with many methods (NRG, QMC, etc.) well understood, difficult to develop an approximation which would describe both the weakly correlated Fermi liquid phase and strongly correlated insulating phase
- DMFT - Much progress has been made with **Dynamical Mean Field Theory** (DMFT), i.e. the limit of infinite dimensions, but numerics are complicated and delicate



MIT at half filling

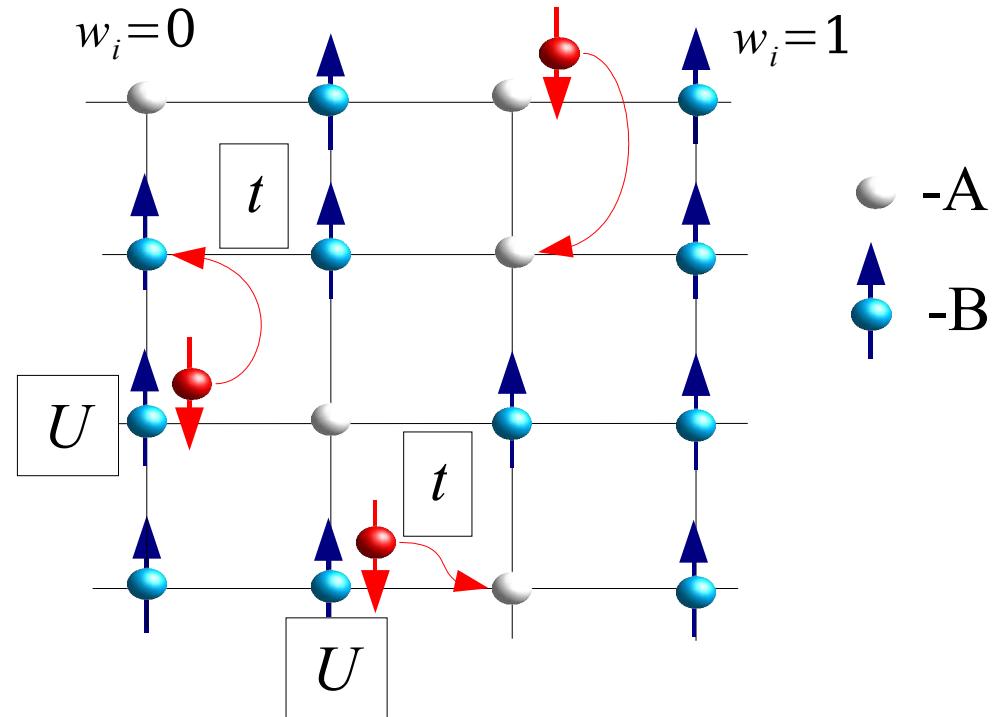
- Hubbard model - MIT occurs only at half filling
- Within DMFT, noninteracting density of states (DOS):
 - **Hypercubic lattice** – Gaussian, infinite bandwidth
 - **Bethe lattice** – semicircle, finite bandwidth



- **Hypercubic**: DOS can vanish only when the self-energy diverges, at a single point forming a **pseudogap**, i.e. MIT occurs when self-energy develops a pole
- **Bethe**: well defined gap, same scenario – MIT occurs when the self-energy develops a pole at the chemical potential
- **What happens if MIT occurs in a system where particle-hole symmetry is broken? (Jorge Hirsch)**
- Most real materials do not have particle-hole symmetry

How to choose the model?

- Needed a modified model which has MIT away from half-filling
- Falicov-Kimball model
- Binary alloy picture
- Exhibit MIT for a wide range of fillings $0 < w_1 < 1$
- Numerics are under excellent control
- Scale effective bandwidth for different lattices $W = \sqrt{\int \epsilon^2 \rho(\epsilon) d\epsilon}$
- Ta_xN – example



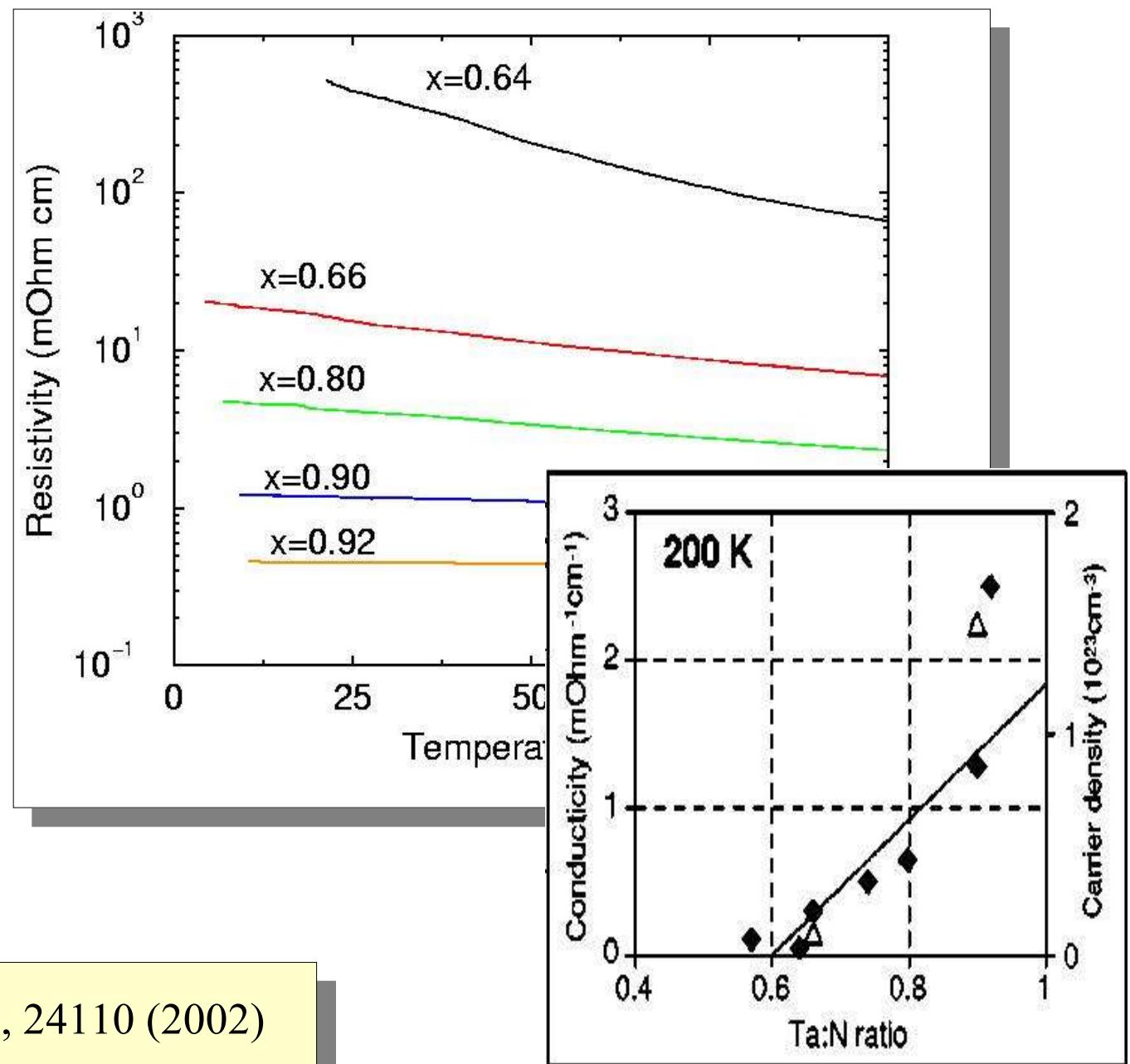
$$H = -t \sum_{\langle i,j \rangle} c_i^+ c_j + U \sum_i w_i c_i^+ c_i$$

$w_1 = \langle w_i \rangle$ - average filling

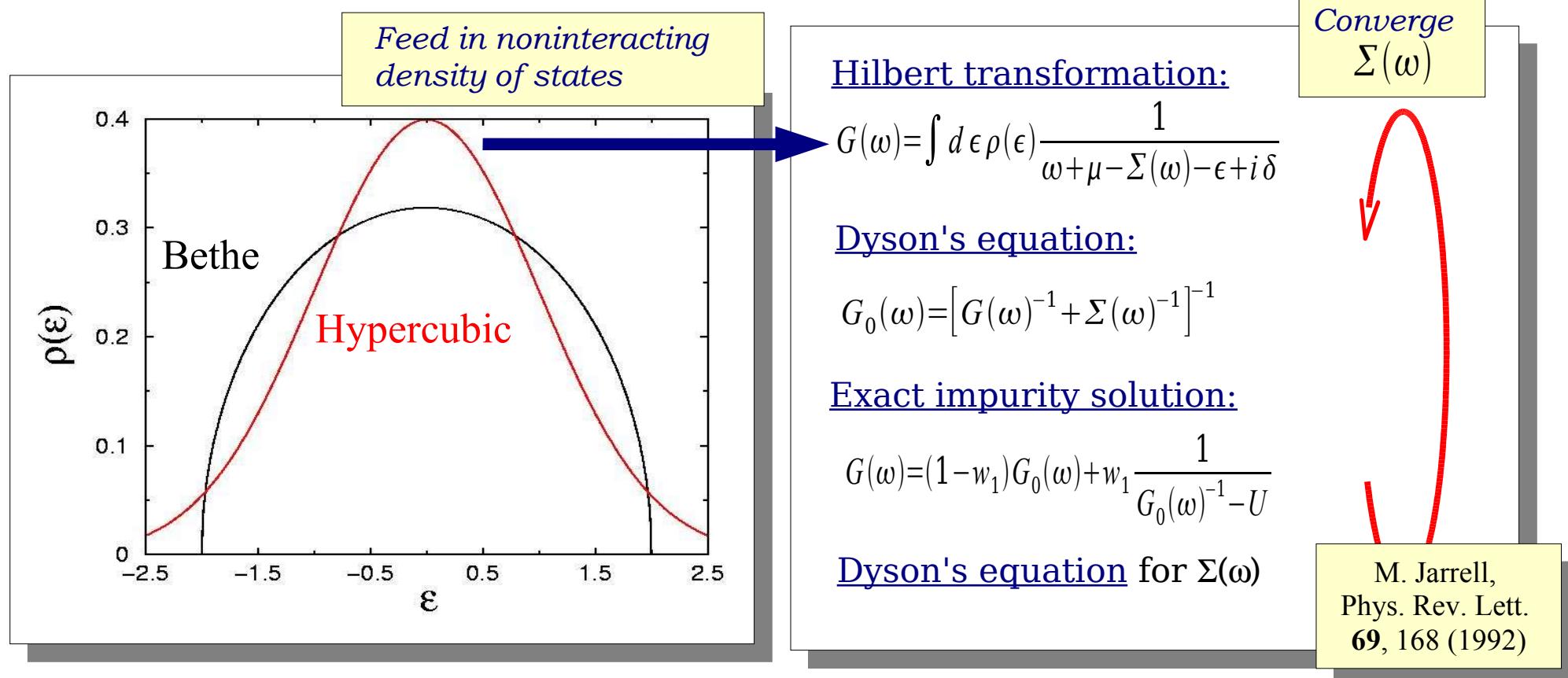
$\rho_e = 1 - w_1$ - fix total number of particles

