

SCES'05 Vienna:

Thermoelectricity $\text{EuCu}_2(\text{Si}_x\text{Ge}_{1-x})_2$ intermetallics

V. Zlatić^a, R. Monnier^b, J. Freericks^c

a) Institute of Physics, Zagreb

b) ETH, Solid State Physics Laboratory, Zuerich

c) Georgetown University, Washington D.C.

- Motivation, introduction
- Description of the experimental data and problem setting
- Microscopic description
- Conclusions

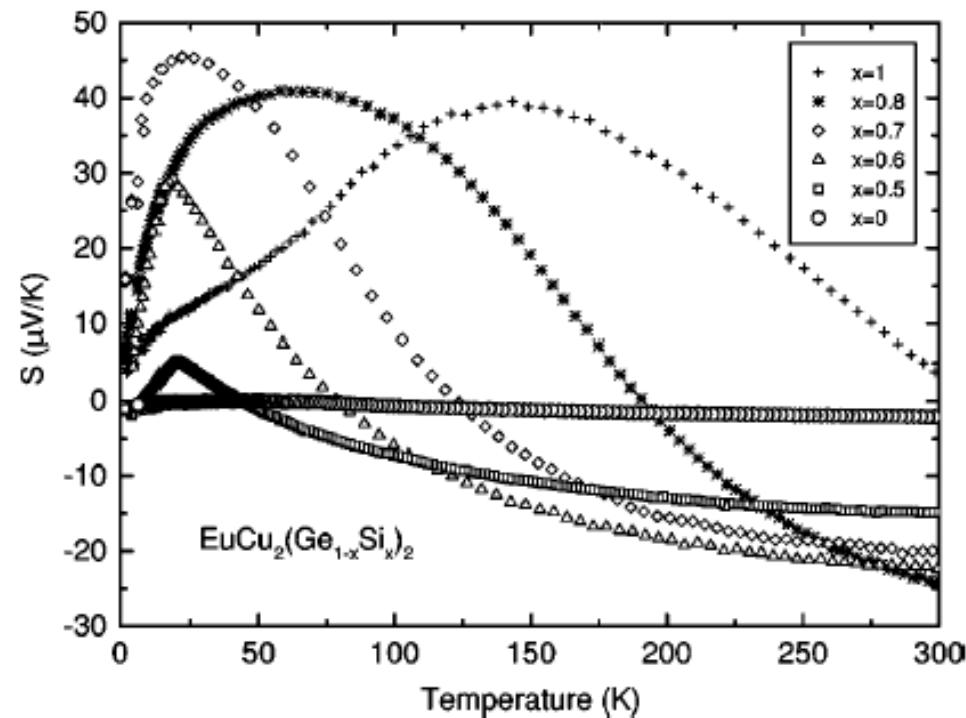
Work at Institute of Physics, Zagreb, and Georgetown University, supported by the NSF.

Motivation

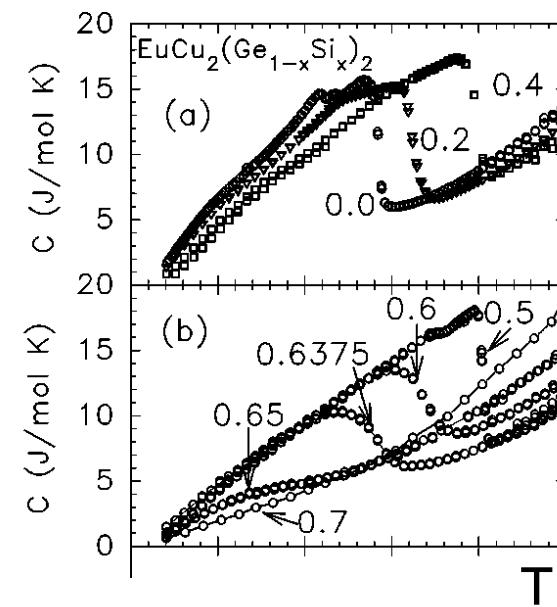
- The nature of the ground state of $\text{EuCu}_2(\text{Si}_x\text{Ge}_{1-x})_2$ depends on concentration. The QCP is located close to $x=0.68$.
- The overall features of the thermoelectric power $S(T)$ depend on Si concentration.
- $\alpha = \lim_{T \rightarrow 0} S/T$ and $\Upsilon = \lim_{T \rightarrow 0} C_V/T$ change rapidly with x but $q = (N_A e)(\alpha/\Upsilon)$ is almost x-independent ($q \sim 1$).
- How does the change of the ground state affects $S(T)$?
- Can we explain $S(T)$ by Kondo effect?

Description of $\text{Eu}_2\text{Cu}_2(\text{Si}_x\text{Ge}_{1-x})_2$ data

Thermopower



Specific heat

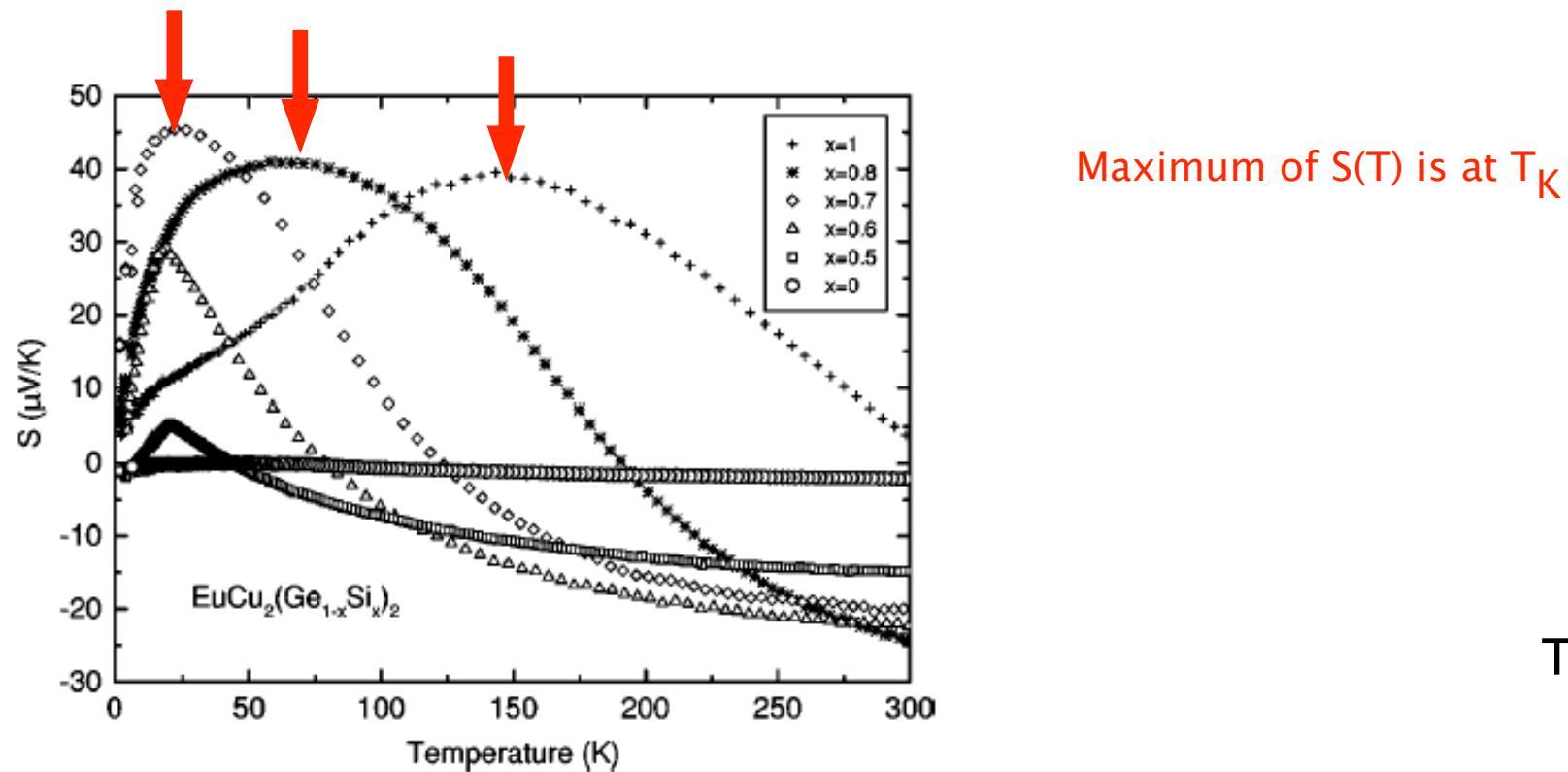


Characteristic temperatures change with doping.

Chemical pressure favors $4f^6$ with respect to $4f^7$ configuration.

