

Effects of electron correlations on bulk thermal transport

A. V. Joura, D. O. Demchenko, J. K. Freericks
Physics Department, Georgetown University
Washington, DC, 20057

Financial support
National Science Foundation DMR-9973225, DMR-0210717
Office of Naval Research, N00014-99-1-0328

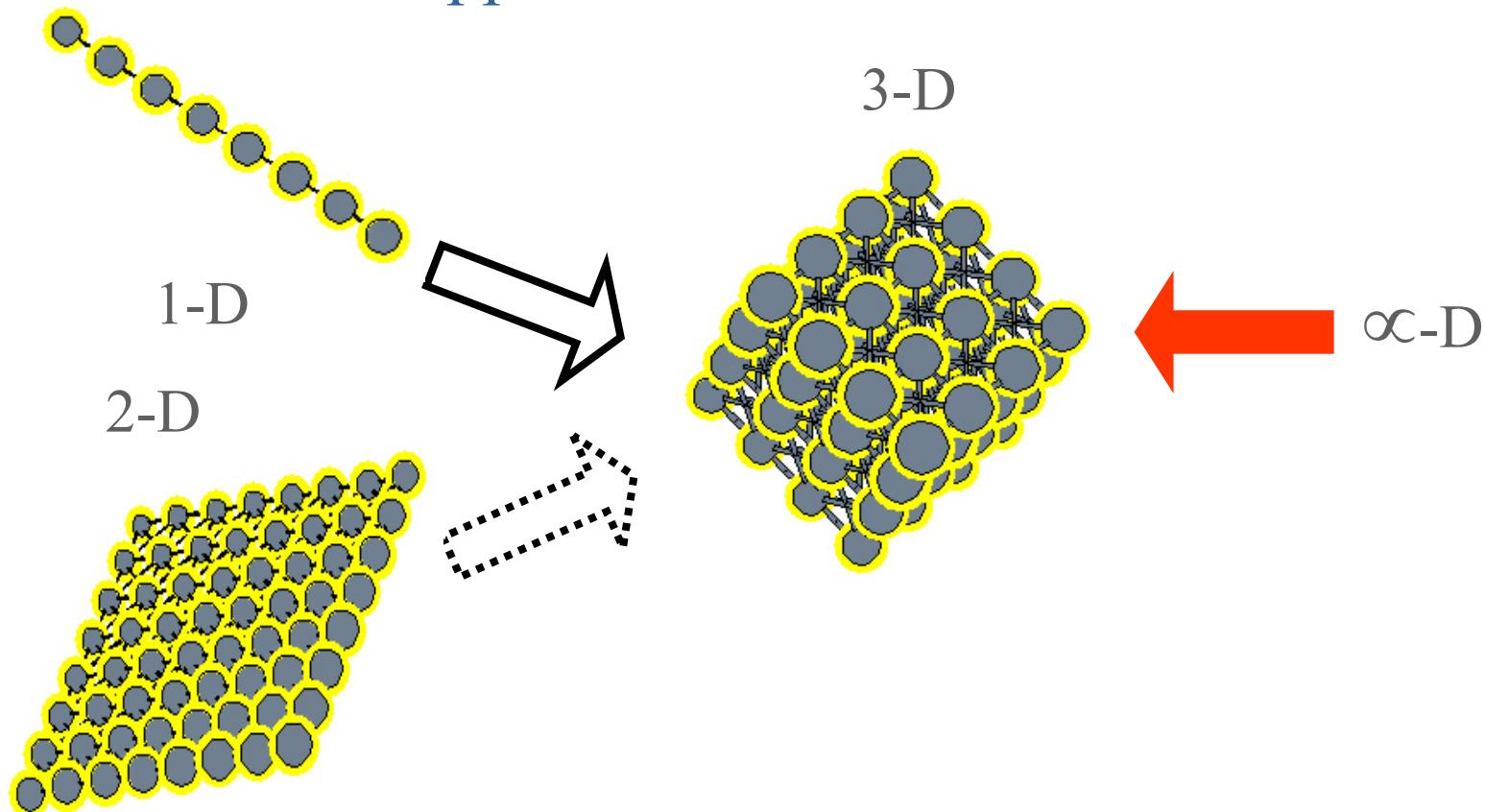
Motivation

- Cooling and power generation applications
- Figure-of-merit ZT evaluates the efficiency of a bulk material as a cooling element.
- Commercially available semiconductor devices have $ZT \sim 1$
- To be competitive with the efficiency of conventional mechanical refrigerators we need ZT of 3 or 4