Binary alloy picture

- Ta_xN – binary alloy:
 $A(Ta \text{ atoms}) + B(\text{vacancies})$
- Vacancies interact with conduction e^- and may trap them
- MIT is observed at $x=0.6$ (Ta:N ratio)
- Potential problem: localization due to disorder becomes increasingly important as x decreases



DMFT



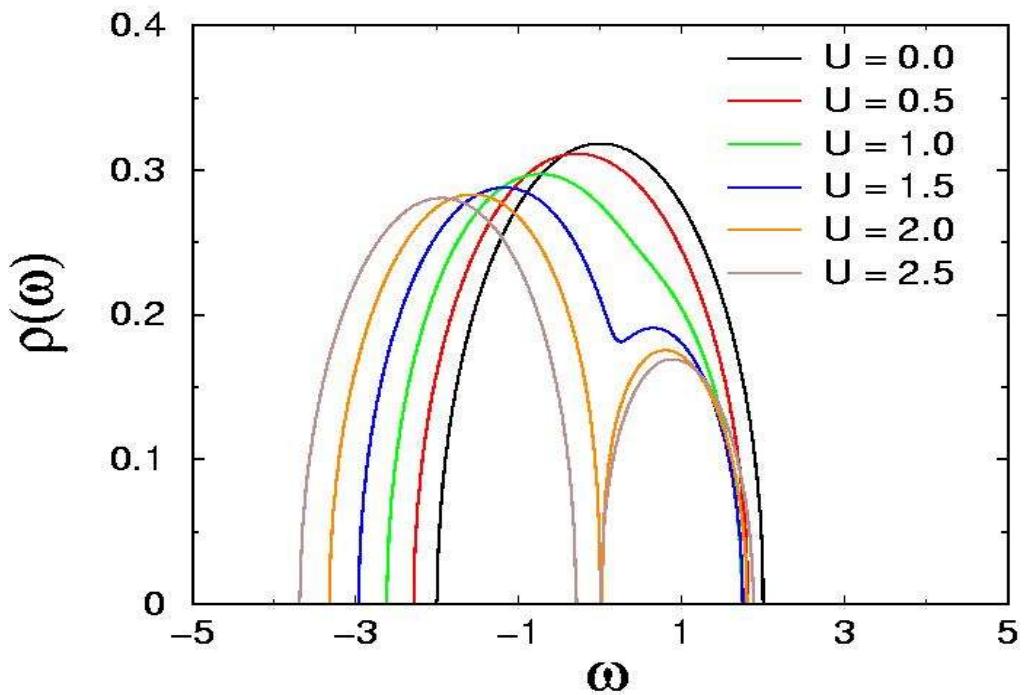
- In the limit $d \rightarrow \infty$ FK model solved exactly¹ with DMFT ²
- Self-energy $\Sigma(\omega)$ has no momentum dependence
- Non-interacting DOS in infinite dimensions:
 - Bethe $\rho_{Bethe}(\epsilon) = \sqrt{4 - \epsilon^2} / 2\pi$ - finite bandwidth
 - Hypercubic $\rho_{HC}(\epsilon) = \exp(-\epsilon^2/2) / \sqrt{2\pi}$ - infinite bandwidth

¹ J.K. Freericks, V. Zlatić
Rev. Mod. Phys. **75**, 1333 (2003)
U. Brandt, C. Mielsch,
Z. Phys. **75**, 365 (1989);
79, 295 (1990)

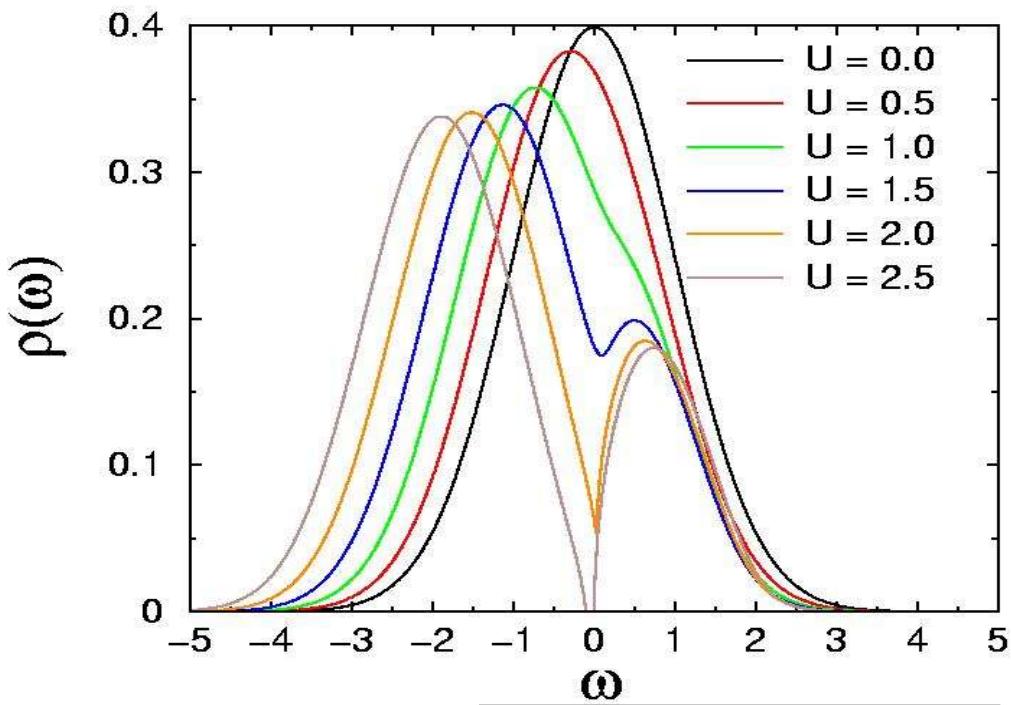
² W. Metzner, D. Vollhardt
Phys. Rev. Lett. **62**, 324 (1989)

DOS away from half-filling ($w_1=0.25$)

Bethe



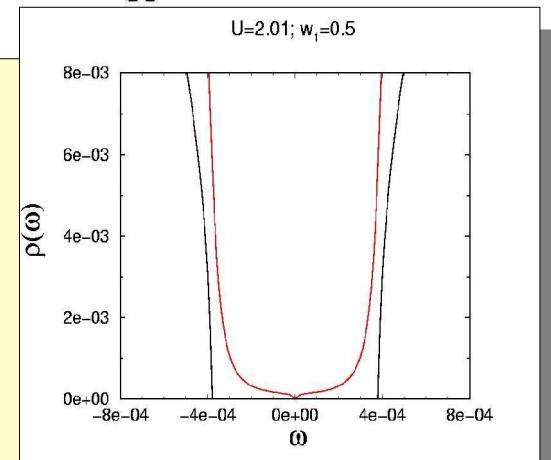
Hypercubic



- Algorithm converges to about 13 digits
- Interacting DOS are defined

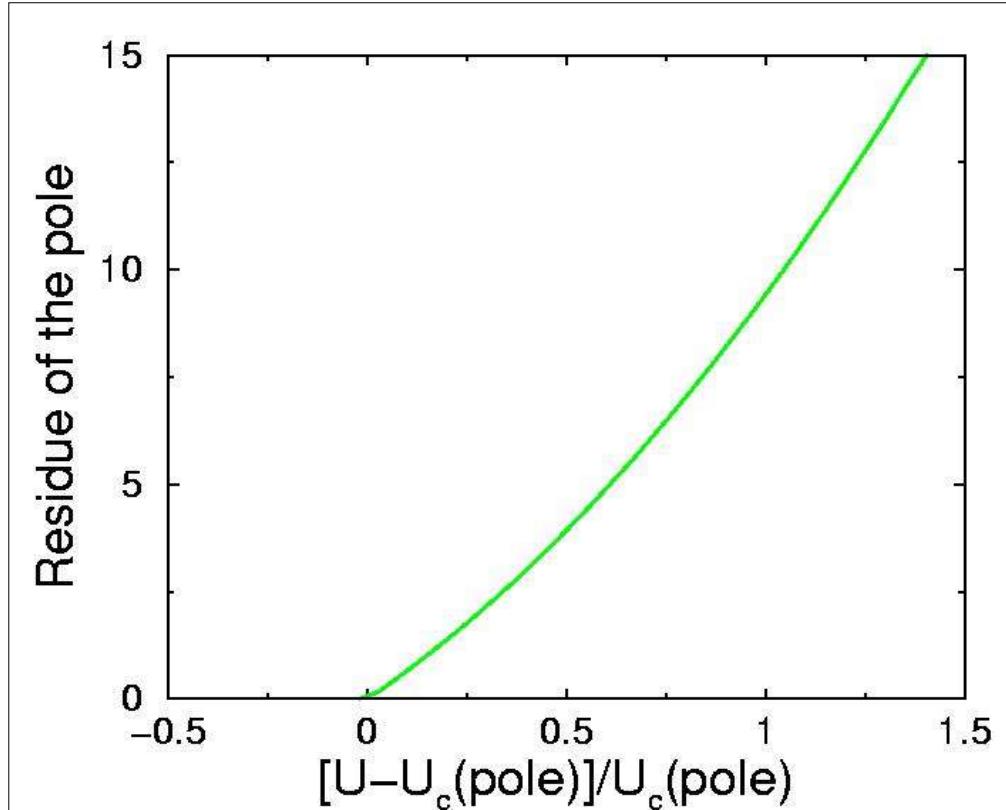
$$\rho_{int}(\omega) = -\text{Im}[G(\omega)]/\pi$$

- Insulating phase – real gap or pseudogap (blow up)
- No quasiparticle peak, no T -dependence