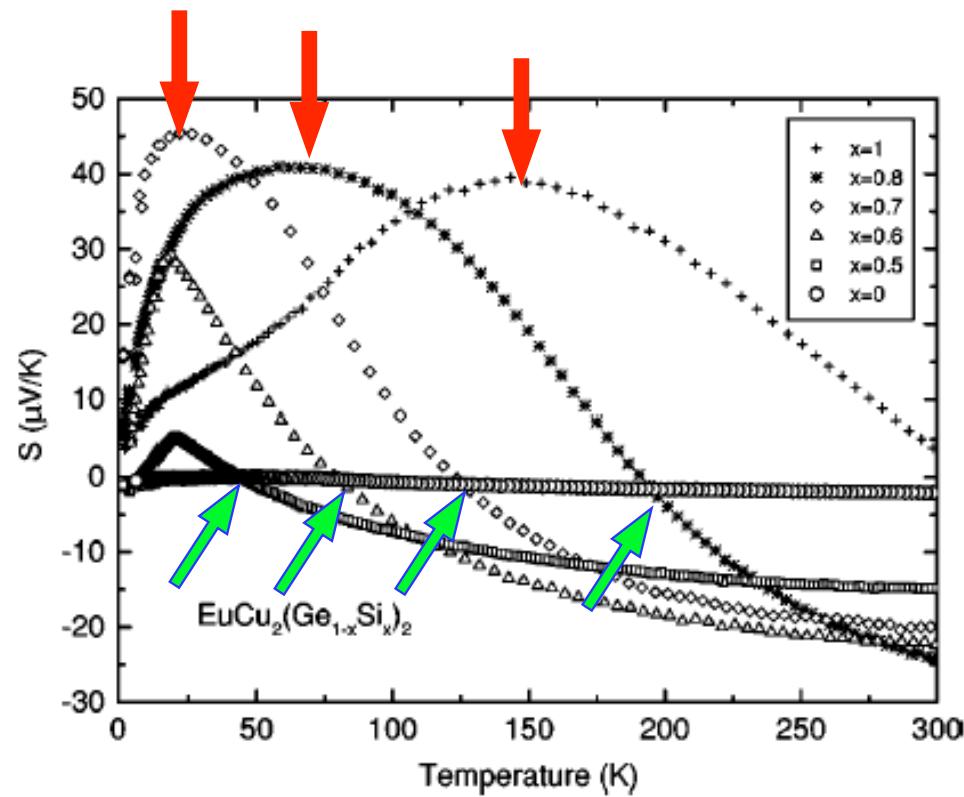
FL ground state for $x > 0.65$.

$S(T)$ broadens and the maximum shifts to lower T with Ge-doping.



FL ground state for $x > 0.65$.

$S(T)$ broadens and the maximum shifts to lower T with Ge-doping.



Maximum of $S(T)$ is at T_K

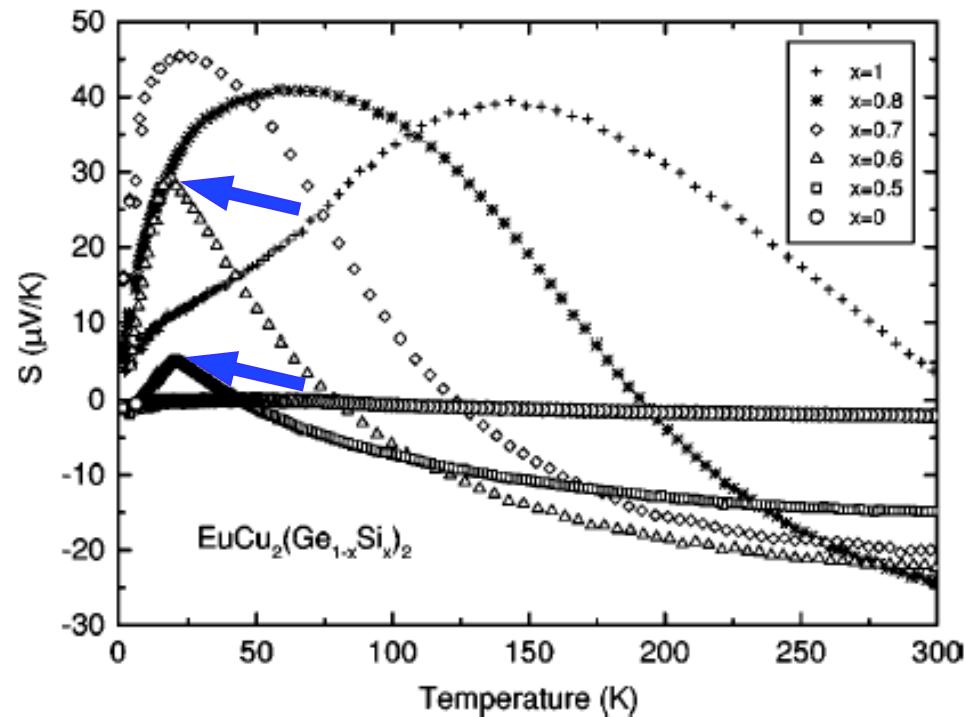
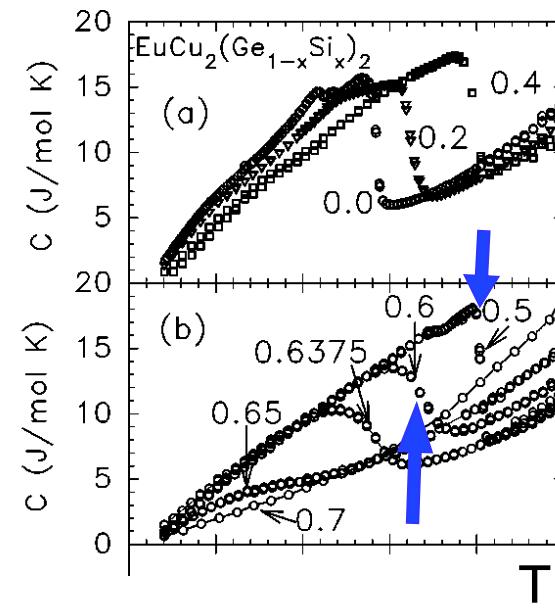
$S(T)=0$ at T_0

T_0 changes with doping.

FL ground state for $x > 0.65$.

C_V and $S(T)$ have anomaly at $T_N(x)$.

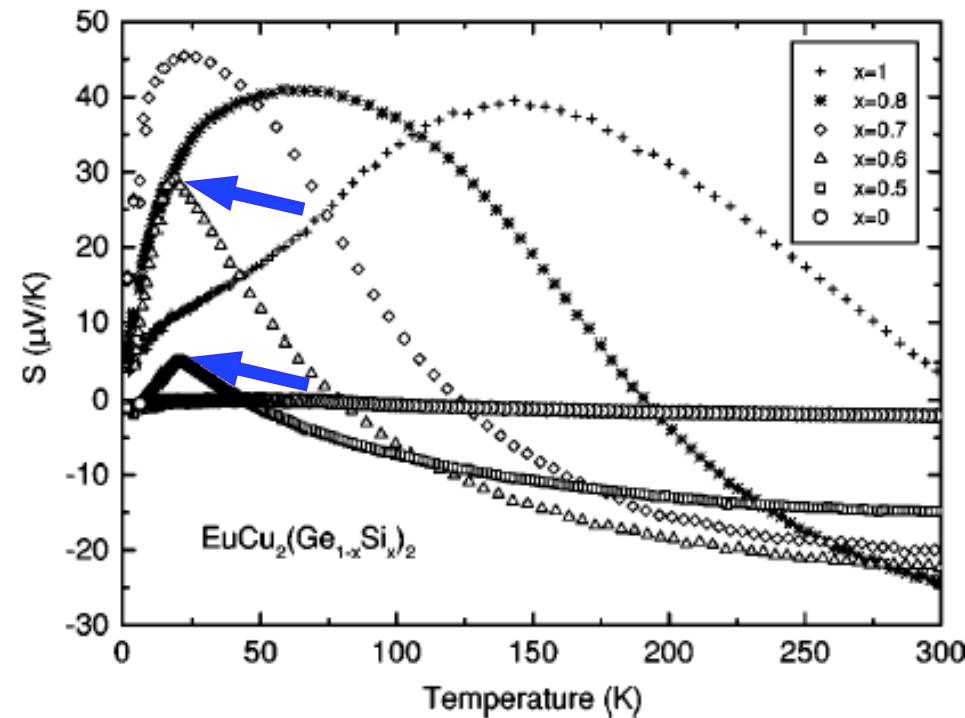
$T_N(x)$ is a non-monotonic function of x .



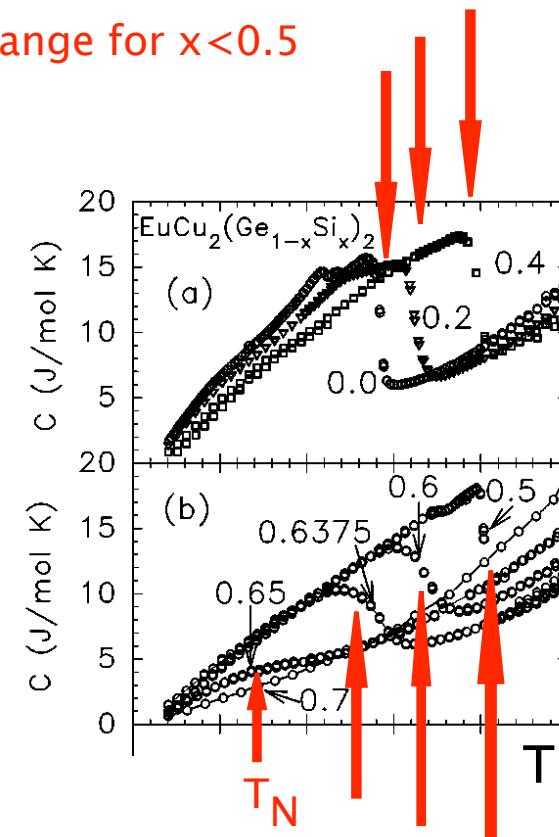
$0.65 < x < 0.65$ – $S(T)$ shows at T_N a break of slope.

