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Motivation

The nature of the ground state of EuCuZ(SiXGe | -x)2 depends on

concentration. The QCP is located close to x=0.68.

The overall features of the thermoelectric power S(T) depend
on Si concentration.

o=limr,5S/T and Y=limr_,, C\/T change rapidly with x
but q=(N,e)(a/Y) is almost x-independent (q ~ I).

How does the change of the ground state affects S(T)!?

Can we explain S(T) by Kondo effect!?
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Description of Eu2Cu2(SiXGe1_X)2 data

Thermopower

EuCu,(Ge,_Si),

50

100 150 200 250 300
Temperature (K)

C (J/mol K)

C (J/mol K}

Specifiec heat

Characteristic temperatures change with doping.
Chemical pressure favors 4f6 with respect to 4f7 configuration.




S {uVIK)

FL ground state for x > 0.65.

S(T) broadens and the maximum shifts to lower T with Ge-doping.
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FL ground state for x > 0.65.

S(T) broadens and the maximum shifts to lower T with Ge-doping.
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FL ground state for x > 0.65.

Cy and S(T) have anomaly at TN(x).

TN(x) is @ non-monotonic function of x.
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0.65<x<0.65 - S(T) shows at Ty a break of slope.
x<0.6 - S(T) shows a cusp at TN-
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FL ground state for x > 0.65.

Large entropy change for x<0.5
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The valency of Eu ions changes with doping.
. | < x<0.8 Valence fluctuations (2+,3+)

0.8 <x<0.7 Kondo effect, FL ground state
0.7<x<0 2+ and 3+ mixture, Kondo,
AFM ground state

E=C =0 2+ state, AFM, no Kondo effect

Binding Energy (eV)
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Universality of S(T)/T and CV/T at low temperatures
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Eu2Cu2(SiXGe1_X)2

Eu assumes 4f or 4f° Hund’s rule configuration.

Eu 2°*

Configurational splitting is E¢

Configurational fluctuations
give rise to Kondo effect

Eu 37

) =712




Modeling unstable 4f ions

Configurational splitting  E;.

Configurational mixing V (hybridization).
Dimensionless coupling g=1'rV2n(EF)/Ef = F/Ef
Intra-configurational excited states are neglected.
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Configurational mixing via conduction band.




Relevant parameters:

Only 4f6 and at’ states admitted: U >> W
Configurational splitting: E; <W
f-d mixing: [ << E;

Properties depend on: g = F/TIIEfI

and
relative occupation:

n(T) and nf( T)




Anderson lattice model

Hd — Eij,o(tij o uéij)djadj‘f

Hf — Z]l,n(Ef?? - :u)fl%fln - Uzl,a>nfngflafl]:7fln

1
Hfd = \/—NZk,l,a(chLJfla + h. C.)

@ Infinite correlation

Fixed points of the periodic model not well understood.




Poor man’s solution

® Neglect coherent scattering on 4f ions.

® |[mpose local charge conservation at each f-site.
Mot = NelT) + € AT)

Thermoelectric properties depend on g=F/nIEfI




What is needed!?

Green’s function

Spectral function

Transport relaxition time

Transport integrals

oe)
Lij — 0y /
— 00




NCA calculations for CeEu, (Si, Ge, )

(initial parameters for x=0)

Semielliptic conduction band of W=4 eV

Initial f-level at Ef =-0.12 eV
Initial hibridization width [=0.006 eV

0.93 particles per effective ‘spin’ channel




Assume that Si doping increase hybridization T.

Fine-tuning: change the f-level position and
consider the excited states of 3+ configuration.
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Thermopower of Eu2(Si1XGe1_X)2: comparison with experiment
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Thermopower - changing the f-level position.
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Universal behavior is restricted to T < Tmax ~ TO

Temperature of the sign-change Tx Is not simply related to TO

and does not provide a physical characterization of the system




Eu summary of calculations:

Ge doping shifts E¢ and reduces N but I is

unchanged.

| E-Eo

\\%

E¢- Eg

For each Ef we shift 4 SO as tO conserve n

tot’

Thus Ej, Eg and E¢ - B change with pressure for Yb ions.

This procedure makes Yb more magnetic under pressure.
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Transport and thermodynamics should be related
to the fixed points of the model!




Spectrum of elementary excitation
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Spectrum of elementary excitation
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Spectrum of elementary excitation
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Spectrum of elementary excitation
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Summary of NCA thermopower calculations

® Thermopower in Ce, Eu,and Yb intermetallics can be
understood from the fixed point analysis of the
effective single impurity Anderson model.

® Properties depend on the number of electrons and
the relative magnitude of [ /E..

® Shape of S(T) follows the redistribution of the
spectral weight within the Fermi window.

e Pressure changes Ecand [.

® Combining the NCA and the Fermi liquid
approximations provides the solution for any T.




Conclusions

Above the coherence temperature (T _~Tq ), we do

not see any effects due to the proximity of the QCP.

Single ion Kondo effect does all the work.
Effective f-degeneracy changes with temperature.
Local environment is important (CF splitting, ligands).

Pressure, chemical pressure or temperature change ng

and S(T), which strongly depends on n..

High-concentration data and low-concentration data
are not related by a simple scaling law. Shape of S(T)
changes with concentration (chemical pressure).




Thermopower () versus entropy (sy)

j=<e_BH J >/<e_BH> current

q=<e_BH q >/<e_BH> heat current

Gradient expansion leads to transport equations
(Luttinger)

j =-oVp-oaVT

q = (P+Mj-kVT } = -




Seebeck effect: current generation

q

T Seebeck coefficient:
transport eq. for j=0

AVO

VT




Peltier effect: thermoelectric cooling

Peltier coefficient:
transport eq. for VT=0

0
Onsager: o = [1/T -




Stationary state in isothermal condition:

dQ/dt =-divq=0 )

e

div = TjV«

Integrating over the interface:
gs-g=(MN¢-T)j

Interface leads to the discontinuity
in the heat current.

Stationary flow: | = nev




Analysis of transport equation

_ N ea(T) Ny 1
leep = DASTY ~ N 1+8,,(T)/Sy(T)

N/N p is proportional to the Fermi volume of charge carriers

® Free electrons: q=|

® Anderson model: q=|I

e Falicov-Kimball model: g=I

e Periodic Anderson model (NFL) X ~ SN




Additional self-consistent loop for spectral functions:

B-spectral function

F-spectral function

Self-consistency eqns.

Partition function

6—5(e—w0)
b(e) = — ImGy(e)
6—6(6—000)
an(€) = — ImGAa(€)

b(w) = |Gol’ / de an(w+ OT(—e) f(e)

aa(w) = |Gal / de b(w + T(e) ()

7 = =P / dwlb(w) + 3 aa(w)
A




Self-consistent NCA solution:

Hybridization parameter INw) = /VQ(e)pc(e —w)
Bosonic Green’s function 1
aQ _
o(w) w—€eg — (w)
L , , GO (L) — 1
Fermionic Green’s function I (w) = T e]% ~ Y ()
Fermionic self energy Y(w) = /de Go(w + €)'(—e€) f(¢)

Bosonic self energy an /de GA (w+€)L'(€) f(e)