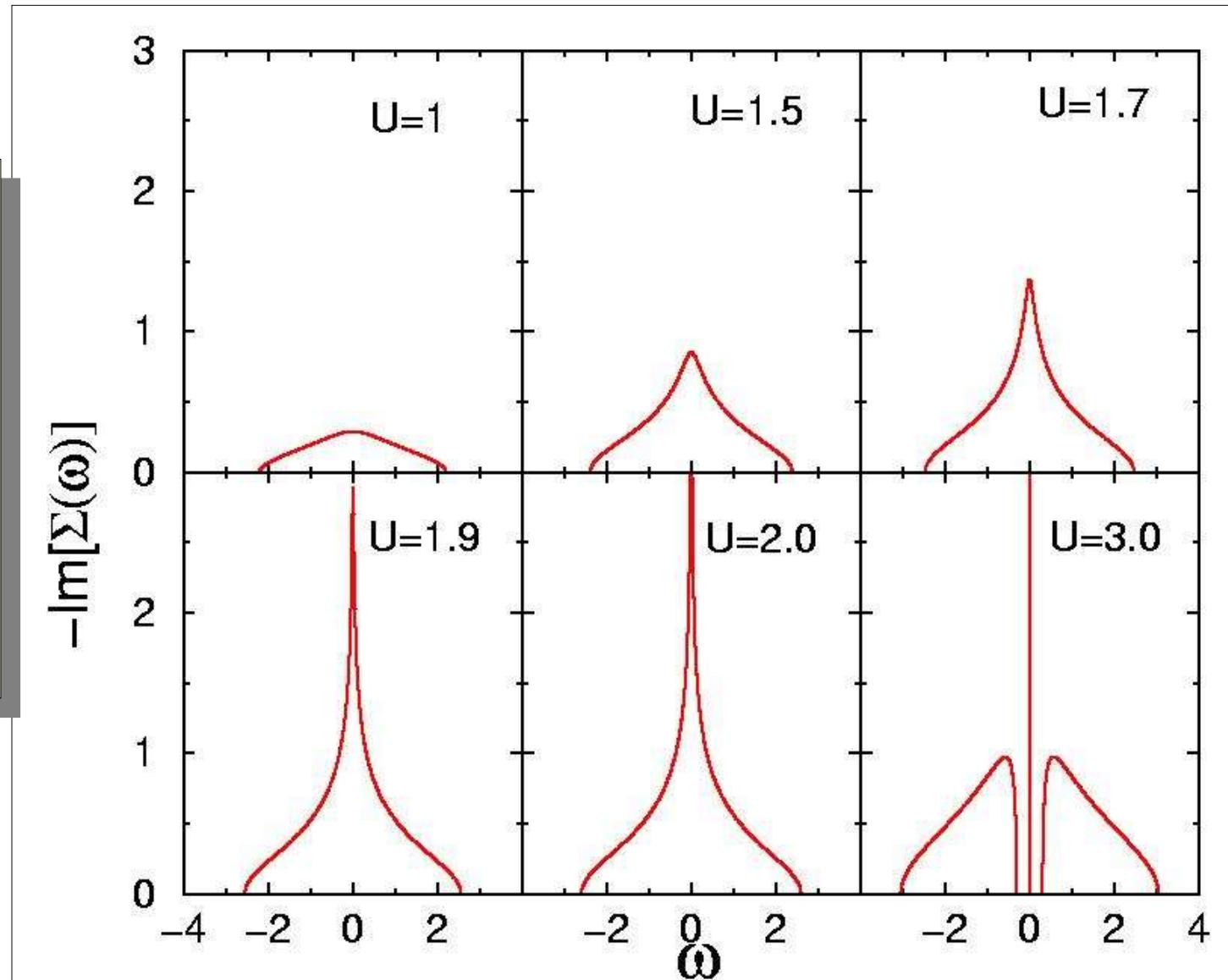
MIT and pole in self-energy

- $U_c(\text{gap})$ – critical U for the gap opening
- $U_c(\text{pole})$ – critical U for the pole formation
- **Half-filling – $U_c(\text{gap})=U_c(\text{pole})$** always – self-energy develops a pole at MIT
- Pole may indicate MIT
- Residue is a universal plot for all fillings on both lattices (scaling holds)
- Can residue of the pole be an order parameter?



MIT and pole in self-energy (Im part)

- Bethe lattice
- Non-Fermi liquid
- Pole is formed together with opened gap
- Pole shows as delta function in $\text{Im}[\Sigma]$

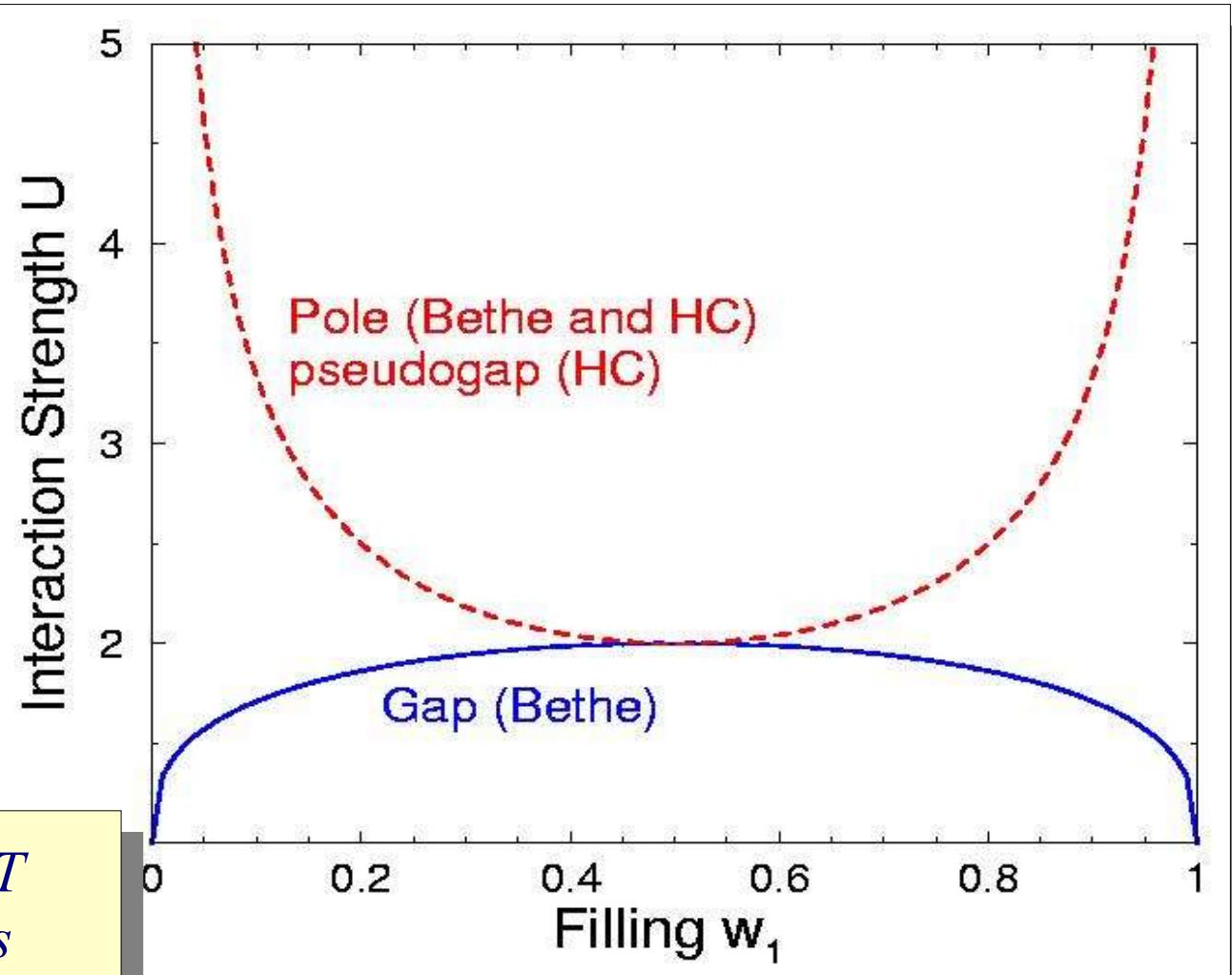


Gap and pole in self-energy

- Green's function satisfies the cubic equation (Bethe)
- Condition for the development of the pole in the self-energy
- Condition for band edges yields critical U for the gap opening