$x < 0.6$ – $S(T)$ shows a cusp at T_N .

FL ground state for $x > 0.65$.



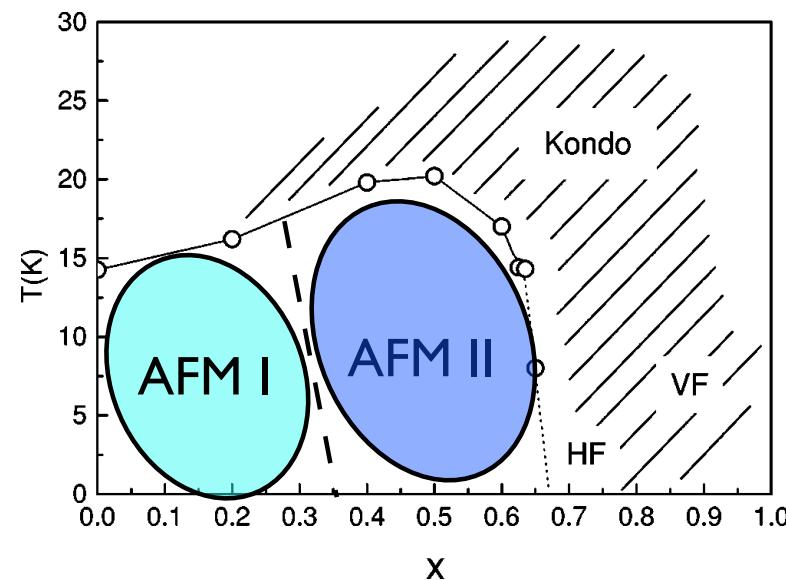
Large entropy change for $x < 0.5$



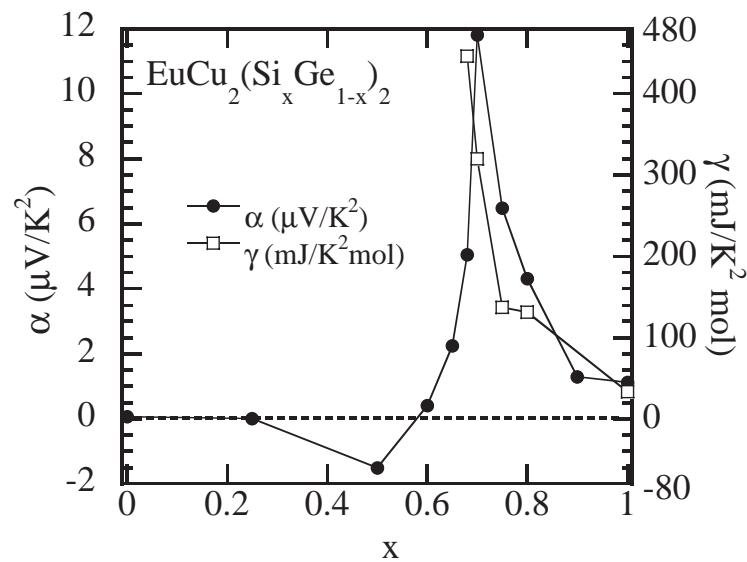
Small entropy change for $x > 0.5$

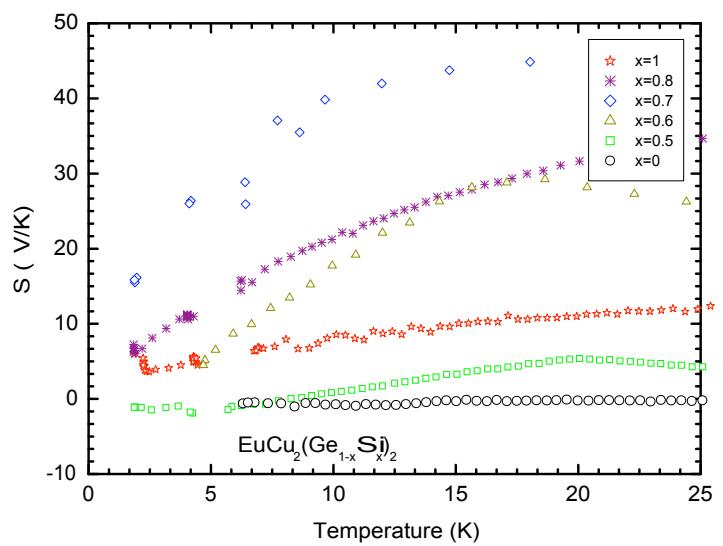
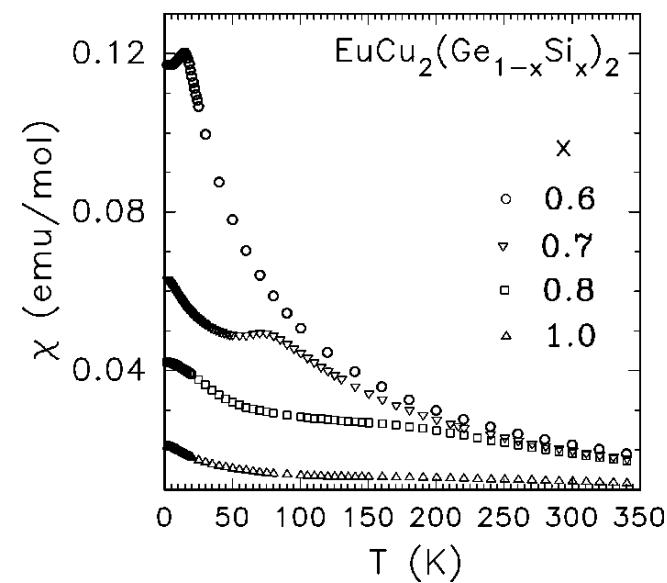
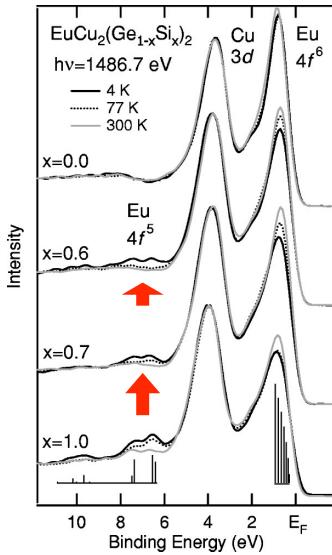
$\text{Eu}_2\text{Cu}_2(\text{Si}_x\text{Ge}_{1-x})_2$

Z. HOSSAIN *et al.*



S. FUKUDA *et al.*





The valency of Eu ions changes with doping.

$1 < x < 0.8$	Valence fluctuations (2+,3+)
$0.8 < x < 0.7$	Kondo effect, FL ground state
$0.7 < x < 0$	2+ and 3+ mixture, Kondo, AFM ground state
$x=0$	2+ state, AFM, no Kondo effect

