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Abstract: Quantum mechanics has about a dozen exactly solvable potentials. Normally, the time-
independent Schrödinger equation for them is solved by using a generalized series solution for the
bound states (using the Fröbenius method) and then an analytic continuation for the continuum
states (if present). In this work, we present an alternative way to solve these problems, based on the
Laplace method. This technique uses a similar procedure for the bound states and for the continuum
states. It was originally used by Schrödinger when he solved the wave functions of hydrogen. Dirac
advocated using this method too. We discuss why it is a powerful approach to solve all problems
whose wave functions are represented in terms of confluent hypergeometric functions, especially for
the continuum solutions, which can be determined by an easy-to-program contour integral.
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1. Introduction

Quantum mechanics problems are typically solved via the differential equation form
of the Schrödinger equation in position space and using the Fröbenius method for the gen-
eralized series solution. Unfortunately, this method of solution for bound-state problems
cannot be directly used to solve continuum problems. In this work, we show how one can
employ the Laplace method to solve these problems with contour integrals in the complex
plane. This approach naturally allows one to solve both bound-state problems and contin-
uum problems with similar efforts. It may also provide useful ways to experiment with
and visualize the bound-state and continuum wave functions using the same numerical
methods for both types of solutions. This method does have restrictions of its own, though.
It can only solve problems whose wave functions can be represented in terms of confluent
hypergeometric functions.

This approach is as old as quantum mechanics itself. It was introduced by Schrödinger
when he determined the spectrum of hydrogen in his first wave mechanics paper in 1926 [1];
the method was based on Schlesinger’s famous differential equations textbook [2]. In 1937,
Dirac advocated for using this same technique [3]. Oddly, he did not include it in his
quantum mechanics textbook [4] (which was revised to its third edition ten years later), so
it never was broadly adopted by the physics community. Modern texts that use it include
both Landau and Lifshitz [5] and Messiah [6], where it is employed in the appendix to
describe the properties of confluent hypergeometric functions and Konishi and Paffuti [7],
where they employ it to solve the linear-potential problem, but not other problems solved
by confluent hypergeometric functions. Capri [8] also uses it, but not as a general method.
He suggests using an integral form (that corresponds to the Laplace method solution) to
determine an integral representation for the bound-state wave functions of the Coulomb
problem, and then evaluates them by residues.

The Laplace method for solving differential equations is summarized in our earlier
paper on Schrödinger’s first solution for hydrogen [9]. We provide a briefer summary here

Quantum Rep. 2023, 5, 370–397. https://doi.org/10.3390/quantum5020024 https://www.mdpi.com/journal/quantumrep

https://doi.org/10.3390/quantum5020024
https://doi.org/10.3390/quantum5020024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com
https://doi.org/10.3390/quantum5020024
https://www.mdpi.com/journal/quantumrep
https://www.mdpi.com/article/10.3390/quantum5020024?type=check_update&version=1


Quantum Rep. 2023, 5 371

of this method. The basic idea is to find an integrating factor for the differential equation
and then solve it using a contour integral constructed from this integrating factor.

The Laplace method works for arbitrary order linear differential equations for Φ(ξ)
that have constant coefficients am or linear coefficients bm (in the dependent variable ξ).
These differential equations take the form given by

∑
m
(am + bmξ)Φ(m)(ξ) = 0, (1)

where the (m) superscript denotes the mth derivative of the function Φ(ξ) with respect to
ξ. For quantum mechanics solutions, we concentrate on the m = 2 case because the time-
independent Schrödinger equation is a second-order differential equation. The solution to
Equation (1) is constructed by introducing integrating factors and is represented in the form

Φ(ξ) =
∫

γ
eξzR(z)dz, (2)

with the integral being over a properly chosen contour γ in the complex z plane. The func-
tion R(z) is determined from the integrating factor mentioned above.

The form of the ansatz for Φ(ξ) allows us to compute derivatives by differentiating
under the integral sign,

Φm(ξ) =
∫

γ
eξzzmR(z)dz (3)

for properly chosen contours, where this procedure is well defined. Plugging this represen-
tation into the differential equation yields∫

γ
eξz ∑

m
(am + bmξ)zmR(z)dz = 0, (4)

which motivates the definition of two polynomials P(z) and Q(z) via

P(z) = ∑
m

amzm and Q(z) = ∑
m

bmzm (5)

that convert the differential equation into∫
γ

eξz[P(z) + Q(z)ξ]R(z)dz = 0. (6)

If the integrand is the derivative of a complex-valued function that has the same value
at the endpoints of the contour γ, then we can immediately obtain the solution to the
differential equation. We require that R(z) satisfies the following differential equation