Correlated electron systems/models

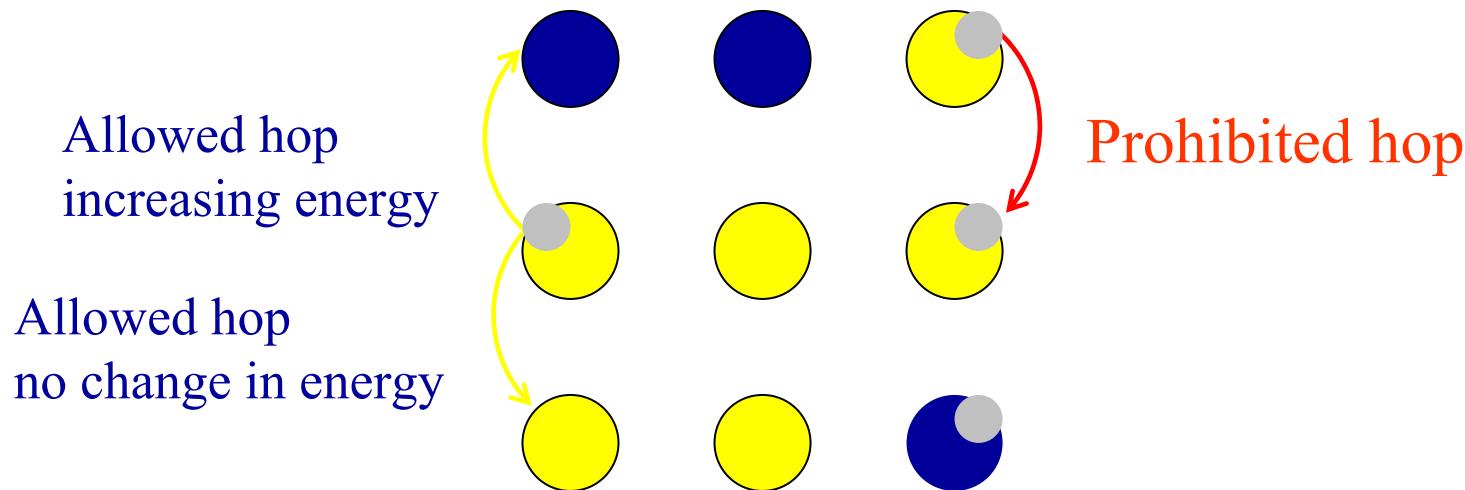
- Coulomb repulsion between electrons is taken into account.
- As a consequence materials exhibit properties which are absent in single electron approximation.
- Those of interest are difficult to solve even numerically.

Predicting properties of real materials – which approach is most realistic?



*W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

Spinless Falicov-Kimball model – underlying physics



- Two species of atoms, **A** and **B**, form an alloy $A_x B_{1-x}$
- Electrons from atoms A form a conduction band
- Electrons from atoms B are localized on ions B
- Hops of conduction electrons to sites B are unfavorable because of Coulomb repulsion U
- $Ta_{0.6}N$ is believed to be described by the model

Spinless Falicov-Kimball model – binary alloy picture

$$H = -\frac{t^*}{\sqrt{Z}} \sum_{\langle i,j \rangle} c_i^\dagger c_j + U \sum_i w_i c_i^\dagger c_i$$

- c^+, c^+ – conduction electrons
- w_i – random variable equal 0 or 1 (presence of ion with localized electron)
- Z – number of nearest neighbors
- U – same site Coulomb interaction strength
- hopping occurs only to nearest neighbors
- t^* – energy scale

DMFT solution

- Self energy $\Sigma(\omega)$ in Fourier space doesn't depend on \vec{k}
- Bethe lattice of infinite connectivity
- Number of conduction electrons + Number of localized electrons (w_1) = Number of sites \Rightarrow System undergoes MIT at high U 's
- Green's function $G(\omega)$ satisfies an algebraic cubic equation, which can be solved “exactly”