Universality of $S(T)/T$ and C_V/T at low temperatures

$$\frac{S}{\gamma T} = \frac{q}{eN_{Av}}$$

q=1 in $\text{EuCu}_2(\text{Si}_x\text{Ge}_{1-x})_2$

5194

K Behnia *et al*

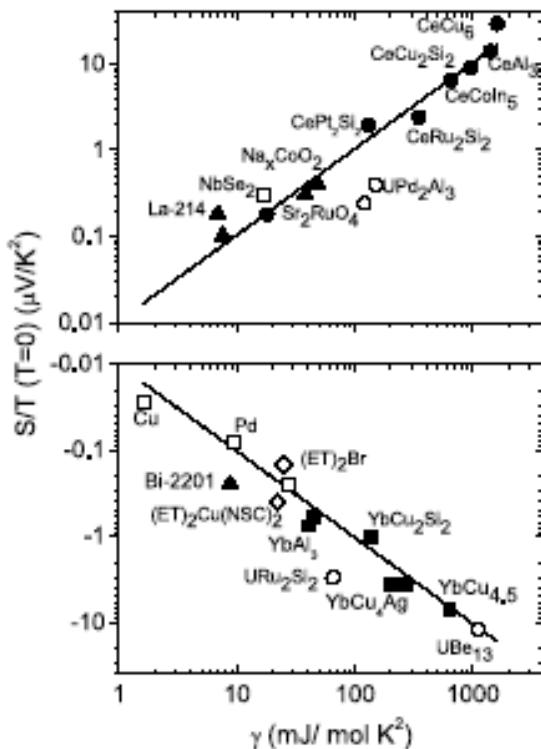
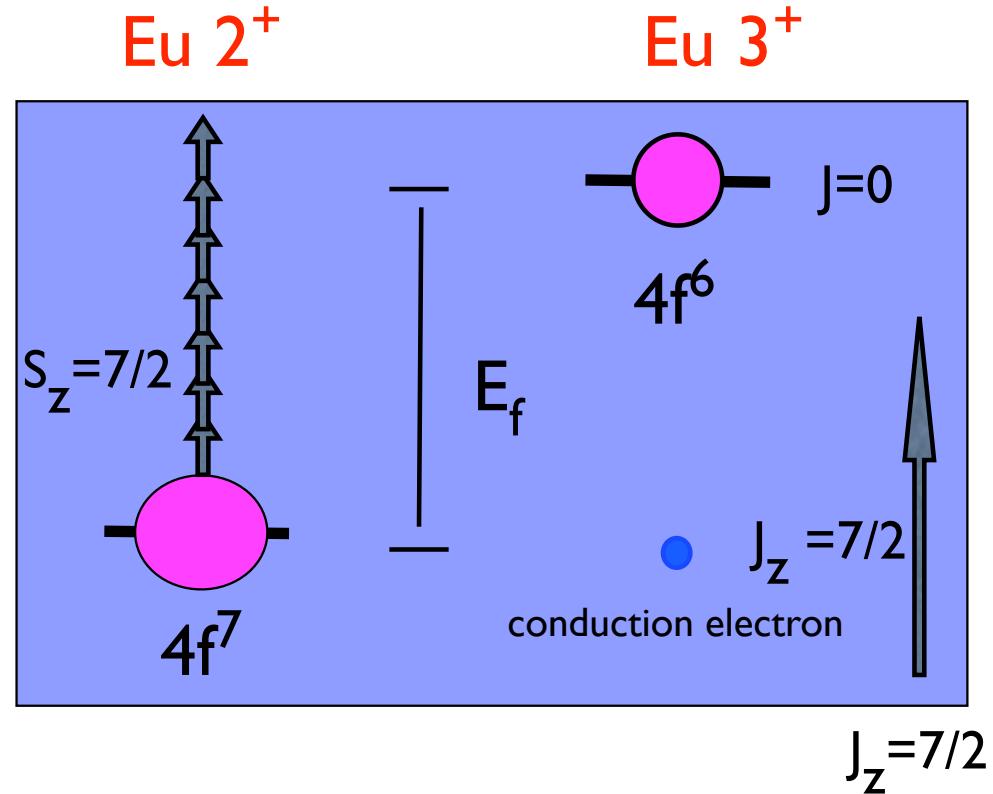


Figure 2. S/T versus γ for the compounds listed in table 1. Solid circles (squares) represent Ce (Yb) heavy-fermion systems. Uranium-based compounds are represented by open circles, metallic oxides by solid triangles, organic conductors by open diamonds, and common metals by open

Eu assumes $4f^7$ or $4f^6$ Hund's rule configuration.

Configurational splitting is E_f

Configurational fluctuations
give rise to Kondo effect



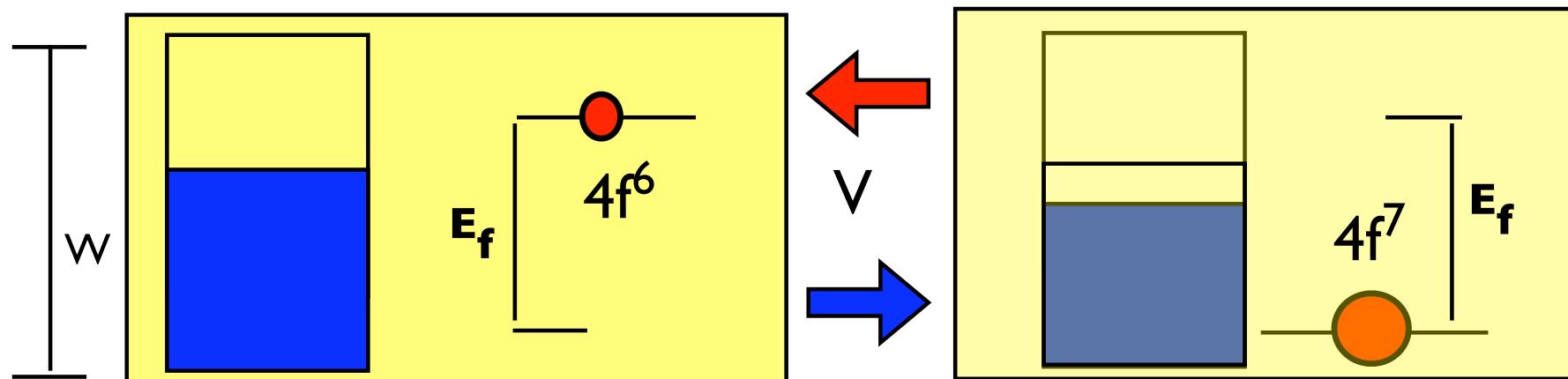
Modeling unstable 4f ions

Configurational splitting E_f .

Configurational mixing V (hybridization).

Dimensionless coupling $g = \pi V^2 n(E_F) / E_f = \Gamma / E_f$

Intra-configurational excited states are neglected.



Configurational mixing via conduction band.

Relevant parameters:

Only $4f^6$ and $4f^7$ states admitted: $U_{ff} \gg W$

Configurational splitting: $E_f < W$

f-d mixing: $\Gamma \ll E_f$

Properties depend on: $g = \Gamma/\pi|E_f|$

and

relative occupation:

$n_c(T)$ and $n_f(T)$

Anderson lattice model

$$H_d = \sum_{ij,\sigma} (t_{ij} - \mu \delta_{ij}) d_{i\sigma}^\dagger d_{j\sigma}$$

$$H_f = \sum_{l,\eta} (\epsilon_{f\eta} - \mu) f_{l\eta}^\dagger f_{l\eta} - U \sum_{l,\sigma>\eta} f_{l\sigma}^\dagger f_{l\sigma} f_{l\eta}^\dagger f_{l\eta}$$

$$H_{fd} = \frac{1}{\sqrt{N}} \sum_{\mathbf{k},l,\sigma} (V_{\mathbf{k}} c_{\mathbf{k}\sigma}^\dagger f_{l\sigma} + \text{h. c.})$$

$U \rightarrow \infty$

Infinite correlation

Fixed points of the periodic model not well understood.

Poor man's solution

- Neglect coherent scattering on 4f ions.
- Impose local charge conservation at each f-site.

$$n_{tot} = n_c(T) + c_i n_f(T) \quad c_i = 1$$

Thermoelectric properties depend on $g = \Gamma / \pi |E_f|$

What is needed?

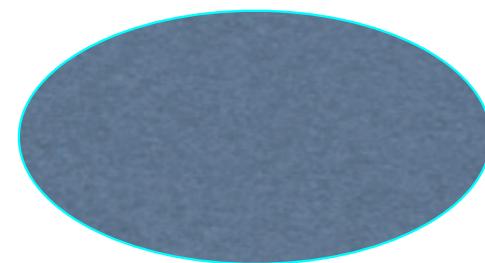
Green's function

$$G_f(z) = \frac{1}{z - (\epsilon_f - \mu) - \Gamma(z) - \Sigma(z)}$$

Spectral function

$$A(\omega) = -\frac{1}{\pi} \text{Im} G_f(\omega + i0^+)$$

Transport relaxition time



Transport integrals

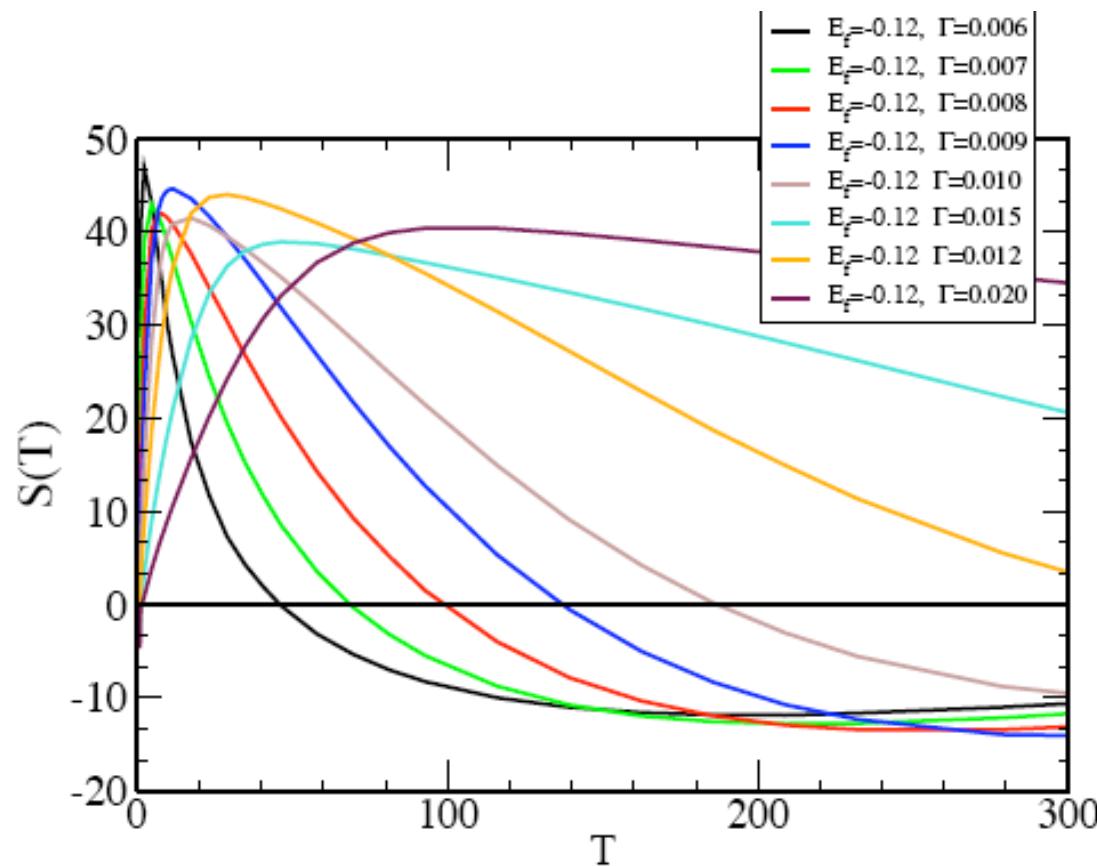
$$L_{ij} = \sigma_0 \int_{-\infty}^{\infty} d\omega \left(-\frac{df(\omega)}{d\omega} \right) \tau(\omega) \omega^{i+j-2}$$

