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Metal-Insulator Ea
Y

* Physics — local Coulomb repulsion U that forbids
double occupancy of the electrons creating an

insulator, when there 1s one electron per site on % %
average

* Experiment - variety of materials (MnO, NiO, NiS, |

YBa Cu,0,), for which band structure calculations UAH /@
underestimate the gap or yield a metal g

* Hubbard model — analyzed with many methods

(NRG, QMC, etc.) well understood, difficult to 4P(€)

develop an approximation which would describe both

the weakly correlated Fermi liquid phase and strongly
correlated insulating phase ‘ |

* DMFT - Much progress has been made with U2 U> €
Dynamical Mean Field Theory (DMFT), 1.e. the limit

of infinite dimensions, but numerics are complicated

and delicate
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Hypercubic |

* Hubbard model - MIT occurs only at

half filling 03 r
* Within DMFT, noninteracting |
density of states (DOS): % 02 t
* Hypercubic lattice — Gaussian, |
infinite bandwidth 01 |
* Bethe lattice — semicircle, finite |
bandwidth 5
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* Hypercubic: DOS can vanish only when the self-energy diverges, at a single
point forming a pseudogap, 1.e. MIT occurs when self-energy develops a
pole

* Bethe: well defined gap, same scenario — MIT occurs when the self-energy
develops a pole at the chemical potential

* What happens if MIT occurs 1n a system where particle-hole symmetry 1s
broken? (Jorge Hirsch)

* Most real materials do not have particle-hole symmetry



How: to chiooSeiihe 1?

* Needed a modified model
which has MIT away from half-
filling

* Falicov-Kimball model

* Binary alloy picture

* Exhibit MIT for a wide range of
fillings O<w <1

* Numerics are under excellent
control

* Scale effective bandwidth for
different lattices - f ole)de

e Ta N — example

Wy =<W,-> - average filling

p,=1—w, - fix total number of particles



e Ta N — binary alloy:
A(Ta atoms)+
B(vacancies)

* Vacancies interact
with conduction e and
may trap them

* MIT 1s observed at
x=0.6 (Ta:N ratio)

* Potential problem:
localization due to
disorder becomes
increasingly important
as X decreases
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Converge
Hilbert transformation: 2 (w)

Feed in noninteracting
density of states

0.4 1
G(w)_fdEp(E)eru—Z(w)—eHé /\
0.3 __Bethe Dyson's equation: V

Hypercubic GO(U)>:[G<U))_1-I-Z((U)_1]_1

Exact impurity solution:
Glw)=(1-w) Gylw)+w,

Go(w)_l‘U

\ |

M. Jarrell,
Phys. Rev. Lett.
69, 168 (1992)

Dyson's equation for >(w)

® In the limit d - o0 FK model solved exactly' with DMFT 2 ' JK Freericks, V. Zlatic
. Self-e?nergy ) (w) has no momentum dependence 5‘2'11;@03‘1'(21)5‘5;)'
* Non-interacting DOS 1n infinite dimensions: U.Brandt, C.Mielsch,
e Bethe pyy, (c/={4-c/2n- finite bandwidth 205 (100
* Hypercubic pycle)=exp(-€*12)\2n- infinite bandwidth W .Metzner, D.Vollhardt
Phys. Rev. Lett.
62, 324 (1989)
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U=2.01; w,=05

* Algorithm converges to about 13 digits
Interacting DOS are defined

p. (w)=—Im|G(w)|/m
* [nsulating phase — real gap or pseudogap
* No quasiparticle peak, no 7-dependence

(blow up)
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MIT and pole 1 seliz
4

o U (gap) — critical U for the gap

15

opening
o U (pole) — critical U for the pole

formation

e Half-filling — U (gap)=U (pole)
always — self-energy develops a
pole at MIT

* Pole may indicate MIT

* Residue is a universal plot for all
fillings on both lattices (scaling 0

o
T

Residue of the pole
o

-0.5 0 0j5 1 1.5
holds) [U-U (pole)J/U_(pole)
* Can residue of the pole be an

order parameter?




e Bethe lattice

* Non-Fermi liqud
* Pole is formed
together with
opened gap

* Pole shows as
delta function 1n

—Im[Z(®)]

Im[2]




e Green's function
satisfies the cubic
equation (Bethe)

* Condition for the
development of the pole
in the self-energy

* Condition for band
edges yields critical U
for the gap opening

(#Y L

Interaction Strength U
M

Different U's away from

half-filling

The scenarios for the MIT
on HC and Bethe lattices
are NOT the same
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* Relative U vs. relative
location of the pole in

the gap
* Half-filling — pole is in
the middle of the gap

e For w #0.5 the pole

first appears at one of
the band edges at
U=U (pole) then drifts

closer to the center

* There 1s no smooth
transition between half-
filled and particle-hole
asymmetric cases
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e Blue —w =0.5

e Red — w,=0.25

e U=2 insulator for
both w =0.5 and

w =0.25

e w=0.25 - no pole

* Re[2(W)]
(Re[G(w)]) - kinks at
the new band edges
* Residue of the pole
does not describe

transition on the
Bethe lattice

hypercubic
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U=2.5, w,=0.1 U=2.5, w,=0.1
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3d Icoal Bpproximetion | 3d local approximation Fﬂ\
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* [s it due to the absence of percolation loops on Bethe lattice?