Different U 's away from half-filling

The scenarios for the MIT on HC and Bethe lattices are NOT the same

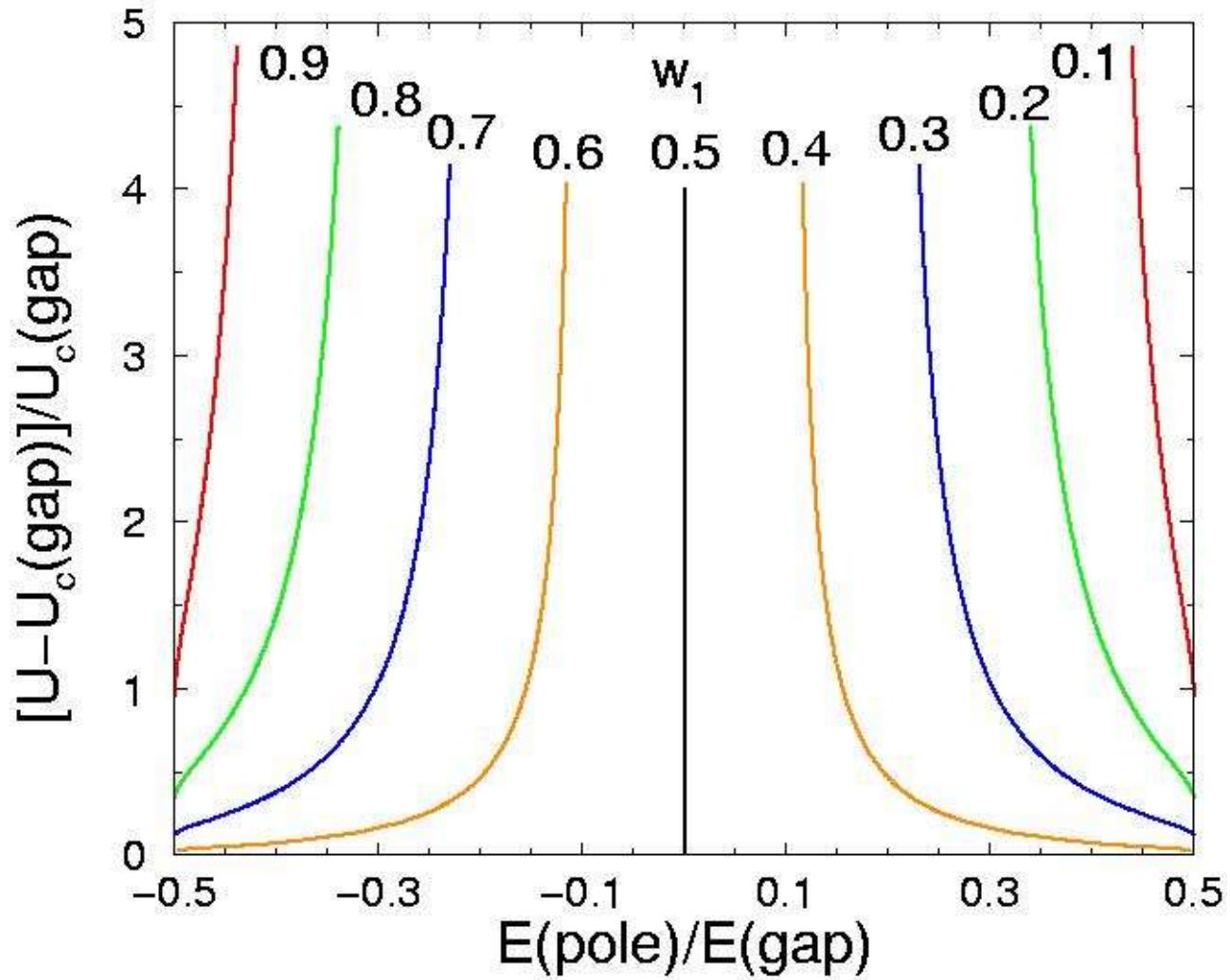


$$G^3 - 2xG^2 + \left(1 + x^2 - \frac{U^2}{4}\right)G - (x + \alpha) = 0$$

$$x = \omega + \mu - U/2; \quad \alpha = U\left(w_1 - \frac{1}{2}\right)$$

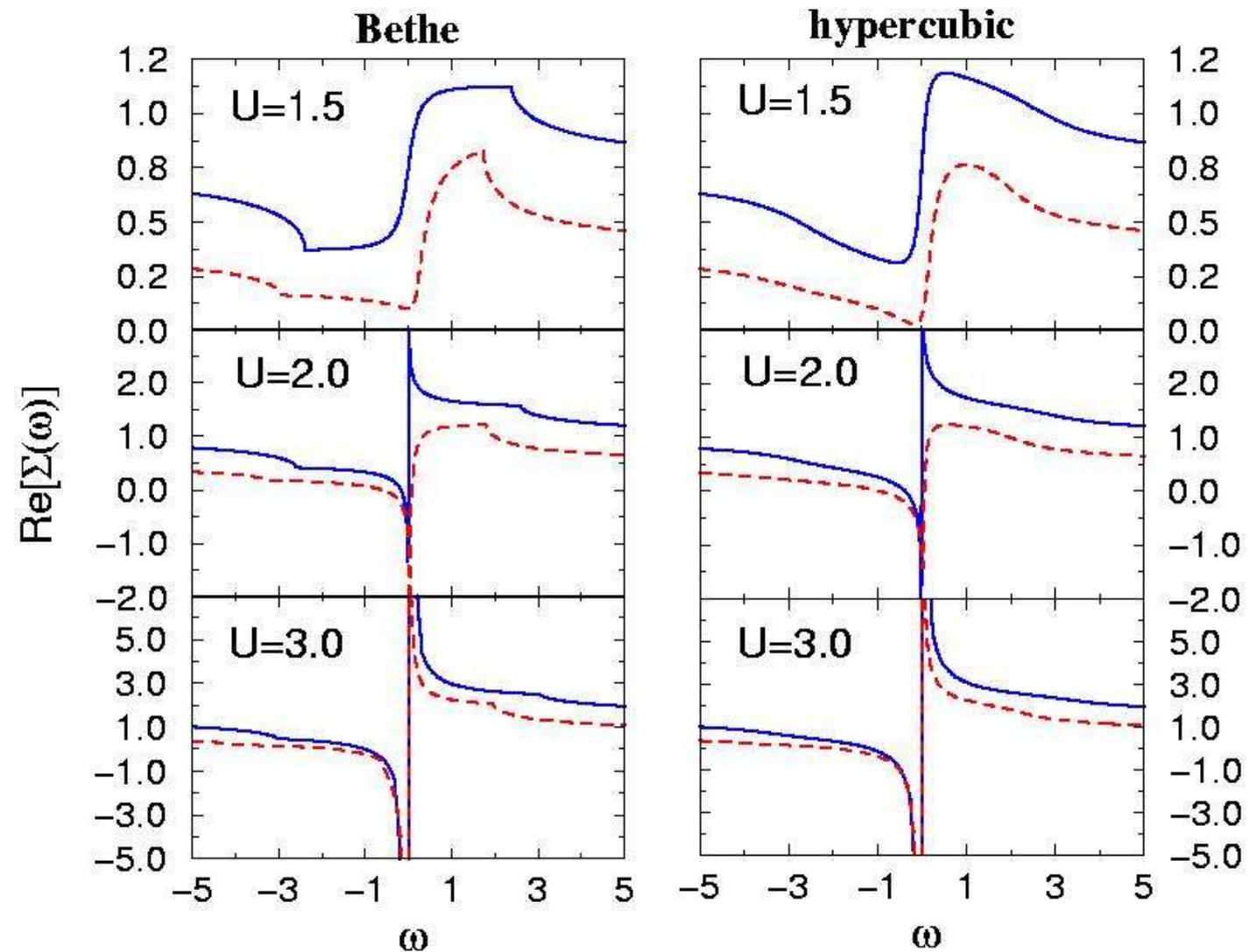
Pole formation (Bethe lattice)

- Relative U vs. relative location of the pole in the gap
- Half-filling – pole is in the middle of the gap
- For $w_1 \neq 0.5$ the pole first appears at one of the band edges at $U=U_c(\text{pole})$ then drifts closer to the center
- There is no smooth transition between half-filled and particle-hole asymmetric cases



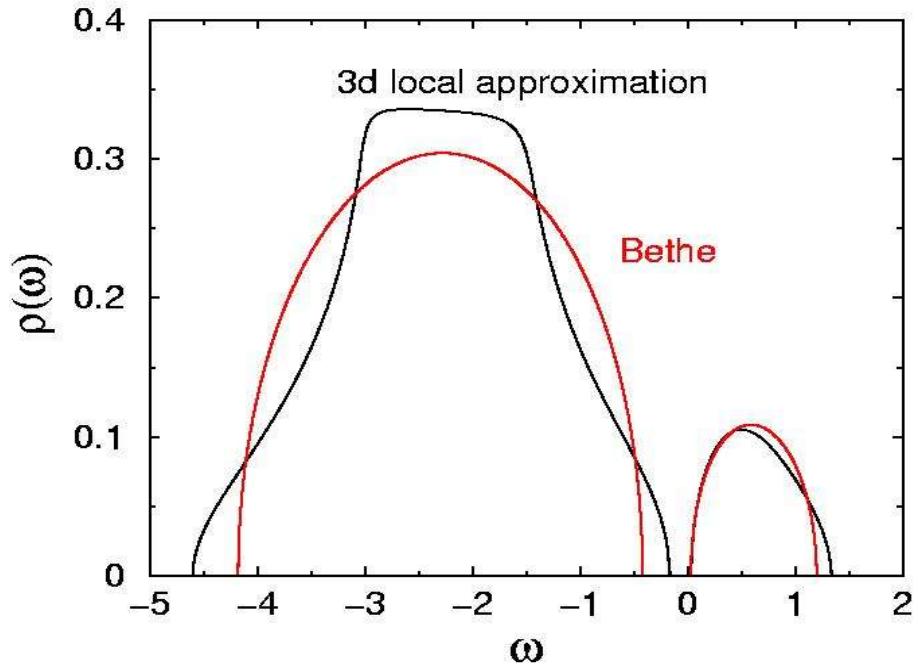
Evolution of self-energy (Re part)

- Blue – $w_1=0.5$
- Red – $w_1=0.25$
- $U=2$ insulator for both $w_1=0.5$ and $w_1=0.25$
- $w_1=0.25$ - no pole
- $\text{Re}[\Sigma(\omega)]$
($\text{Re}[G(\omega)]$) - kinks at the new band edges
- Residue of the pole does not describe transition on the Bethe lattice

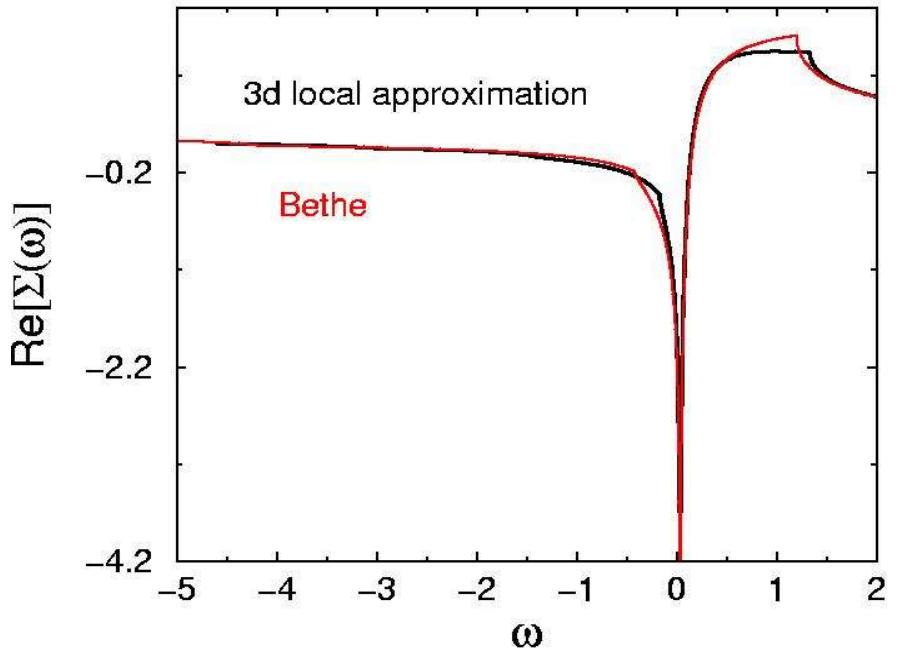


What causes the differences?

$U=2.5, w_1=0.1$



$U=2.5, w_1=0.1$



- Is it due to the absence of percolation loops on Bethe lattice?
- Local approximation calculations on the $3d$ lattice, it has loops, but also has finite bandwidth
- Example: $U=2.5, w_1=0.1$, well developed gap DOS but no pole
- **Bandwidth matters**
- Bethe lattice is more physical than HC

Bulk transport and thermal properties

- Is pole formation significant?
- Use Kubo-Greenwood approach
- Invoking Johnson-Mahan theorem³ for transport coefficients

$$L_{ij} = \frac{\sigma_0}{e^2} \int d\omega \left(-\frac{df(\omega)}{d\omega} \right) \tau(\omega) \omega^{i+j-2}$$