NCA calculations for $\text{CeEu}_2(\text{Si}_x\text{Ge}_{1-x})$ (initial parameters for $x=0$)

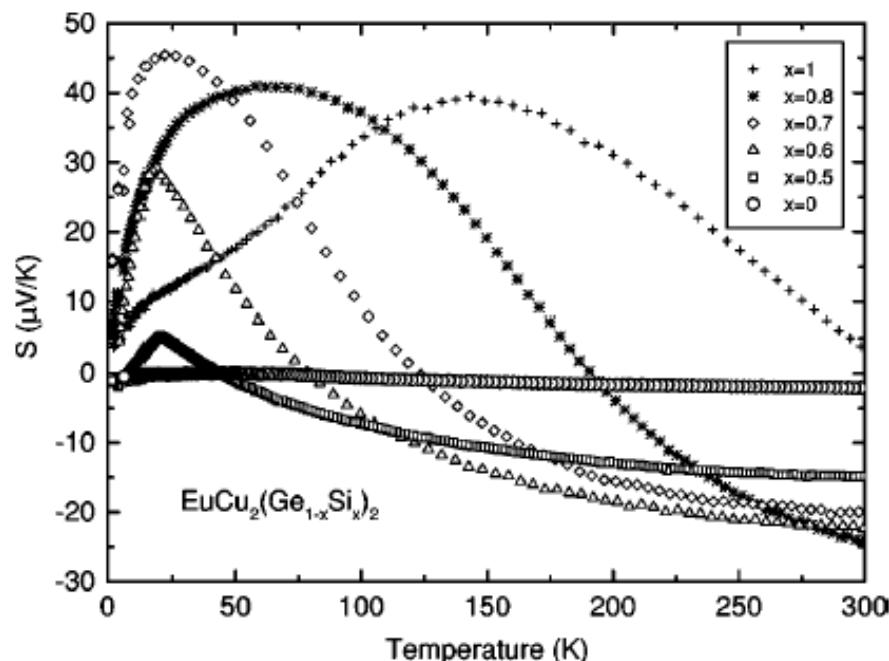
- Semielliptic conduction band of $W=4$ eV
- Initial f-level at $E_f = -0.12$ eV
- Initial hibridization width $\Gamma=0.006$ eV
- 0.93 particles per effective ‘spin’ channel

Assume that Si doping increase hybridization Γ .

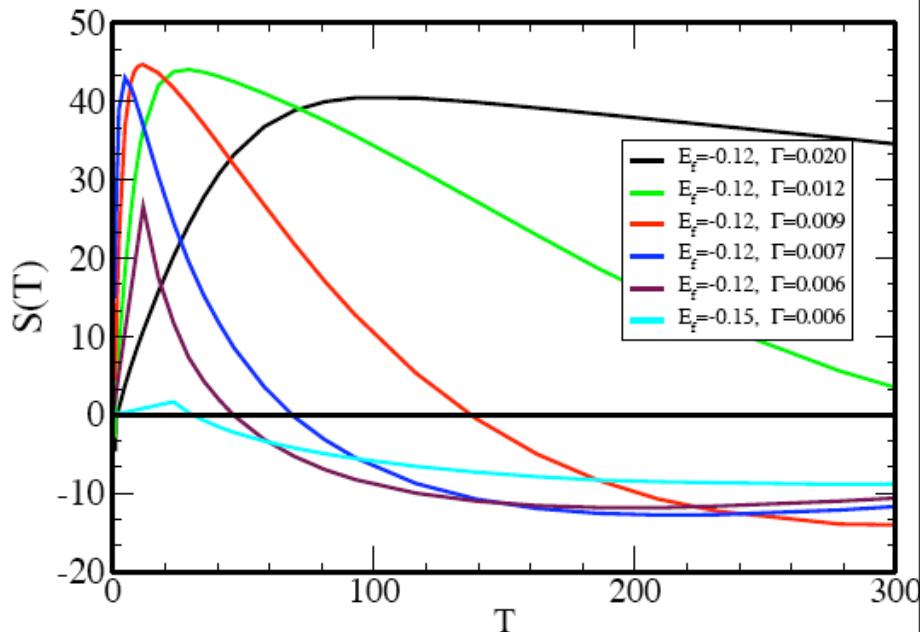
Fine-tuning: change the f-level position and consider the excited states of 3+ configuration.



Thermopower of $\text{Eu}_2(\text{Si}_{1-x}\text{Ge}_{1-x})_2$: comparison with experiment

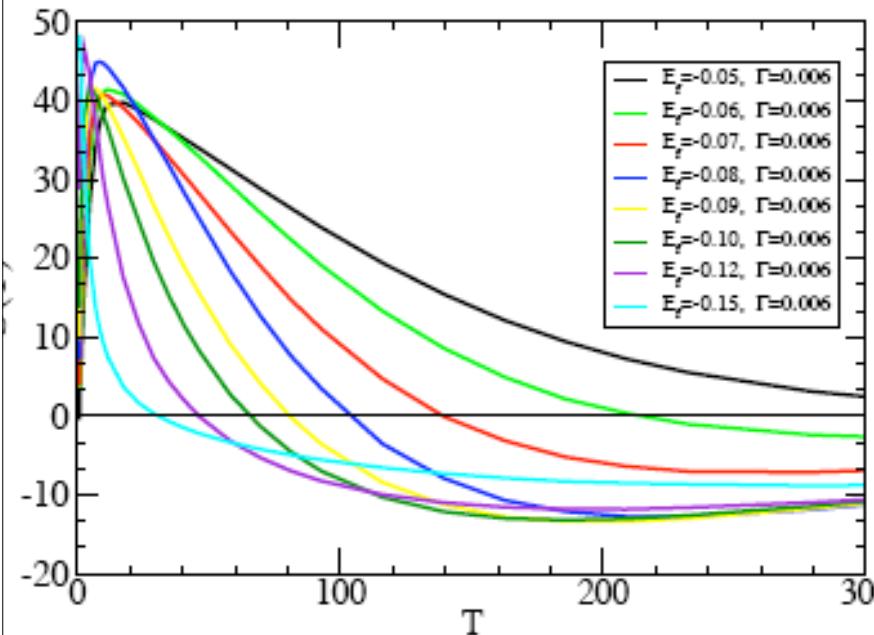
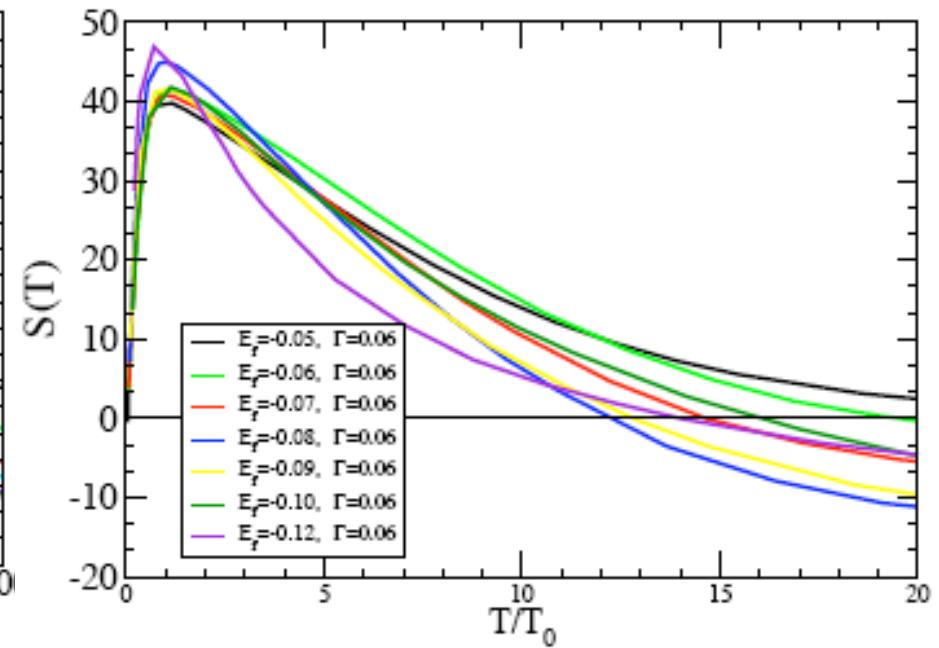


Experiment



Theory

Thermopower - changing the f-level position.

