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Motivation
• Cooling and power generation 

applications

• Figure-of-merit ZT evaluates the 
efficiency of a bulk material as a cooling 
element.

• Commercially available semiconductor 
devices have ZT ~1

• To be competitive with the efficiency of 
conventional mechanical refrigerators we 
need ZT of 3 or 4



Correlated electron systems/models

• Coulomb repulsion between electrons is taken into 
account.

• As a consequence materials exhibit properties which are 
absent in single electron approximation.

• Those of interest are difficult to solve even numerically.



Predicting properties of real materials – which 
approach is most realistic?
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Spinless Falicov-Kimball model – underlying physics

Prohibited hopAllowed hop 
increasing energy

Allowed hop 
no change in energy

• Two species of atoms,  A  and  B  ,form an alloy AX B1-X
• Electrons from atoms A form a conduction band
• Electrons from atoms B are localized on ions B
• Hops of conduction electrons to sites B are unfavorable 
because of Coulomb repulsion U
• Ta0.6N is believed to be described by the model

BA



Spinless Falicov-Kimball model – binary alloy 
picture

• c+,c+ – conduction electrons
• wi – random variable equal 0 or 1 (presence of ion 
with localized electron)
• Z – number of nearest neighbors
• U – same site Coulomb interaction strength
• hopping occurs only to nearest neighbors
• t* –energy scale



DMFT solution

• Self energy Σ(ω) in Fourier space doesn’t depend on k

• Bethe lattice of infinite connectivity

• Number of conduction electrons + Number of localized 
electrons (w1) = Number of sites => System undergoes 
MIT at high U’s

• Green’s function G(ω) satisfies an algebraic cubic 
equation, which can be solved “exactly”



Transport properties within linear response approximation

• Electrical conductivity σdc

• Thermopower S

• Thermal conductivity κe (electronic contribution)

• Lorenz number L~ κe/ (σdcT)

• Figure of merit ZTe= T σdcS2/κe (ZT= T σdcS2/(κe+ κl))

All characteristics can be expressed as integrals of 
functions expressed in terms of Green’s function G(ω) 
(using Jonson-Mahan theorem)



Figure of merit at zero temperature

T=0
ρe= 1 – w1

When there is no gap 
in DOS ZT(T=0) = 0

DOS= – Im[G(ω)]/π



Transport at finite temperatures

U=2 (MIT has 
occurred)

ZT grows with 
temperature

ZT (w1=0.5) ≡ 0

w1=0.5 – particle-
hole symmetric case



Transport at finite temperatures

U=2 (MIT has occurred)

Electric and thermal 
conductivities at low 
temperatures are 
exponentially small

Divergence of 
thermopower signals the 
breakdown of linear 
response approximation 
at low temperatures



Conclusions

• Linear response approximation fails in zero T limit

• Very high ZT’s are achievable at small “dopings”and 
high temperatures

• It’s unlikely to have an effective cooling / power 
generating  device at low T’s because of :
1. dominant lattice contribution to thermal 

conductivity
2. exponentially small electrical conductivity