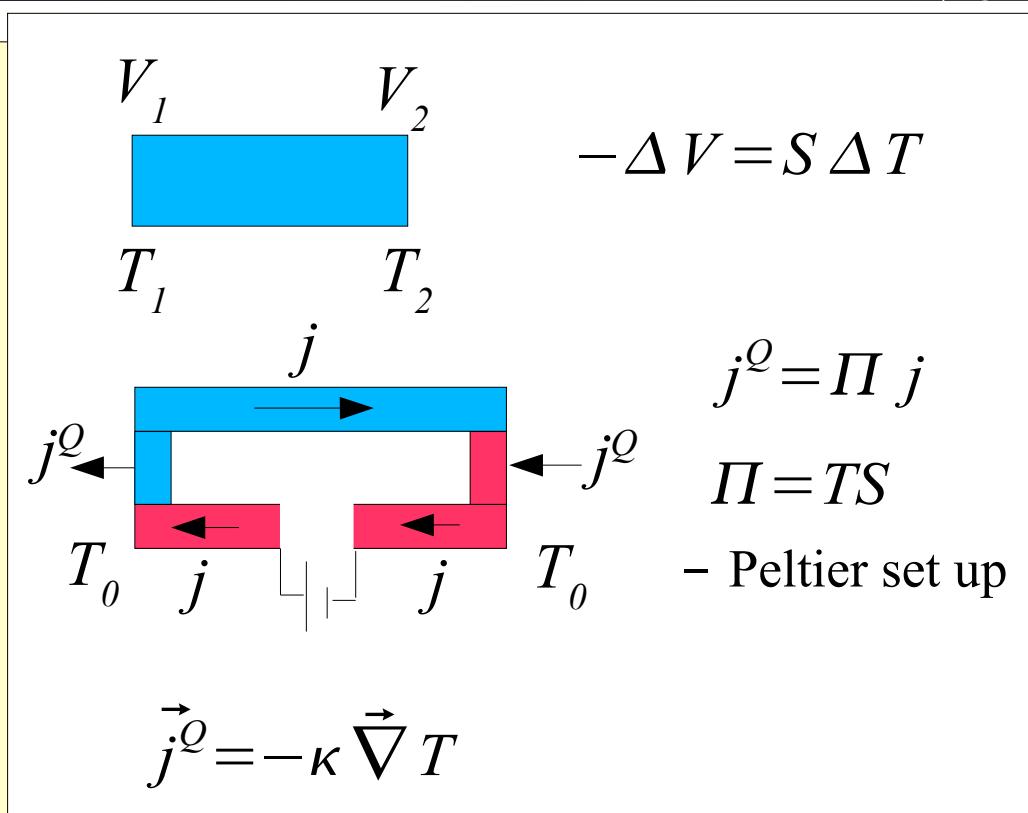
- dc conductivity $\sigma = e^2 L_{11}$

- Thermopower $S = - \frac{k_B}{|e|T} \frac{L_{12}}{L_{11}}$

- Thermal conductivity $\kappa_e = \frac{k_B}{T} \left[L_{22} - \frac{L_{12}L_{21}}{L_{11}} \right]$

- Thermoelectric figure-of-merit $ZT = \frac{L_{12}^2}{L_{11}L_{22} - L_{12}^2}$

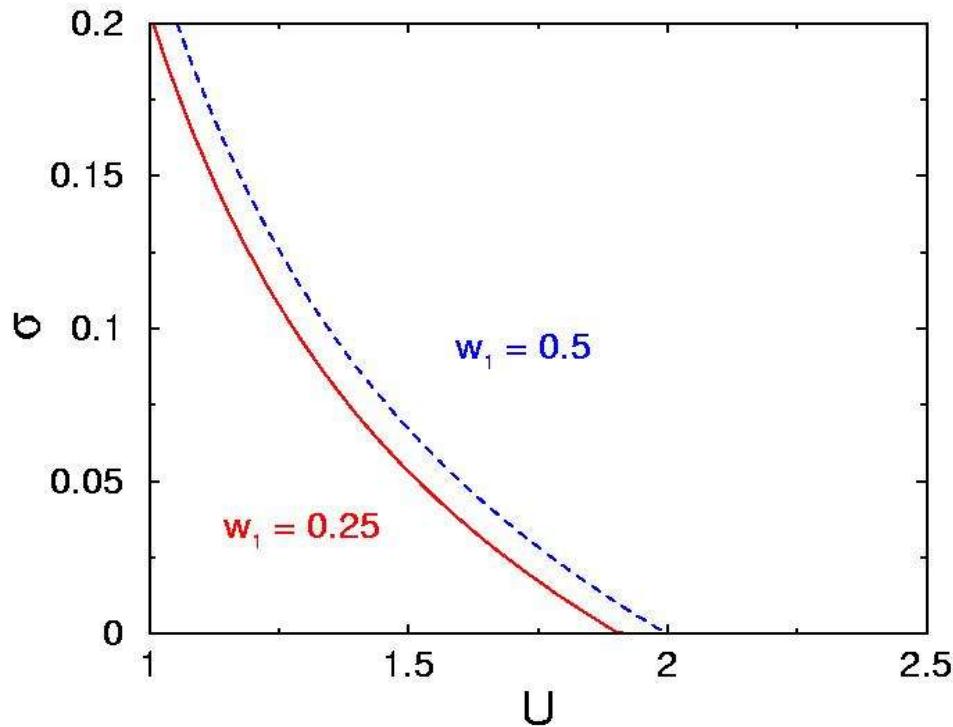
³ M. Johnson and G.D. Mahan, Phys. Rev. B 21, 4223 (1980)



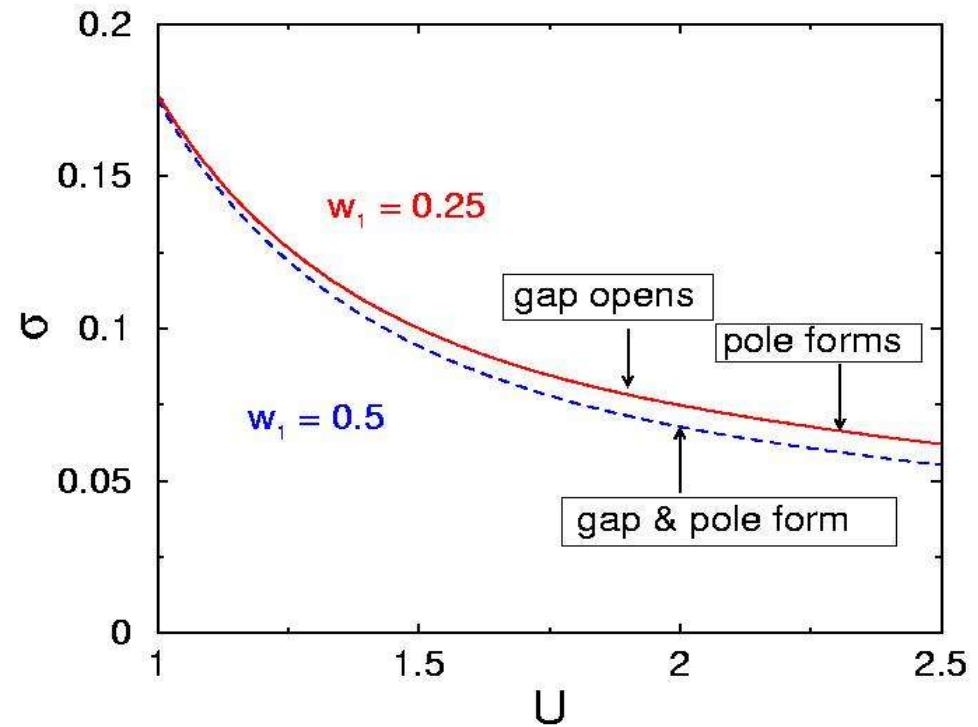
$ZT > 1$ commercially viable
thermoelectric applications
 $ZT \sim 4$ (freon refrigerators)
 $ZT \rightarrow \infty$ - Carnot efficiency

Is pole formation significant?

Bethe lattice; $T = 0$



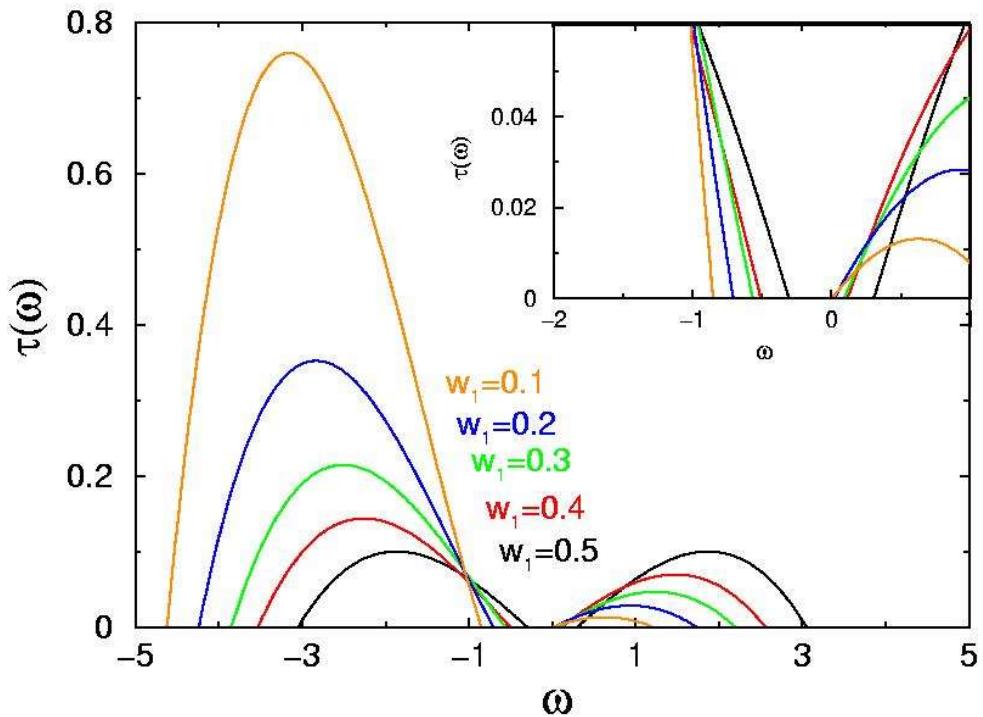
Bethe lattice; $T = 1t^*$



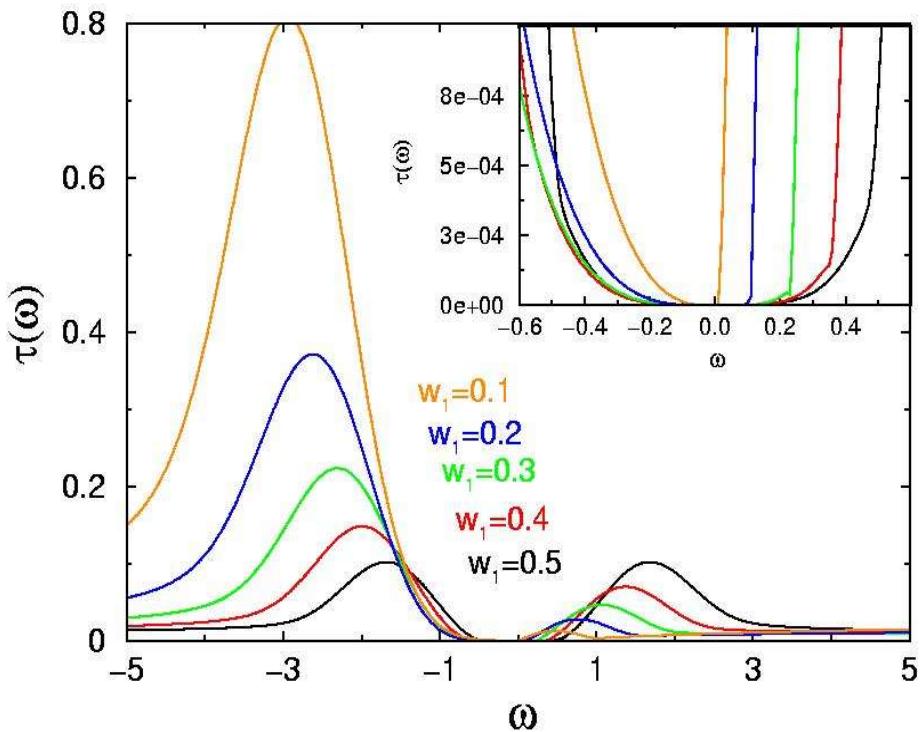
- **Example:** calculated dc conductivity on the Bethe lattice
- Conductivity shows continuous transition at $T=0$
- **No influence of the pole on the transport at finite T**
- Other differences between HC and Bethe lattices?