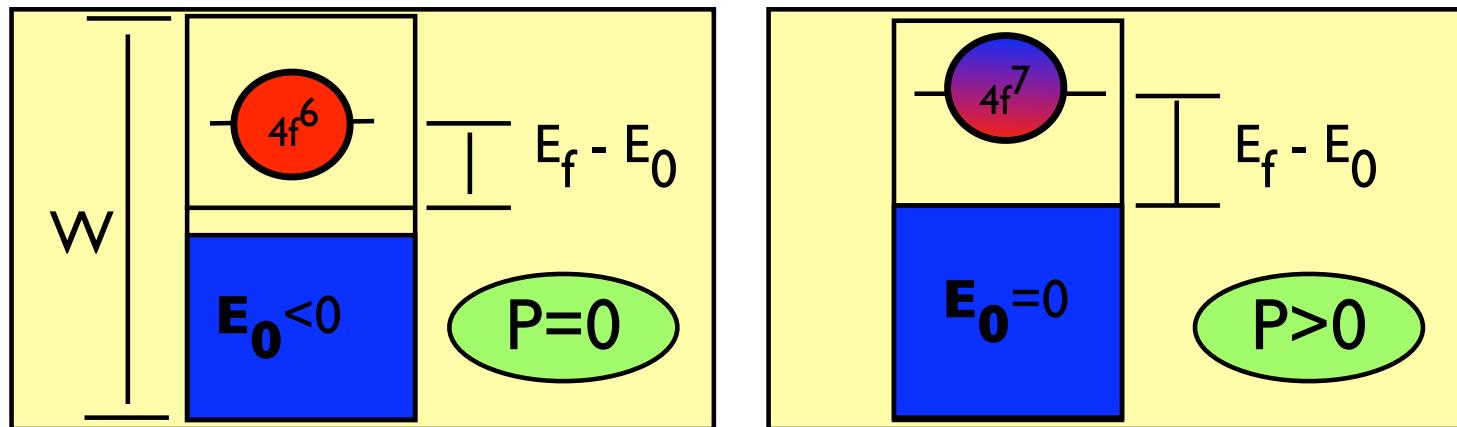


Universal behavior is restricted to $T \leq T_{\max} \sim T_0$

Temperature of the sign-change T_x is not simply related to T_0
and does not provide a physical characterization of the system

Eu summary of calculations:

Ge doping shifts E_f and reduces n_f but Γ is unchanged.



For each E_f we shift μ so as to conserve n_{tot} .

Thus E_0 , E_f and $E_f - E_0$ change with pressure for Yb ions.

This procedure makes Yb more magnetic under pressure.

Electrical resistance

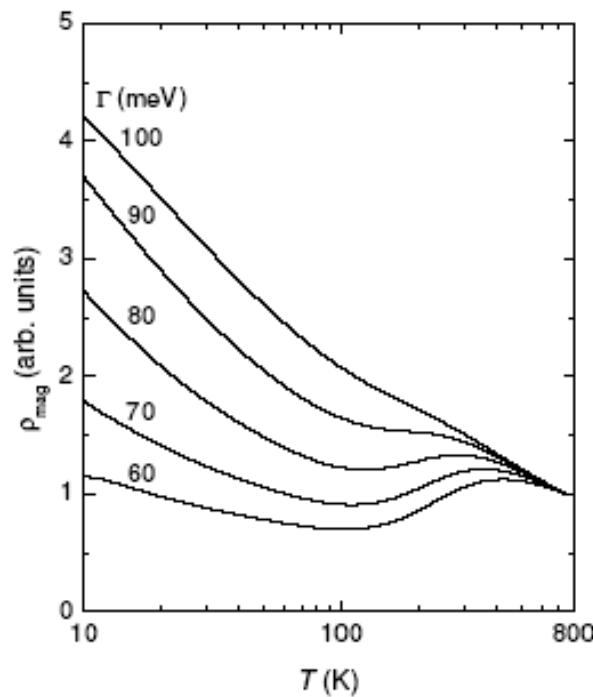


Figure 5: Electrical resistivity vs. temperature calculated by the NCA for the CF splitting $\Delta = 0.07$ eV and for several values of the hybridization strength Γ , as indicated in the figure.

f-particle number:

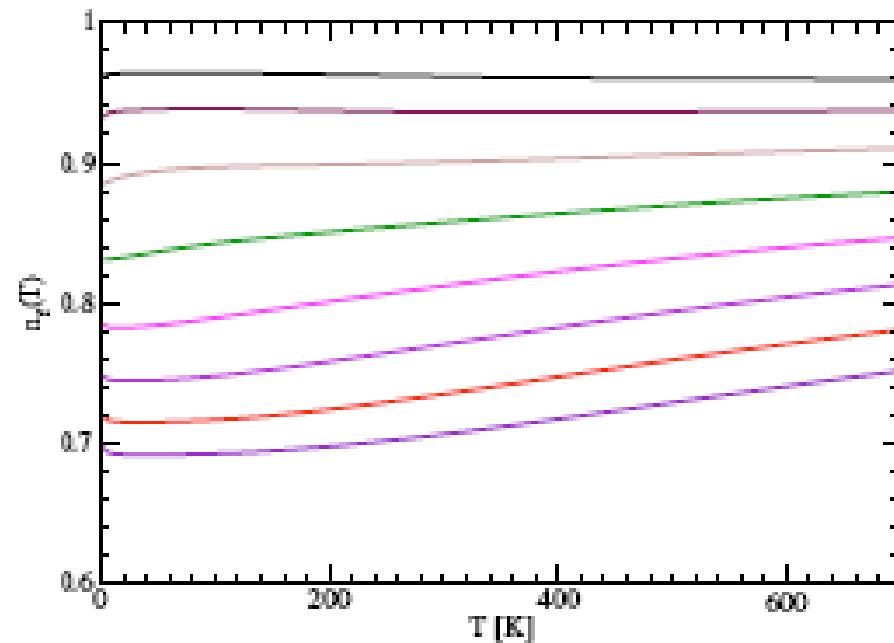
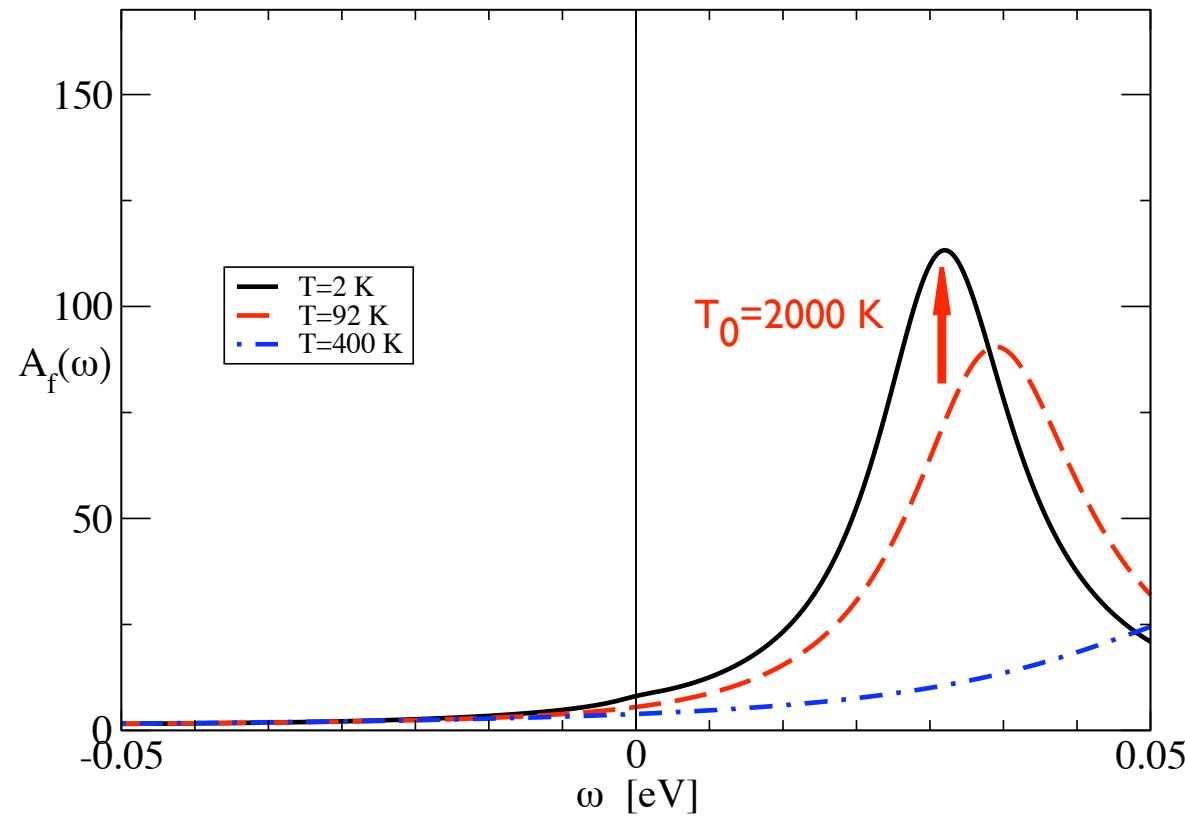


Figure 4: f-electron number, n_f , calculated by the NCA for the CF splitting $\Delta = 0.07$ eV is plotted as a function of temperature for several values of the hybridization strength Γ . For the uppermost curve $\Gamma=0.06$ eV and then it increases in steps of 0.02 eV. At the bottom curve $\Gamma=0.20$ eV.

