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Motivation

e “the precise mechanism for the
disappearance of the insulating solution at
U.,, the behavior of the gap at this point,
and the value of U_, have not yet been
fully settled” (Georges et al., RMP 68,
1996)

e  Only numerical solutions are obtained so
far

 We need better understanding whether the
hypercubic lattice has some advantages
over the Bethe lattice or not
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Hubbard model for D=cc

~+00

Lo p(e)de L
G(lw”)_jia)n—i(ia)n)—e , ple)=e* /T

Yio,) =G, (i) -G (iw,)

G(r)=—<Tc(r)c"(0) > 1G]

where shifted quantities G;' = G,' - v and ¥ =3 — v

- 2
and we call 4,(¢)=-Im(G,(¢))/ z a spectral function 2

We have THREE UNKNOWN functions: (N}O () , 2(w) and G(w)



Georgetown (&}

eqt. 1789

LNIVERSITY

[terative Perturbation Theory

* We are going to work on real axis after doing analytic
continuation i®w, > @w+id

« We’ll replace last equation by expression for self-
energy in second order perturbation theory (IPT
approximation): % =-U>GZ(~1)G,(7)

Analytic continuation to real frequencies gives (see Kajuter et al,
PRB 53, 1996)

X(@)=U" [dede,de, A ()4 )48 | e [dede,de,
) W—& —E —& +i0 !

Ay (£)A)(=&,) A, (=&;)
W+ &+E+&+i0
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[terative Perturbation Theory (continued)

° 50 (w) and Z(w) have a pole at zero frequency
» Most general form of free-particle Green’s function in
the msulating phase:

o

W +1

651)((1)) — + éiihreg—((Z))

with corresponding spectral function
A,(w)=ao(w)+ A(w)

where A(w) = —Im(@O, (w))/ 7 1s a symmetric function

reg
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Region of small frequencies (o <<1 )

 Our 2 integral equations become local in @ :

2 3 2 2
S+is)=—_.— > U s
4 w+io 4 e

+O0(w)

Re(G' +3) = (1 + U22a3 ja)+ O(@’)

Im(G'+3) = Im(f)[— 54“;6 + 0(a)4)) + 7[,0(— “;Zz + O(a))j[ T‘;Z; + 0(1)]

 Last equation remains unchanged:

G, ()G (@) + S(w))-1=0
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Solution 1n power series w.r.t. w<<1

2
~ B a’U

2, (@) +0()

4w

2

~ | 3a* L _4(1_2)20,2 +0() _ no s
>:(@) ( 8Vr(l-a)’ e -2)o ’ O( W’ jje 2(1-a) (@)

where & for a given U 1s determined by the equation:

2
(1+ U2a3ja =1

 This equation for & coincides with one, found before for the
Bethe lattice (see Rozenberg et al., PRB 49, 1994), if we consider

Bethe lattice of same bandwidth
e Solution with @ >0 exists only for U >U,, =33/2
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Existence of insulating solution

 for a given U 1s determined

by the equation: 0.5}

/

[ : 2, 2
| fla,U) =a® —a® + =

oy

M) =d’ —a’ +-2=0

U? -0.5¢}

* Solution with a >0 exists only for U>U,, =3v3/2 ~3.67
« U, 1s in good agreement with the numerical value U, =3.7

(see Georges et al., PRB 48, 1993)

* The Bethe and the hypercubic lattice of same bandwidth have

same U, ~5.2 for same bandwidth (D, .=Dg../2=1)
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Conclusions

* We found analytic solutions to the half-filled Hubbard model
in DMFT within IPT approximation close Fermi energy
(Green’s function, self energy)

* We found analytic expression for critical value of the field
U., when insulating solution disappears

* [t’s shown that when 1nsulating solution disappears a pole in
self energy disappears discontinuously

* We found that critical value U, 1s same for the hypercubic
and the Bethe lattice of same bandwidth

* We found analytic expression for effective relaxation time
close to the pole 1n self energy
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Thank you for your attention

[ would also like to thank Dr. Barbara Jones and IBM
Almaden Research Center for hosting me while this work was
being performed.