Unphysical relaxation time (HC)

Bethe

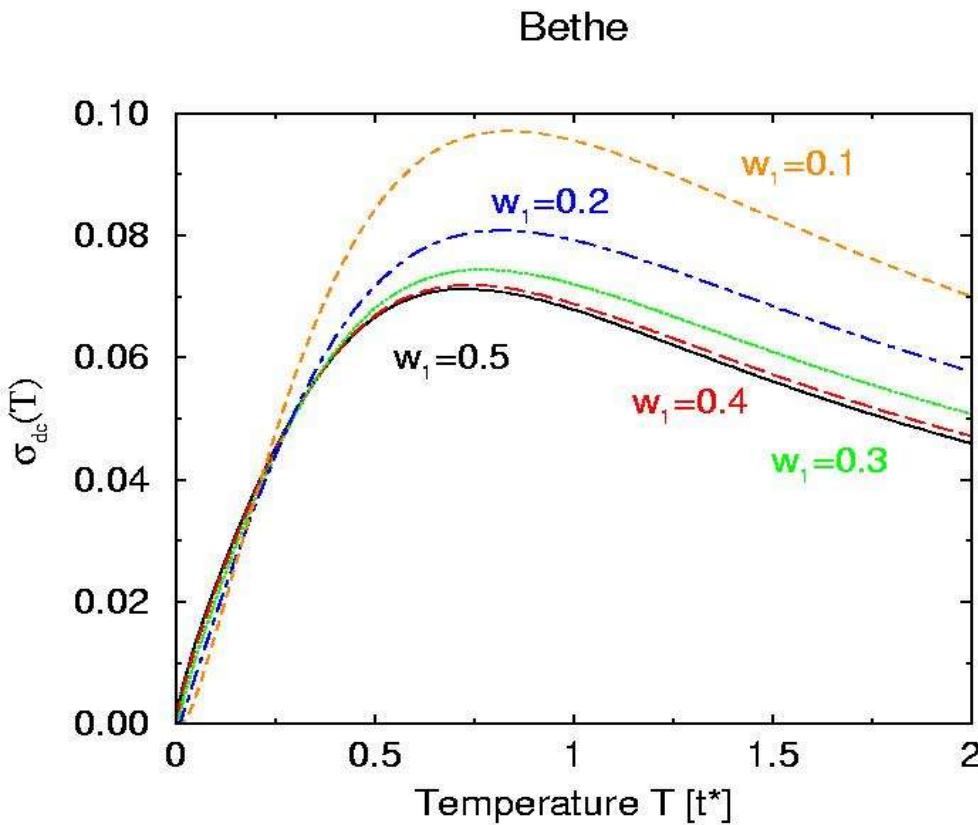
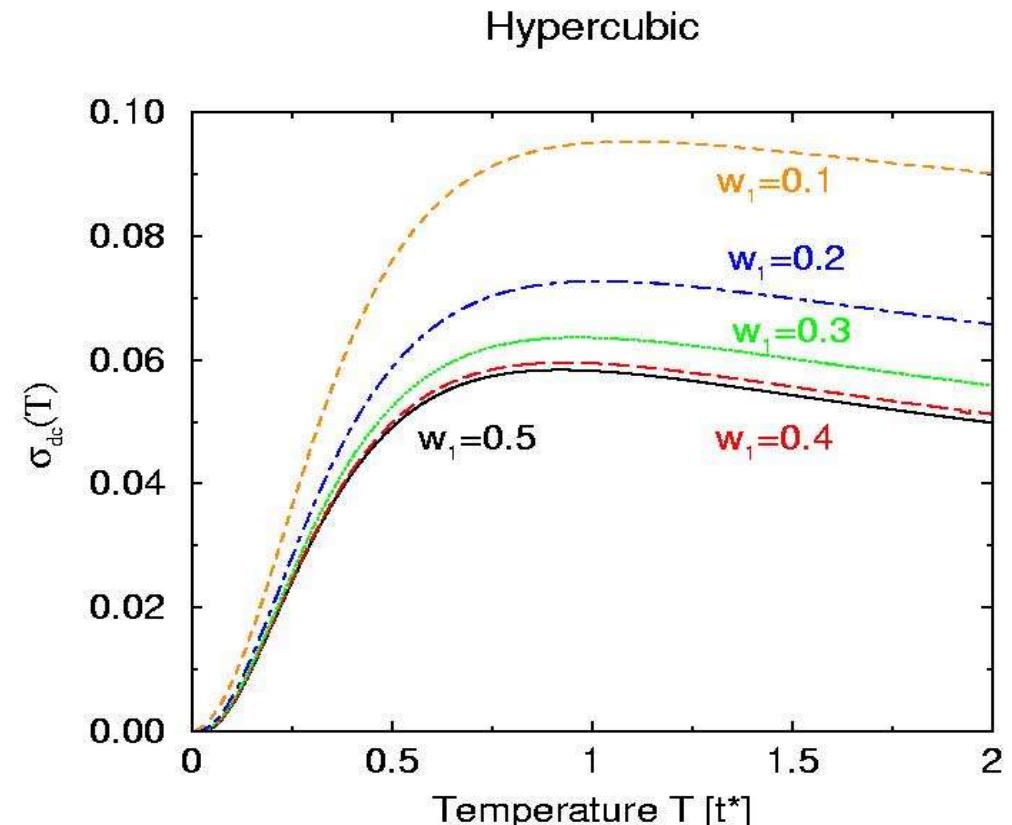


Hypercubic



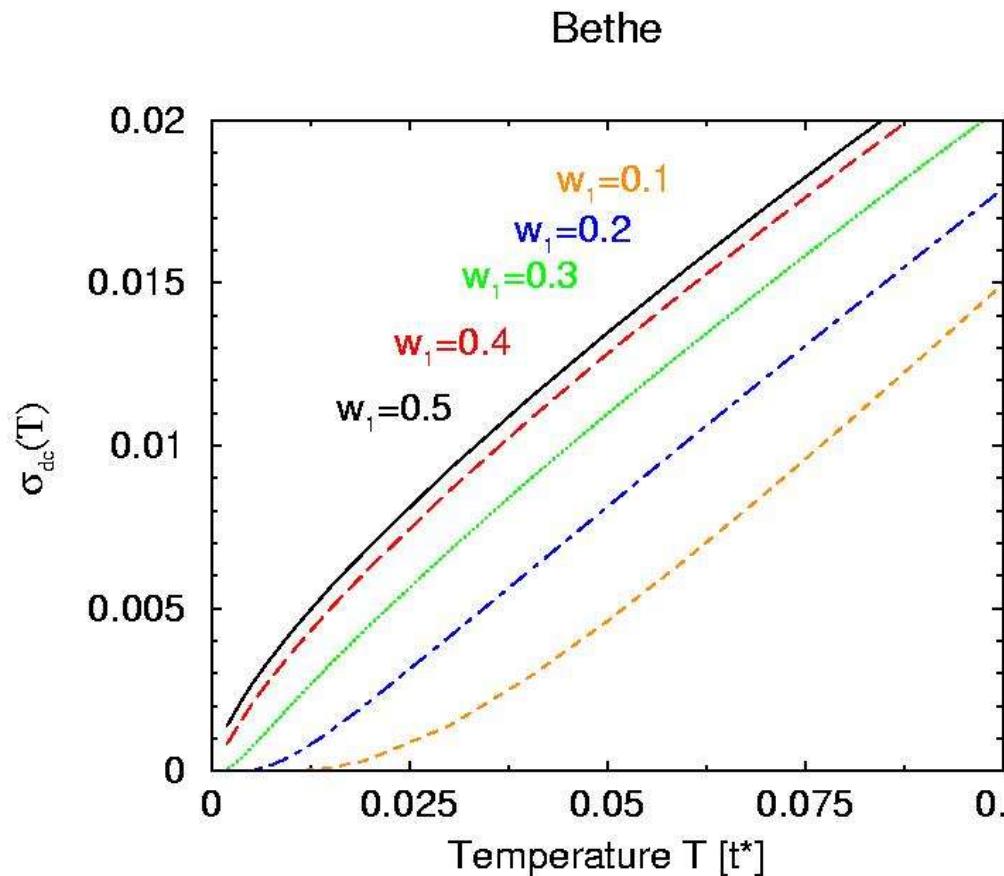
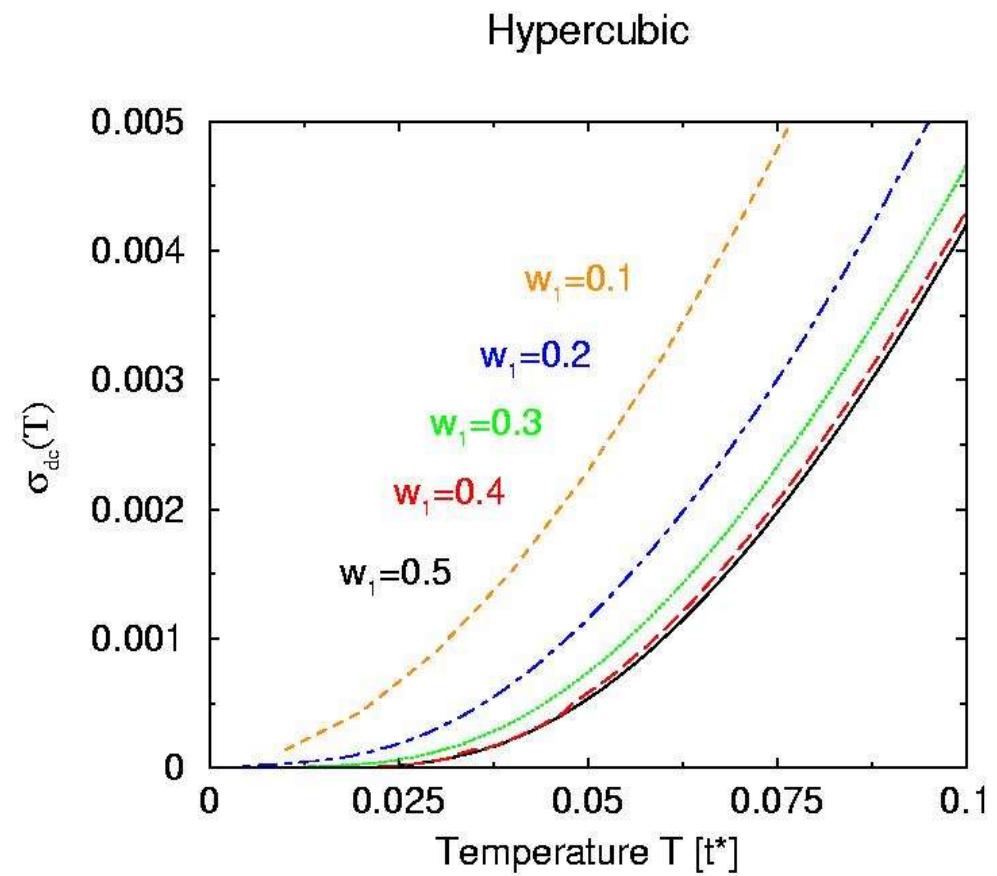
- Relaxation times for $U = 3.0$ $\tau(\omega) = \int d\epsilon \rho(\epsilon) A^2(\omega, \epsilon)$
- Relaxation time defines behavior of L_{ij} and transport
- HC – relaxation time is finite outside the band (affects high T results)
- HC – relaxation time is power law “inside” the band gap (low T)
- HC – gap states have exponentially large lifetime, and can contribute significantly into current