Transport and thermodynamics should be related
to the fixed points of the model!

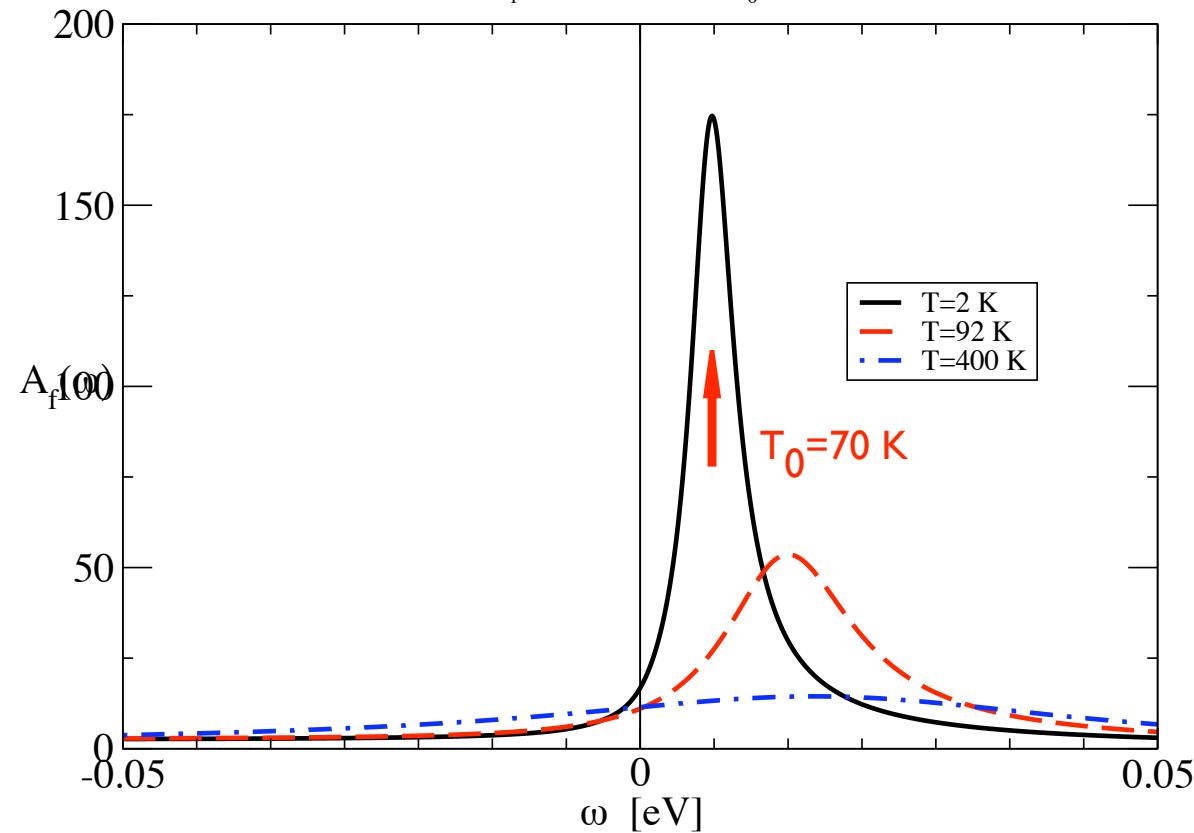
Spectrum of elementary excitation

$E_f = -0.12, \Gamma = 0.20$



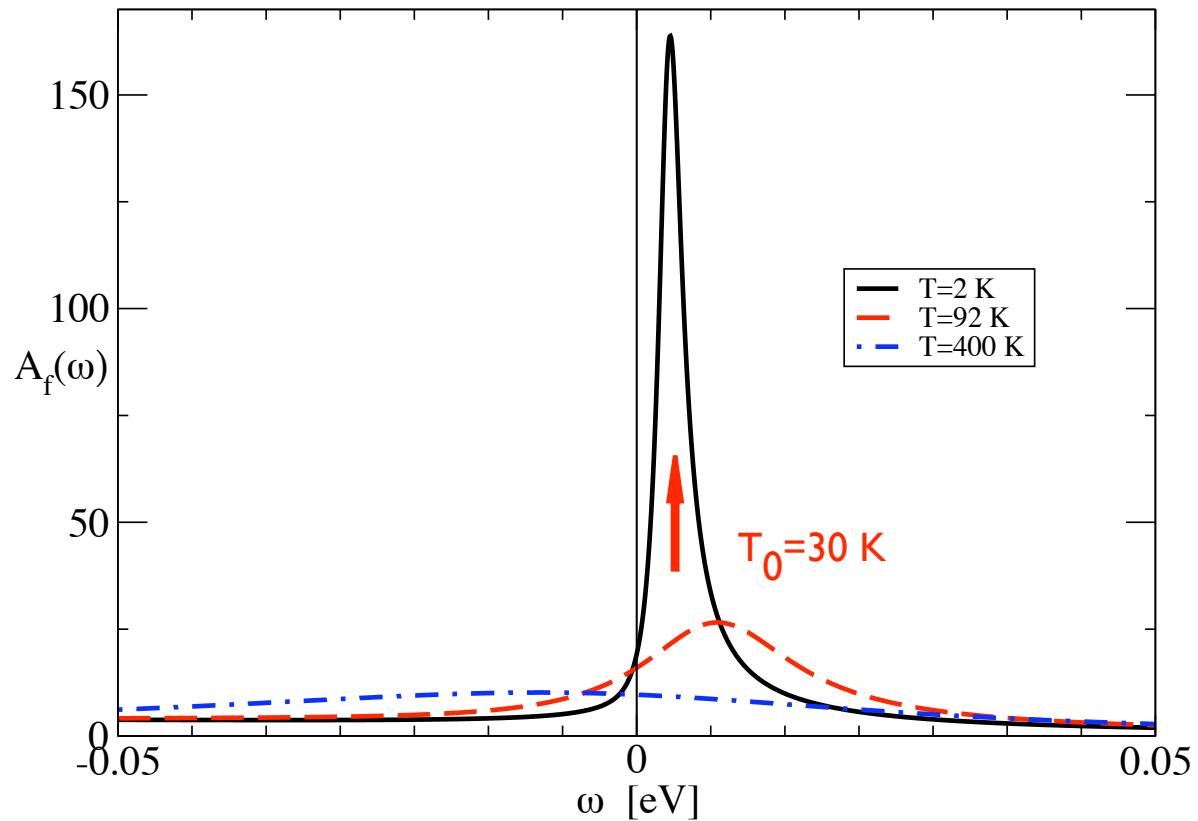
Spectrum of elementary excitation

$$E_f = -0.12, \Gamma = 0.012$$



Spectrum of elementary excitation

$E_f = -0.12$, $\Gamma = 0.006$



Spectrum of elementary excitation

$E_f = -0.15, \Gamma = 0.006$



Summary of NCA thermopower calculations

- Thermopower in Ce, Eu, and Yb intermetallics can be understood from the fixed point analysis of the effective single impurity Anderson model.
- Properties depend on the number of electrons and the relative magnitude of Γ/E_f .
- Shape of $S(T)$ follows the redistribution of the spectral weight within the Fermi window.
- Pressure changes E_f and Γ .
- Combining the NCA and the Fermi liquid approximations provides the solution for any T .

Conclusions

- Above the coherence temperature ($T_c \sim T_0$), we do not see any effects due to the proximity of the QCP.
- Single ion Kondo effect does all the work.
Effective f-degeneracy changes with temperature.
Local environment is important (CF splitting, ligands).
- Pressure, chemical pressure or temperature change n_f and $S(T)$, which strongly depends on n_f
- High-concentration data and low-concentration data are not related by a simple scaling law. Shape of $S(T)$ changes with concentration (chemical pressure).