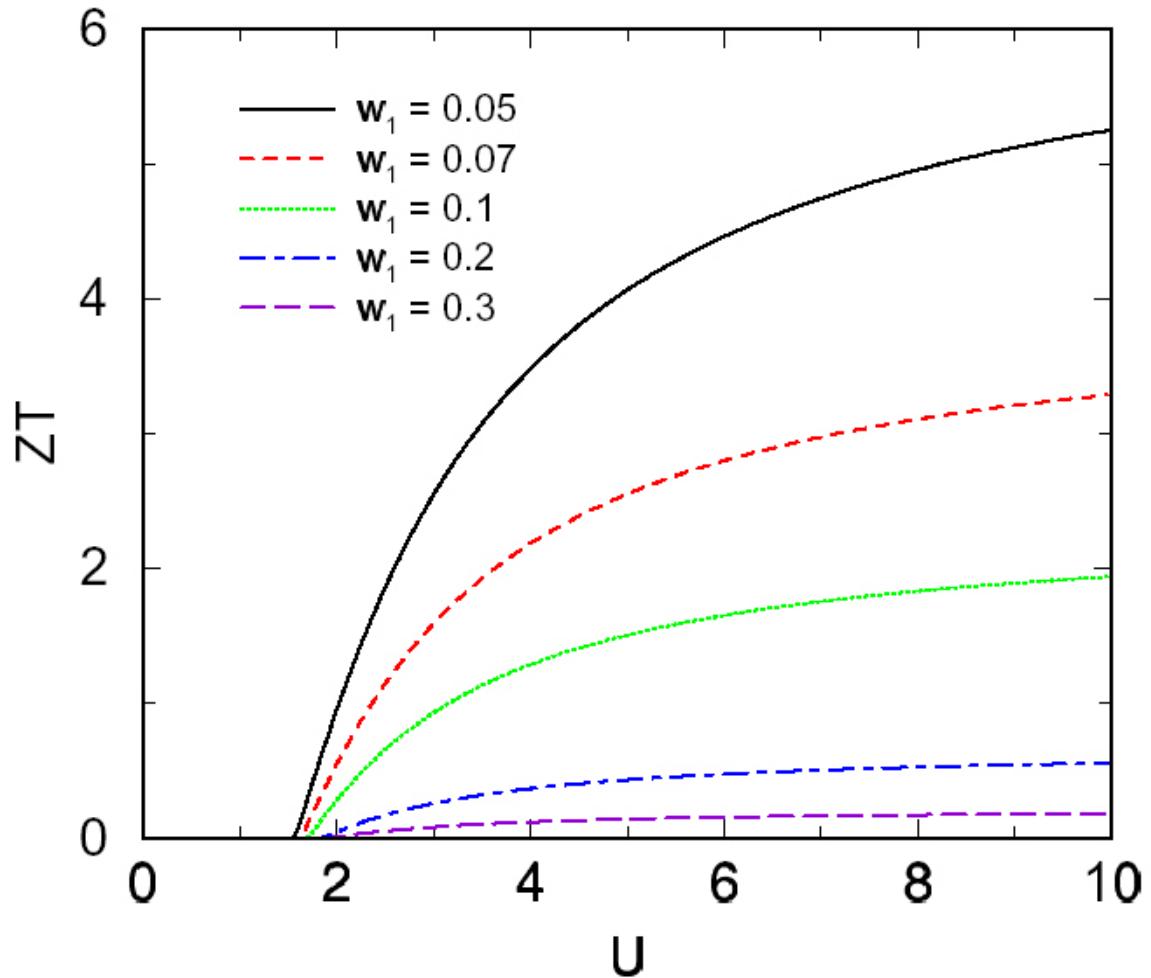
$$G^3 - 2(\omega + \mu - U/2)G^2 + [1 + (\omega + \mu - U/2)^2 - \frac{U^2}{4}]G - [\omega + \mu - U/2 + U(w_1 - \frac{1}{2})] = 0$$

Transport properties within linear response approximation

- Electrical conductivity σ_{dc}
- Thermopower S
- Thermal conductivity κ_e (electronic contribution)
- Lorenz number $L \sim \kappa_e / (\sigma_{dc} T)$
- Figure of merit $ZT_e = T \sigma_{dc} S^2 / \kappa_e$ ($ZT = T \sigma_{dc} S^2 / (\kappa_e + \kappa_l)$)