Example: bulk charge transport



- dc conductivity for $U = 2.0$
- HC and Bethe have both gap and pole for $w_1 = 0.5$, otherwise Bethe is an insulator (with no pole), HC is still a metal
- No significant differences, except low T (blow up)

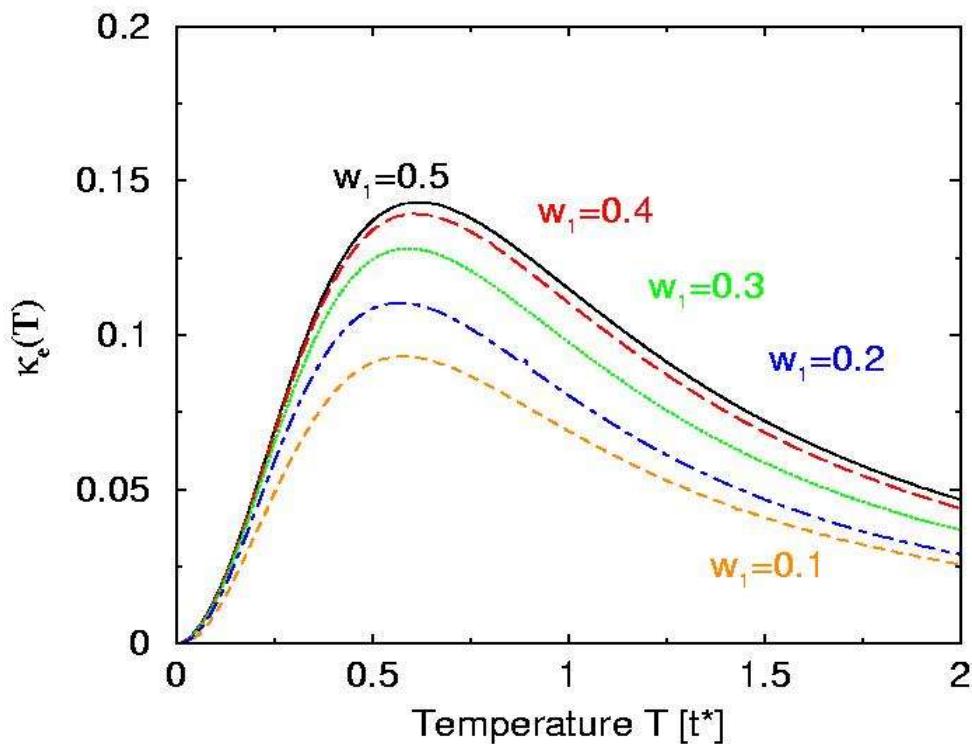
Example: bulk charge transport (low T)



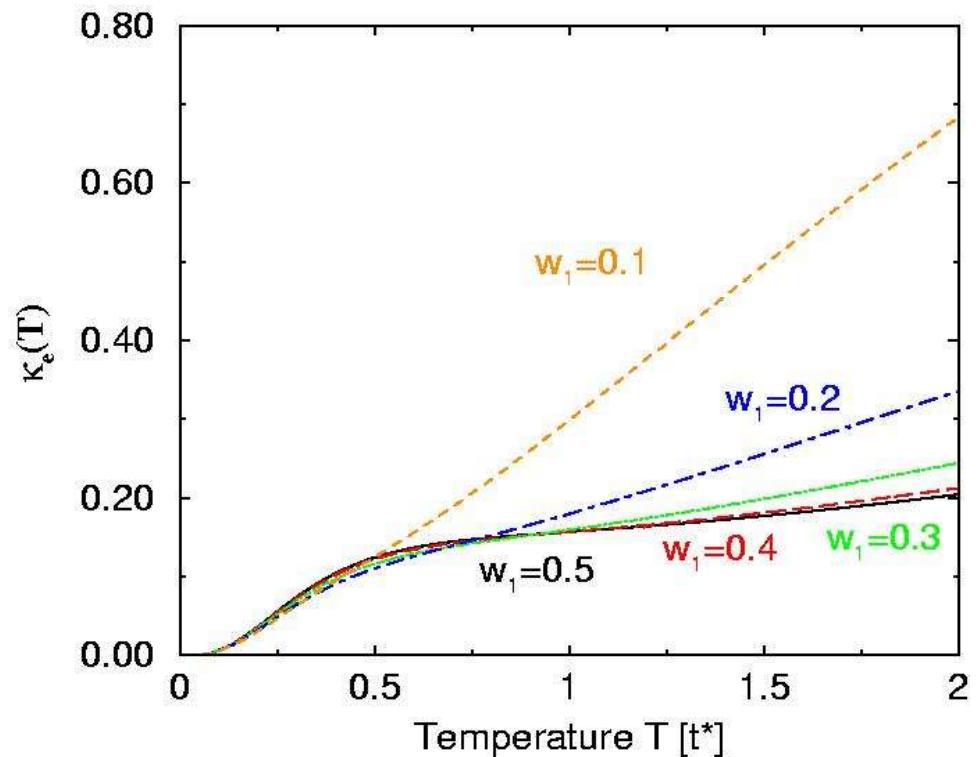
- dc conductivity for $U = 2.0$
- HC and Bethe have both gap and pole for $w_1 = 0.5$, otherwise Bethe is an insulator (with no pole), HC is still a metal
- At $T=0$ HC – exponentially small σ , Bethe - $\sigma=0$

Electronic thermal conductivity

Bethe



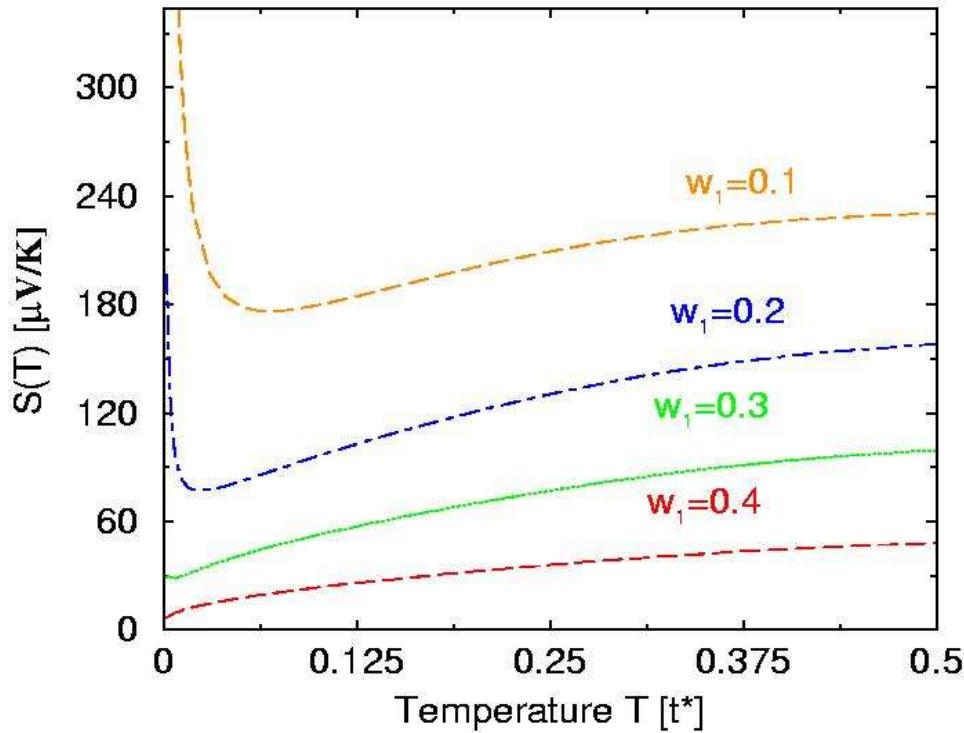
Hypercubic



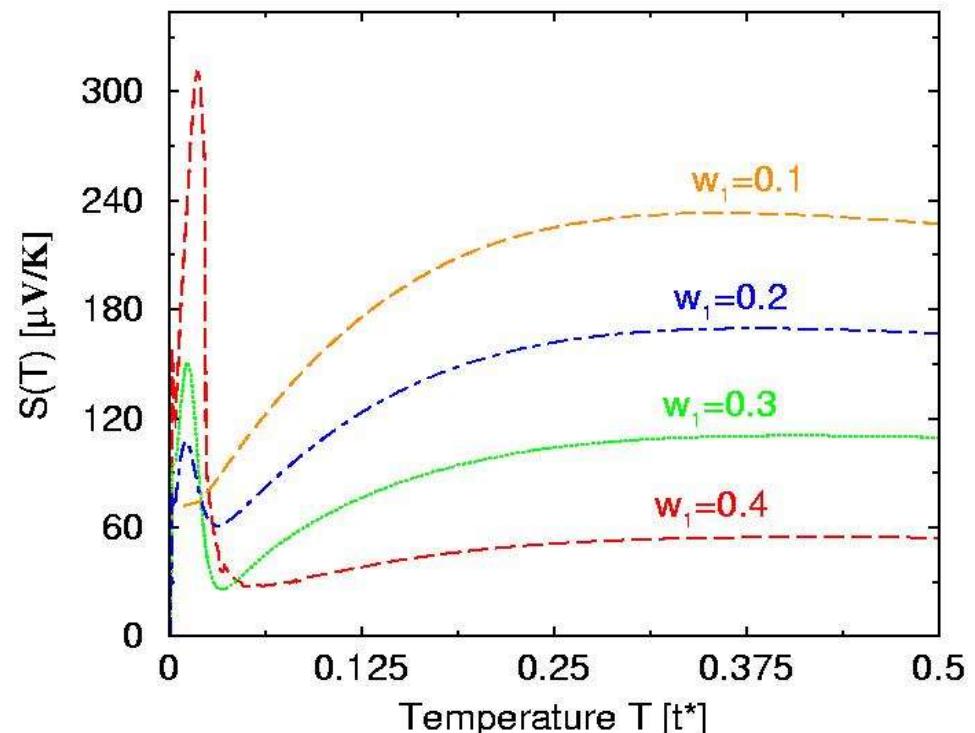
- Thermal conductivity (electronic part) for $U = 2.0$
- HC and Bethe have both gap and pole for $w_1=0.5$, otherwise Bethe is an insulator (with no pole), HC is still a metal
- HC is linearly increasing at high T – consequence of $\tau(\omega)$ behavior