Thermopower (α) versus entropy (s_N)

$$j = \langle e^{-\beta H} j \rangle / \langle e^{-\beta H} \rangle \quad \text{current}$$

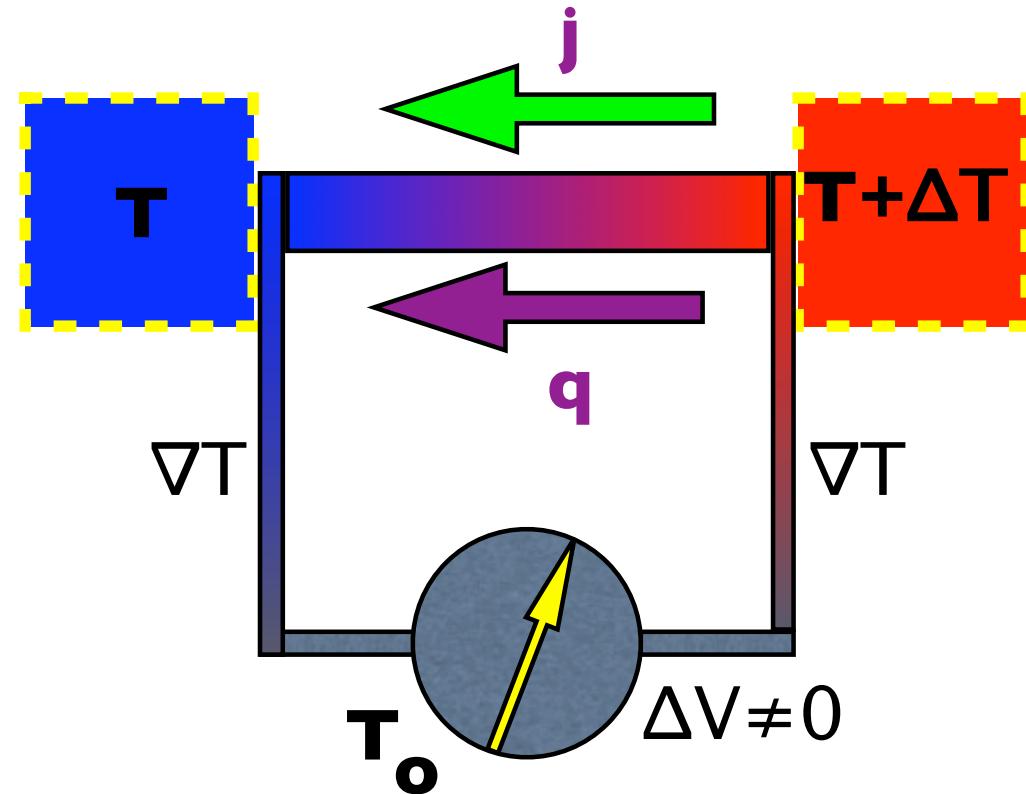
$$q = \langle e^{-\beta H} q \rangle / \langle e^{-\beta H} \rangle \quad \text{heat current}$$

Gradient expansion leads to transport equations
(Luttinger)

$$j = -\sigma \nabla \varphi - \sigma \alpha \nabla T$$

$$q = (\varphi + \Pi) j - \kappa \nabla T \quad \} \Rightarrow e N_A (\alpha / s_N) = N_A / N$$

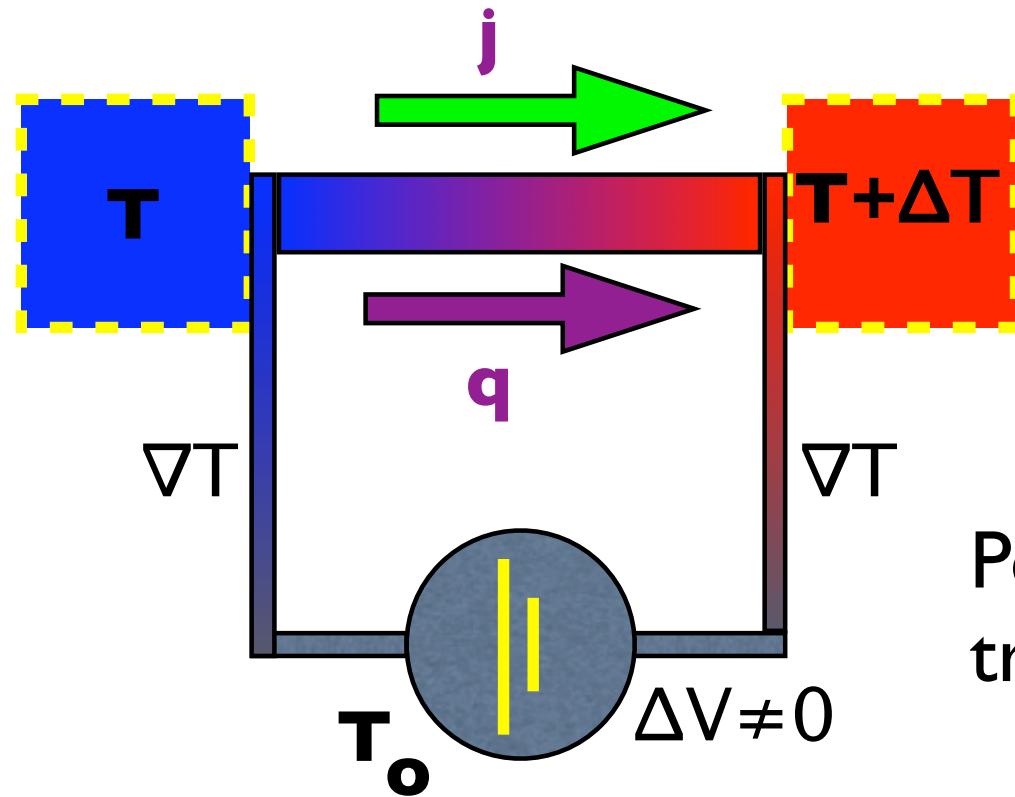
Seebeck effect: current generation



Seebeck coefficient:
transport eq. for $j=0$

$$\alpha = \Delta V / \Delta T$$

Peltier effect: thermoelectric cooling



Peltier coefficient:
transport eq. for $\nabla T=0$

$$\Pi(T) = \frac{q}{j}$$

Onsager: $\alpha = \Pi/T$

Stationary state in isothermal condition:

$$dQ/dt = -\operatorname{div} q = 0$$

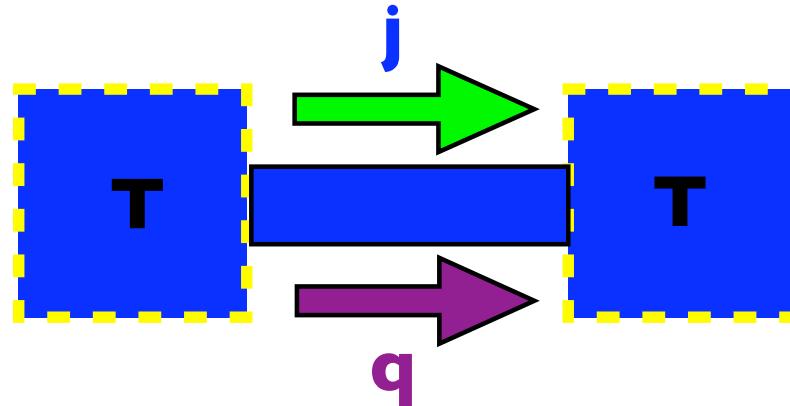
$$\operatorname{div} q = T j \nabla \alpha$$

Integrating over the interface:

$$g_s - g_l = (\Pi_s - \Pi_l) j$$

Interface leads to the discontinuity
in the heat current.

Stationary flow: $j = nev$



$$\alpha / \gamma_N T = N_A / N$$

Analysis of transport equation

$$q_{exp} = N_A \frac{e\alpha(T)}{\mathcal{S}(T)} = \frac{N_A}{N} \frac{1}{1 + \mathcal{S}_M(T)/\mathcal{S}_N(T)},$$

N/N_A is proportional to the Fermi volume of charge carriers

- Free electrons: $q=1$
- Anderson model: $q=1$
- Falicov-Kimball model: $q=1$
- Periodic Anderson model (NFL) $\alpha \sim S_N$

Additional self-consistent loop for spectral functions:

B-spectral function

$$b(\epsilon) = \frac{e^{-\beta(\epsilon - \omega_0)}}{\pi Z} \text{Im}G_0(\epsilon)$$

F-spectral function

$$a_\Delta(\epsilon) = \frac{e^{-\beta(\epsilon - \omega_0)}}{\pi Z} \text{Im}G_\Delta(\epsilon)$$

Self-consistency eqns.

$$b(\omega) = |G_0|^2 \int d\epsilon a_\Delta(\omega + \epsilon) \Gamma(-\epsilon) f(\epsilon)$$

$$a_\Delta(\omega) = |G_\Delta|^2 \int d\epsilon b(\omega + \epsilon) \Gamma(\epsilon) f(\epsilon)$$

Partition function

$$Z = e^{-\beta\omega_0} \int d\omega [b(\omega) + \sum_\Delta a_\Delta(\omega)]$$

Self-consistent NCA solution:

Hybridization parameter

$$\Gamma(\omega) = \int V^2(\epsilon) \rho_c(\epsilon - \omega)$$

Bosonic Green's function

$$G_0(\omega) = \frac{1}{\omega - \epsilon_0 - \Pi(\omega)}$$

Fermionic Green's function

$$G_f^\Delta(\omega) = \frac{1}{\omega - \epsilon_f^\Delta - \Sigma(\omega)}$$

Fermionic self energy

$$\Sigma(\omega) = \int d\epsilon G_0(\omega + \epsilon) \Gamma(-\epsilon) f(\epsilon)$$

Bosonic self energy

$$\Pi(\omega) = \sum_{\Delta} n_f^\Delta \int d\epsilon G_f^\Delta(\omega + \epsilon) \Gamma(\epsilon) f(\epsilon)$$