All characteristics can be expressed as integrals of functions expressed in terms of Green's function $G(\omega)$ (using Jonson-Mahan theorem)

Figure of merit at zero temperature



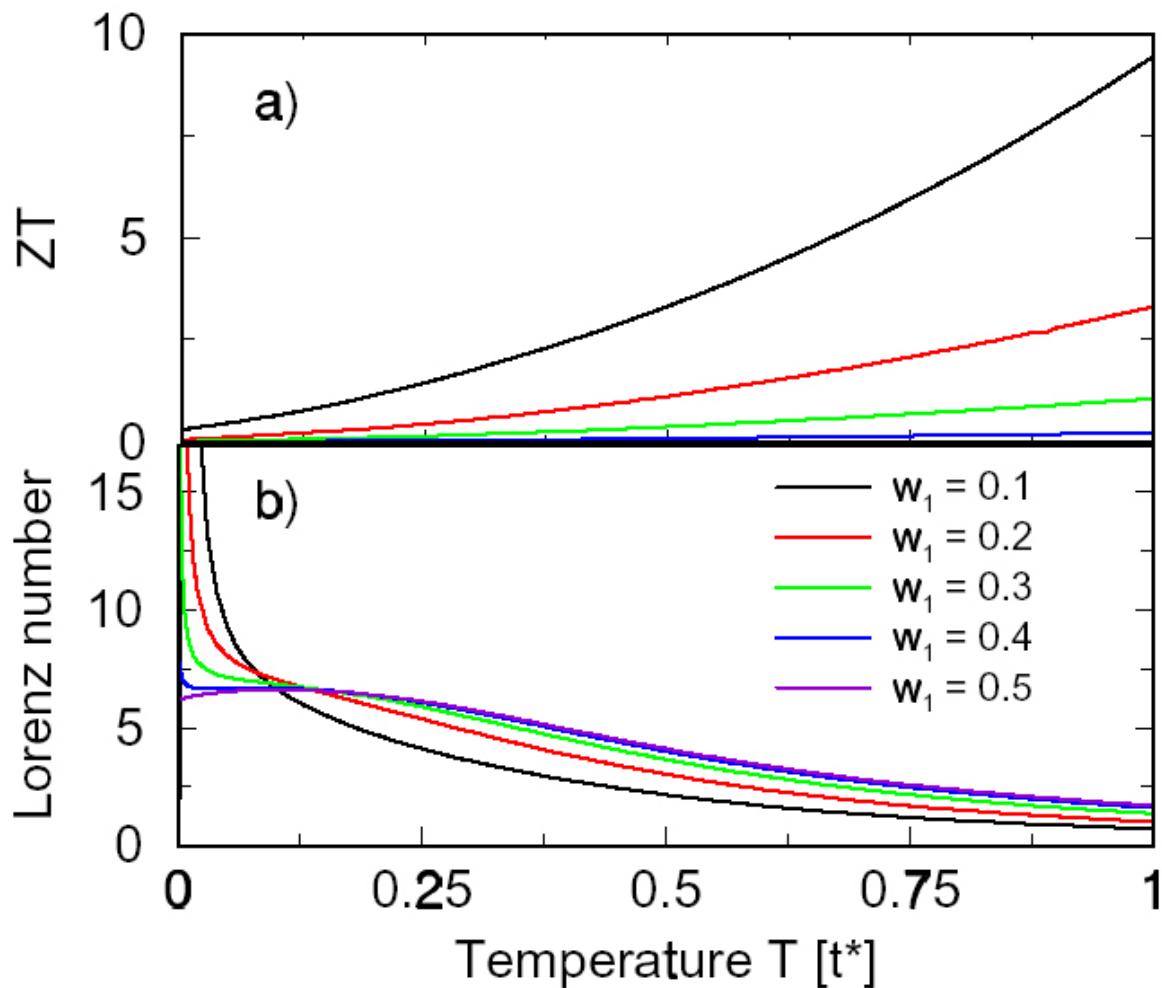
$$T=0$$

$$\rho_e = 1 - w_1$$

When there is no gap in DOS $ZT(T=0) = 0$

$$\text{DOS} = -\text{Im}[G(\omega)]/\pi$$

Transport at finite temperatures



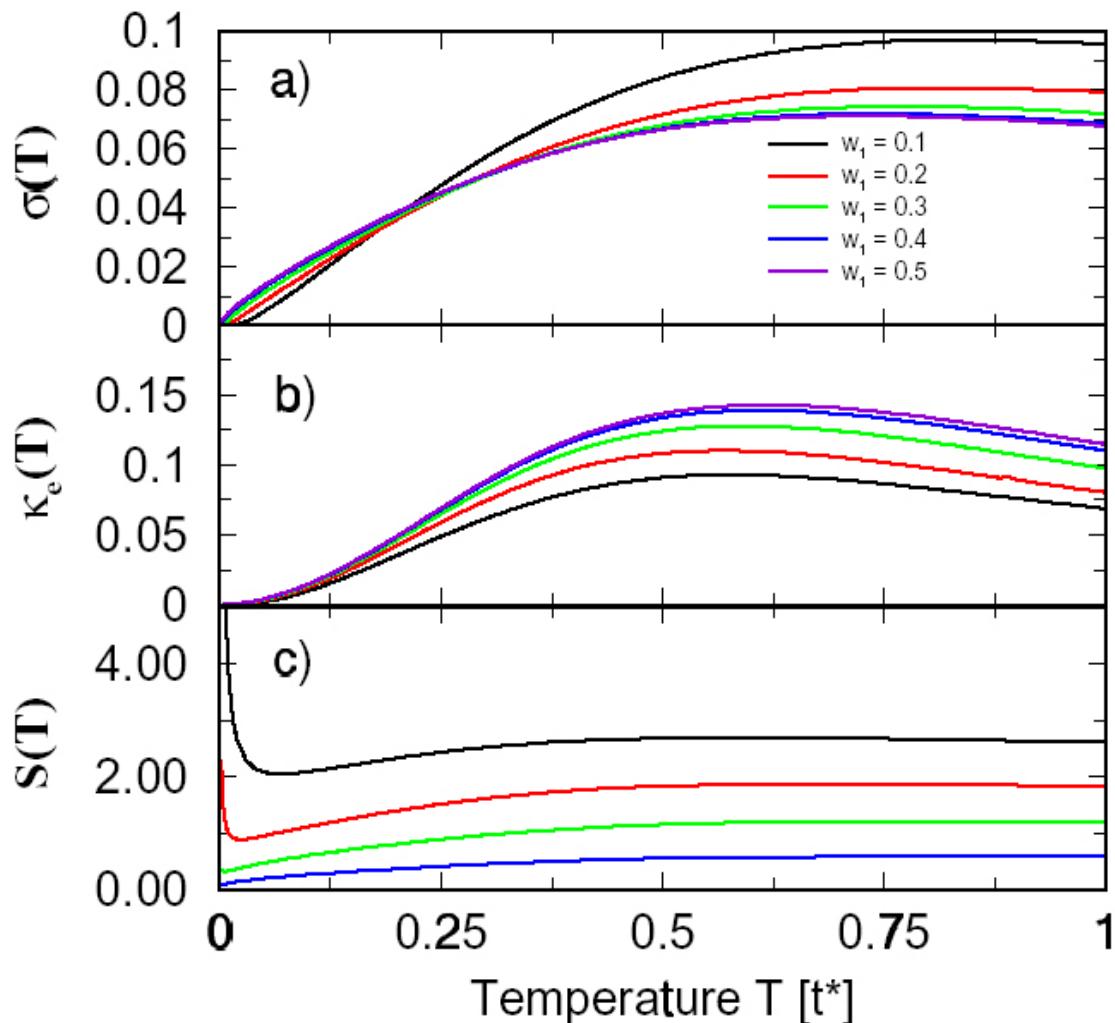
$U=2$ (MIT has occurred)

ZT grows with temperature

$ZT (w_1=0.5) \equiv 0$

$w_1=0.5$ – particle-hole symmetric case

Transport at finite temperatures



$U=2$ (MIT has occurred)

Electric and thermal conductivities at low temperatures are exponentially small

Divergence of thermopower signals the breakdown of linear response approximation at low temperatures

Conclusions

- Linear response approximation fails in zero T limit
- Very high ZT's are achievable at small “dopings” and high temperatures
- It's unlikely to have an effective cooling / power generating device at low T's because of :
 1. dominant lattice contribution to thermal conductivity
 2. exponentially small electrical conductivity