Thermopower

Bethe

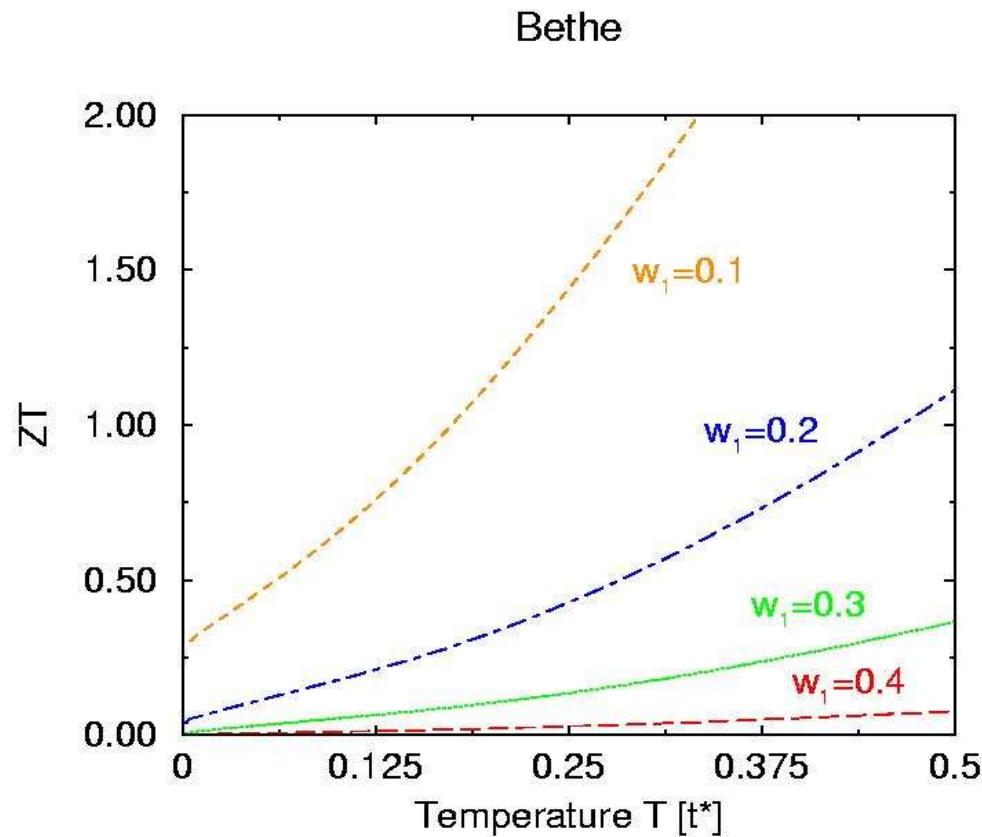
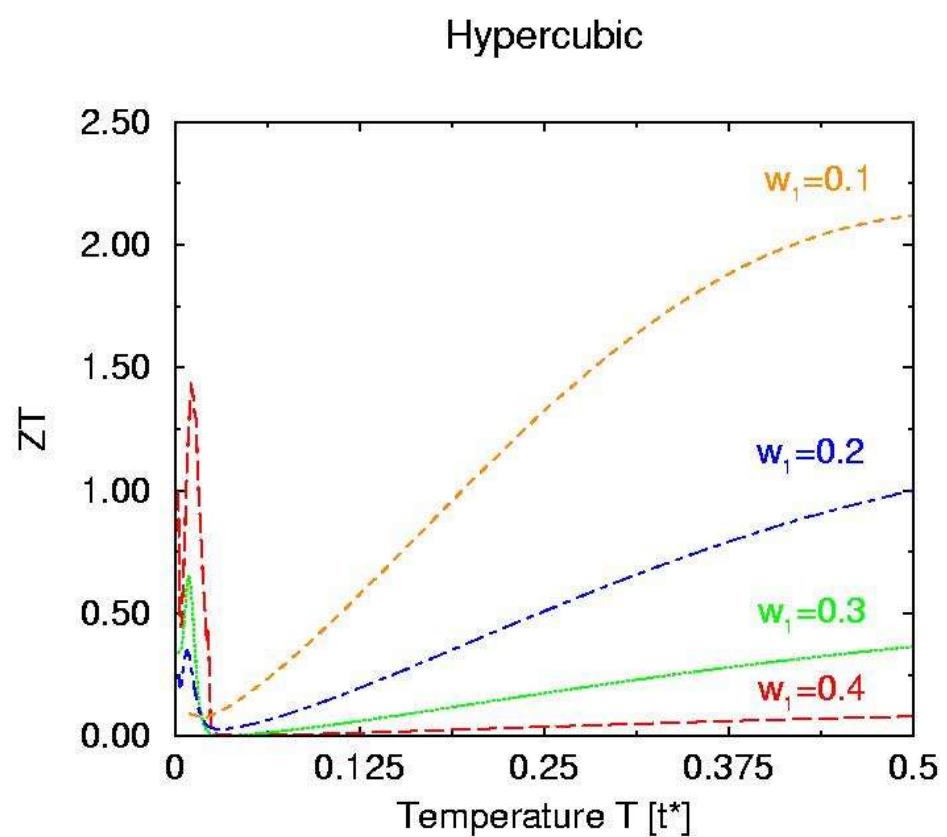


Hypercubic



- Thermopower for $U = 2.0$
- At half-filling thermopower is zero
- **Bethe** – S diverges at $T \rightarrow 0$ (linear response breaks down), **HC** – S peaks, then goes to zero as $T \rightarrow 0$
- Potential for thermoelectric applications

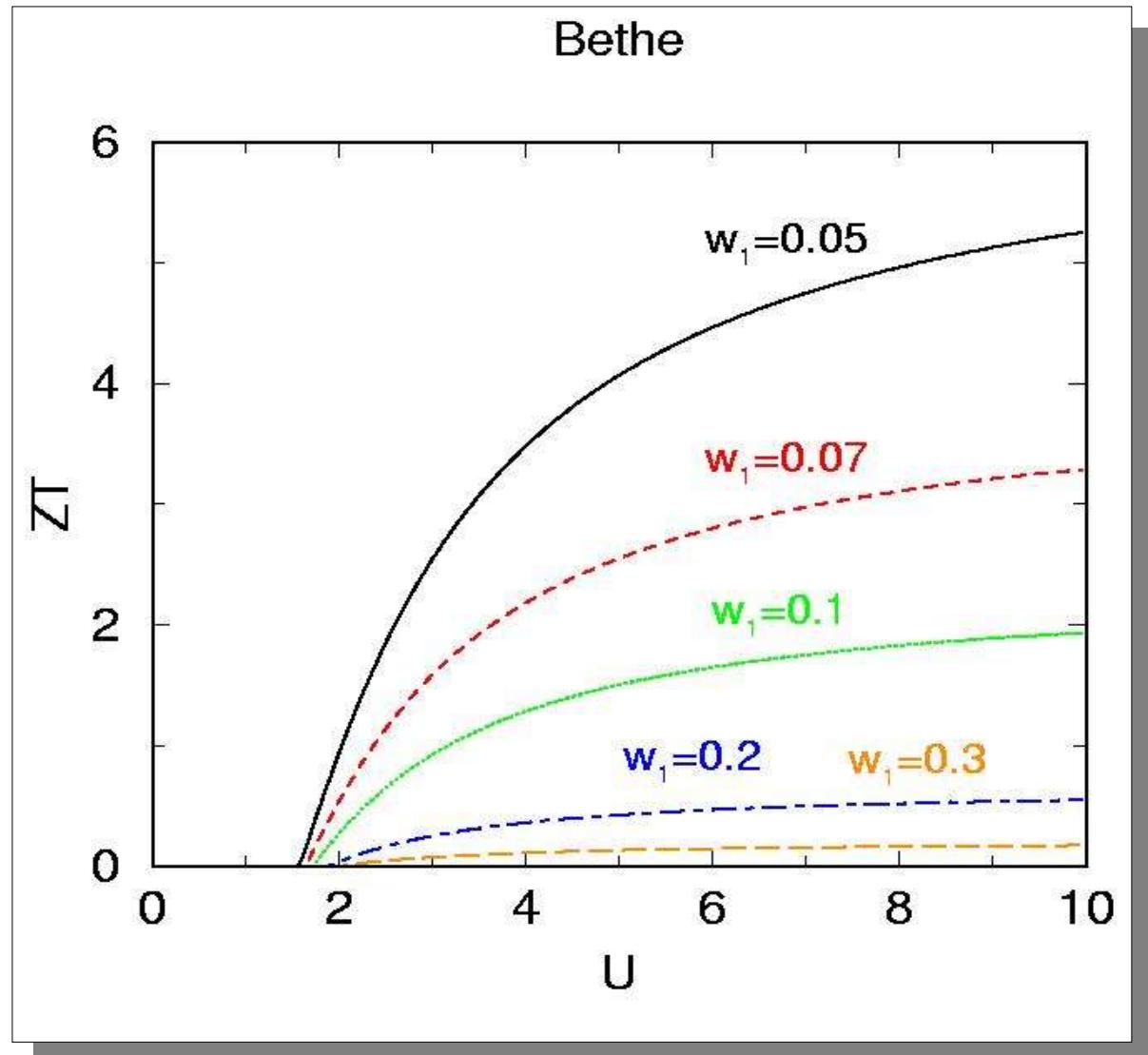
Thermoelectric figure-of-merit



- Thermoelectric figure-of-merit ($U = 2.0$), $ZT > 1$ needed for thermoelectric applications (freon-based refrigerators $ZT \sim 4$)
- Large ZT's in both cases, different behavior, low T peak on HC
- Suggests use of correlated materials in thermoelectric devices
- How does ZT depend on U ?

Zero temperature ZT

- Example: zero T ZT can be made arbitrarily high by increasing asymmetry
- At low T – small conductivity, even if ZT is large, high voltage would be needed to have cooling power
- Warning: at low T lattice component may be significant
- At high T lattice component is less significant, and ZT is still relatively high



Conclusions

- Effects of particle-hole asymmetry on the Mott transition in the infinite dimensional Falicov-Kimball model analyzed
- The scenarios of MIT are the same on hypercubic and Bethe lattices at half-filling only
- When the particle-hole symmetry is removed (as is often the case in real materials) the MIT and formation of the pole in the self-energy are unrelated on the Bethe lattice
- There is little or no difference in properties of a correlated insulator with or without a pole in the self-energy
- We conjecture that conclusions about the character of the MIT on the Bethe lattice will hold for other systems with finite bandwidth
- Transport properties also suggest that (within DMFT) the Bethe lattice is more realistic than hypercubic lattice
- Our calculations suggest that particle-hole asymmetric correlated materials may be useful in thermoelectric devices