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Motivation

Most electronic devices have a nonlinear current-voltage relation

Strongly correlated materials have a great potential to be used in
electronic devices due to their tunability

As devices become smaller, of order or below 100nm, a potential
difference of 1V can produce an electric field of order E ~ 10° — 10°V/cm
or higher

Understanding the nonlinear response of a Mott insulator has been
a longstanding unsolved problem

Modern parallel computers now have sufficient power to solve these
problems (total comput. time ~ 7 x 10° hours)
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Some results for strongly correlated systems

e D=0 (quantum dot), Anderson model, Kondo model

1. Y. Meir, N.S. Wingreen, D.C. Langreth et al
2. P. Coleman, C. Hooley et al
3. N. Andreli, B. Doyon, P. Mehta

e D=1
1. two-band Hubbard ring, SrCuOg3 (T. Ogasawara et al)
2. breakdown of the Mott insulator (T. Oka, H. Aoki)

e D=0

1. iterated PT for the Hubbard model (H. Monien, P. Schmidt)

2. nonequilibrium DMFT for the Falicov-Kimball model (J.K. Freericks,
V.M. Turkowski, V. Zlati¢)
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Driven damped harmonic oscillator: an example
of a complicated response to an external force
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X(t) + 2vx(t) x(t) = (Fy/M) sin(wt)
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Driven damped harmonic oscillator: separating out
the transient and the steady state response
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Bloch oscillations (Bloch 1928, Zener 1932)

In a semiclassical picture: 15 k(t) = £ —  k(t) = eEt/h
v(k) = Vyie(k) - the velocity also changes periodically!

The current
IS periodic!

/7
s Bragg
reflection
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e The Bloch oscillations are prevented in realistic bulk materials
due to several reasons:

— the period of the oscillations is much longer than the scattering
time: 7°%¢ = 27h/(eEa) >> 75" ~ 107 — 107 ¥sec
(requires E > 10"V /cm)

— Zener tunneling to higher bands
— strong Joule heating of the material (AT ~ o E?)

— Conventional oscilloscopes can’'t measure the freguencies
w > 10°H z (typical observable frequencies would be wgyen >
1012 H 2)

e observed in semiconductor superlattices (a ~ 10nm)
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A semiclassical approach: The Boltzmann equation
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The Falicov-Kimball model
Hamiltonian:
Z tzgczcj HZCTCZ Ufosz+UZfozc C;
<1,7>
® c-electrons
® f-electrons
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Some equilibrium properties: Mott transition

ne+ng=1U = U.ny)
(d = c0:D.O. Demchenko, A.V. Joura, J.K. Freericks)
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Checkerboard phase

n.=nys = 1/2,any U (T. Kennedy, E.H. Lieb)
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e n.,ns < 1/2, U — oo, any d: segregation phases
(J.K. Freericks, E.H. Lieb, D. Ueltschi)

e large U, n. = ny < 1/2,d = 2: different stripe arrangements
(R. Lemanski, J.K. Freericks, and G. Banach)

e small U, n. +ny < 1, d =1, 2: different mixed phases
(segregation, checkerboard, etc., J.K. Freericks et al; M.-T. Tran)

segregation phase stripe phase

- > j

N
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Experimental systems

e Valence-change-transition: YbInCuy, EuNis(Si;_Gey)o

e System doped through MIT: Ta, N (barriers in Josephson
junctions)

e Raman scattering experiments in insulators: SmBg(?)
e Binary alloys

e Modifi ed models: manganites, diluted magnetic semiconductors
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Kadanoff-Baym-Keldysh formalism

A

The Hamiltonian: H = Hy + Hipi(t), Hini(t < to) =0

p(Ho) = =770 [Tre™PHo G (b1, 1) = —3(Tee(tr)e (t2))
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~ 10A(r,t)
c Ot

The electricfield: E(r.¢) =

) "
The Pelerls substitution:  #;; — ¢;; exp —;;L—e/A(r,t)dr
C
R,

H(A) =) [e (k - eAh(Et)) - 4 ek +U DY flqc_qeto.
k

p.k,q

The vector potential: A (%) = A(t)(1,1,...,1)
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Green functions
GR(t,, 1) = —if(t1 — to) <{ck(t1),c;;(t2>}> . GE(tte) =1 <cli(t2)ck(t1)>

The relative and the average time coordinates:
trel = t1 — tg, T:(tl +t2)/2

Spectral functions
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AE(T,Q}) = — / dtrelewﬁrel (—) ImGE(T, trel)
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Equilibrium results: Spectral functions
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0-17

Rutgers University/ May 9, 2006

o
©

=0,t) [1/t*]

ImG (T

(@)

Equilibrium results: Nonequilibrium formalism
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Spectral function sum rules

oo

po<(k,T) = / dww™ AL S(T, w)
~R < Z:U“R , < k T

The local moments are time-independent! (except i (T) )

Atncznf:%:

/ dwAR (T, w) =1, / dwA<(T,w) = 2n,
/dwwAR(T,w) = 0

2 \R,< U?
dww* AN (T, w) = +I

DO | b=
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Equilibrium results: Nonequilibrium formalism

U =0.58=10

At=01 At=0.05 At=0.033 exact
,EL(I):{ 1.5807/85 1.232022 1.144811 1
[L{% 0.174040 0.052785 0.030002 0

At 1.324976  0.848047 0.737020  0.5625

At =01 At=0.05 At=0.033 exact
ng 1480893  1.207662 1.133850 1
py -1.036753 -0.774525  -0.706893  -0.591687
psy 1108705  0.777152 0.695791 0.5625
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Nonequilibrium moments: Time-dependence
U=05 =10, FE =1
T=0 T=5 T=15 T=20 exact
10025 10088  0.9951  0.9967 1
i* 000665 -0.00054 0.00054 0.00003 O
i 056155 056198 0.55030 0.55112 0.5625
T=0 T=5 ~T=15 T=20 exact
ns 10025 1.0098 0.9960 0.9975 1
iT  -05878 00042 -0.0454 0.0933 ?

~ <

0.5520 0.5666 0.5572 0.5588 0.5625
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Nonequilibrium results: DOS
g=10,FE =1
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Time-dependence of the current

t* ea AN (T)
LTY = —; <8 in [ & G<(e. T. T
5 (T) Z\/Ezkzsm a -~ (e, T, TT)

The total current density: j(7") = /dj'(T)

The U = 0 case:j(1") ~ sin <GQQ£T)> /dedf(ede_ M)p(e)

Bloch oscillations (at A(T") = —EcT') : wpjoen, = eal /R
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Current: At-dependence
U=0560=10,F =1
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Current: U-dependence
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Conclusions

e A nonequilibrium DMFT formalism for the Falicov-Kimball model
In an external time-dependent electric field has been developed

e The time-dependence of A(w) and J at different values of U was studied

e The precision of the solution was estimated by comparing the results
with the exact equilibrium results obtained by the DMFT in d = oo and
by calculating the spectral moments

e The finite amplitude Wannier-Stark peaks in the DOS and the Bloch
oscillations of the current may survive in the case of large E In the
steady state regime

e References: V. Turkowski, J.K. Freericks, Phys. Rev. B 71, 085104 (2005);
Phys. Rev. B 73, 075108 (2006)