P(z)R(z) =
d
dz

[Q(z)R(z)], (7)

so that the integrand is a pure differential and that the function V(z) is defined by

V(z) = Q(z)R(z)eξz (8)

has equal values at the endpoints of the contour (or is single-valued for a closed contour),
so that evaluating the integral of the perfect differential yields 0 as required to solve
the differential equation. Note that more than one contour can satisfy these conditions;
indeed, for an order-m equation, we know that exactly m linearly independent solutions
are represented by m inequivalent contours.
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The function R(z) is then found by integrating Equation (7) after dividing it by
Q(z)R(z) and recognizing the resulting logarithmic derivative. Solving, yields R(z) as

R(z) =
1

Q(z)
exp

(∫ z P(z′)
Q(z′)

dz′
)

. (9)

Armed with R(z), we immediately find the solution of the original differential equation
to be

Φ(ξ) =
∫

γ
eξz 1

Q(z)
exp

(∫ z P(z′)
Q(z′)

dz′
)

dz, (10)

where the contour γ needs to be chosen so that the vanishing endpoint condition is fulfilled.
In quantum mechanics, we require the solution to satisfy additional properties, such as
being always finite, or being square-integrable.

Next, we apply these methods to solve for the bound states of the simple harmonic
oscillator in one-, two-, and three-dimensions. We do the same for the Coulomb problem
in two- and three dimensions, as well as solving the Morse potential. We do not consider
the spherical harmonics problem, or the Pöschl-Teller and Hulthén potentials, because all
of these cases require full hypergeometric functions for the wave function. These can be
solved by the closely related Laplace transform method, as discussed in the work of Tsaur
and Wang [10]. Others have used the Laplace transform method too [11–13].

2. Bound States with the Laplace Method

We start with the application of the Laplace method to the bound-state problem.
As mentioned above, we examine the simple harmonic oscillator in one-, two- and three-
dimensions; the one-dimensional case is treated twice because there are two different forms
for the wave function ansatz that are commonly used. We also cover the inverse r potential
(Coulomb problem) in two- and three-dimensions. Finally, we discuss the Morse potential.

The potentials for these different problems are summarized in Table 1, where we use
µ to denote the mass of the particle (sometimes this is the effective mass of a two-body
problem), ω is the oscillator frequency, e is the magnitude of the charge of an electron and
of a proton, V0 > 0 is an energy scale for the Morse potential, and a > 0 is an inverse length
for the Morse potential. Since all of these potentials do not have a Schrödinger equation
that is in the Laplace form, we must do two additional things to arrive at the Laplace
form: first, we construct an ansatz for the wave function, and compute the differential
equation for the unknown function in the wave function ansatz; and second, we use a
dimensionless independent variable (which sometimes is related to the original variable
by a change in functional form). These choices are also summarized in Table 1. The wave
function ansatz arises from a number of different strategies. For the one-dimensional
simple harmonic oscillator, we have a different form for the even and the odd solutions,
in higher dimensions, we separate out the angular and radial degrees of freedom—in two
dimensions we use ρ and φ for the polar coordinates, while in three-dimensions we use
r for the radial coordinate and θ (polar angle to the z-axis) and φ (azimuthal angle in the
x-y-plane) for the angular coordinates. The radial functions also have a power-law behavior
as they approach the origin included in the ansatz. The second method for the simple
harmonic oscillator in one dimension removes a Gaussian factor from the wave function.
The independent variable (always dimensionless and denoted by ξ) is proportional to
the square of the (radial) coordinate for the simple harmonic oscillators, is linear for the
Coulomb problems, and is exponential for the Morse potential. For the second way, we
treat the simple harmonic oscillator in one dimension as linear.
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Table 1. Quantum-mechanical potentials with bound states that are analyzed in this work. For each,
we give the form of the potential, the general form of the wave function where Φ is the unknown
part determined by using the Laplace method, and the form for the independent variable ξ used for
each problem; in one-dimension, the independent variable is x, in two dimensions it is ρ =

√
x2 + y2,

and in three dimensions it is r =
√

x2 + y2 + z2. Notably, 0 ≤ ξ < ∞ in all cases but the last (where
−∞ ≤ ξ ≤ ∞). In the table, m is the z-component angular momentum quantum number with
eigenvalues h̄m and l is the total angular momentum quantum number with eigenvalue h̄2l(l + 1).
Moreover, µ is the mass of the (effective) particle, ω is the angular frequency of the oscillator, e is the
magnitude of the charge of an electron, h̄ is Planck’s constant, E is the energy of the corresponding
energy eigenstate, a is a real constant with units of inverse length, and V0 has units of energy.