* Local approximation calculations on the 34 lattice, it has loops, but also has
finite bandwidth

e Example: U=2.5, w =0.1, well developed gap DOS but no pole

* Bandwidth matters
* Bethe lattice is more physical than HC




* [s pole formation significant?

* Use Kubo-Greenwood approach

* [nvoking Johnson-Mahan theorem®
for transport coefficients

O __ .
=11 j
9o df (w) 1+ j=2 J
L="2(dw|- L= J
! €2f w( dw )T(w)w II=TS
* dc conductivity (TZeZL11 — Peltier set up
k, L
e Thermopower S—=— —2 12
le|T Ly,
ks

*Thermal conductivity «,= ra

ZT > 1 commercially viable
Ly, thermoelectric applications
2 ZT ~ 4 (freon refrigerators)
Lyy Lyy— L7,

ZT - oo - Carnot efficiency

*Thermoelectric figure-of-merit Z7 =

3 M. Johnson and G.D. Mahan,
Phys. Rev. B 21, 4223 (1980)
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Bethe lattice; T = 1t*

0.2 0.2
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* Example: calculated dc conductivity on the Bethe lattice
* Conductivity shows continuous transition at 7=0

* No influence of the pole on the transport at finite T’

* Other differences between HC and Bethe lattices?




Bethe Hypercubic
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e Relaxation times for U= 3.0 T(w)=[ dep(e)4*(w,e)
e Relaxation time defines behavior of L, and transport

* HC — relaxation time is finite outside the band (affects high 7 results)
* HC — relaxation time 1s power law “inside” the band gap (low 7)

* HC — gap states have exponentially large lifetime, and can contribute
significantly into current
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* dc conductivity for U= 2.0
e HC and Bethe have both gap and pole for w =0.5, otherwise Bethe is an

insulator (with no pole), HC is still a metal
* No significant differences, except low 7' (blow up)
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* dc conductivity for U= 2.0

e HC and Bethe have both gap and pole for w =0.5, otherwise Bethe is an
insulator (with no pole), HC is still a metal
* At T=0 HC — exponentially small g, Bethe - 0=0




Bethe Hypercubic
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* Thermal conductivity (electronic part) for U= 2.0
e HC and Bethe have both gap and pole for w =0.5, otherwise Bethe is an

insulator (with no pole), HC is still a metal
* HC is linearly increasing at high T — consequence of T(w) behavior




Bethe Hypercubic
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* Thermopower for U = 2.0
* At half-filling thermopower is zero

* Bethe — S diverges at 7— O (linear response breaks down), HC — § peaks,
then goes to zero as 7- 0
* Potential for thermoelectric applications
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* Thermoelectric figure-of-merit (U = 2.0), ZT > 1 needed for thermoelectric
applications (freon-based refrigerators ZT~4)

* Large ZT's in both cases, different behavior, low 7 peak on HC

* Suggests use of correlated materials in thermoelectric devices

* How does ZT depend on U?
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Bethe
* Example: zero T' ZT

can be made arbitrarily 6 ' —T T
high by increasing
asymmetry

* At low 7' — small
conductivity, even if ZT
1s large, high voltage
would be needed to have
cooling power

* Warning: at low T
lattice component may
be significant

* At high T lattice
component 1s less
significant, and ZT 1s still
relatively high




* Effects of particle-hole asymmetry on the Mott transition in the
infinite dimensional Falicov-Kimball model analyzed

* The scenarios of MIT are the same on hypercubic and Bethe
lattices at half-filling only

* When the particle-hole symmetry 1s removed (as is often the case in
real materials) the MIT and formation of the pole in the self-energy
are unrelated on the Bethe lattice

* There is little or no difference in properties of a correlated insulator
with or without a pole in the self-energy

* We conjecture that conclusions about the character of the MIT on
the Bethe lattice will hold for other systems with finite bandwidth

* Transport properties also suggest that (within DMFT) the Bethe
lattice is more realistic than hypercubic lattice

* Our calculations suggest that particle-hole asymmetric correlated
materials may be useful in thermoelectric devices