Problem Potential Independent Wavefunc.
Variable Form

1D SHO,
V = 1

2 µω2x2 ξ =
µω
h̄ x2 Φ(ξ)Even

1D SHO,
V = 1

2 µω2x2 ξ =
µω
h̄ x2 xΦ(ξ)Odd

2D
V = 1

2 µω2ρ2 ξ =
µω
h̄ ρ2 ρ|m|Φ(ξ)eimφ

SHO

3D
V = 1

2 µω2r2 ξ =
µω
h̄ r2 rlΦ(ξ)Ym

l (θ, φ)SHO

2D V = − e2

ρ ξ =
√
−2µE

h̄2 ρ ρ|m|Φ(ξ)eimφ
Coulomb

3D
V = − e2

r ξ =
√
−2µE

h̄2 r rlΦ(ξ)Ym
l (θ, φ)Coulomb

Morse
V = V0

(
e−2ax − 2e−ax)

ξ =
2
√

2µV0

ah̄ e−ax ξ

√
−2µE
ah̄ Φ(ξ)Potential

1D SHO
V = 1

2 µω2x2 ξ =
√

µω
h̄ x e−

µω
2h̄ x2

Φ(ξ)Method 2

Note that the ansatz we use is not the standard one used in textbooks, where one
incorporates the asymptotic behavior for large arguments of the wave function as well.
Instead, we are following the methodology of Schrödinger in his original paper, where only
the behavior at the origin is incorporated into the ansatz.

Plugging the wave function ansatz and the functional form of the independent variable
into the Schrödinger equation, yields a differential equation in the Laplace form for all of
the examples we are working on in this paper. The results of this exercise are summarized
in Table 2. There, you can see that all but the last row (which will be treated separately)
have Schrödinger equations that have been transformed into the form:

ξΦ′′(ξ) + βΦ′(ξ) +
(

δ− λ2ξ
)

Φ(ξ) = 0, (11)

where β, δ, λ ∈ R with λ = 1 or 1
2 > 0 in the bound-state cases we consider here (when we

later consider continuum solutions, the transformed Schrödinger equation for Φ has the
same form, but λ becomes an imaginary number, as we discuss below). Notably, the form
of Equation (11) is the same form used to treat the three-dimensional hydrogen atom,
as discussed in Refs. [1,9]. Nevertheless, the differences in the parameters in the Laplace
form of the final differential equation, along with the different wave function ansatzes,
mean that the analysis can be slightly different for some of these cases. We summarize the
procedure in as general terms as possible, and show where the cases vary, as needed. Note
further that this is not the standard Kummer equation, which arises when one includes the
asymptotic behavior of the wave function for a large argument as well. The form we use is
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in many respects easier to derive and simpler to work with. Of course, we will see the final
answers are the same as one obtains with the standard methodology, as must be so.

Table 2. More details on the solutions for the wave functions using the Laplace method. The 1D SHO
can be solved in two ways with the Laplace method, and we treat them both. In the second column,
we provide the form of the Schrödinger equation obtained by the substitutions detailed in Table 1.
Notably, for all but the last case, the coefficient of the first derivative term is either an integer or a
half-odd integer, except in the Morse potential. It is always larger than 1 for all of these cases except
the first row. Moreover, a0 is the reduced Bohr radius (a0 = h̄2/µe2).

Problem Laplace Form of the
α± =

βλ±δ
2λSchrödinger Equation

1D SHO,
ξΦ′′ + 1

2 Φ′ +
(

E
2h̄ω −

1
4 ξ
)

Φ = 0 1
4 ±

E
2h̄ωEven

1D SHO,
ξΦ′′ + 3

2 Φ′ +
(

E
2h̄ω −

1
4 ξ
)

Φ = 0 3
4 ±

E
2h̄ωOdd

2D
ξΦ′′ + (|m|+ 1)Φ′ +

(
E

2h̄ω −
1
4 ξ
)

Φ = 0 2|m|+1
2 ± E

2h̄ωSHO

3D
ξΦ′′ + (l + 3

2 )Φ
′ +
(

E
2h̄ω −

1
4 ξ
)

Φ = 0 2l+3
4 ± E

2h̄ωSHO

2D
ξΦ′′ + (2|m|+ 1)Φ′ +

(
2h̄

a0
√
−2µE

− ξ

)
Φ = 0

2|m|+1
2 ± h̄

a0
√
−2µECoulomb

3D
ξΦ′′ + 2(l + 1)Φ′ +

(
2h̄

a0
√
−2µE

− ξ

)
Φ = 0 l + 1± h̄

a0
√
−2µECoulomb

Morse
ξΦ′′ +

(
2
√
−2µE
ah̄ + 1

)
Φ′ +

(√
2µV0

ah̄ − 1
4 ξ

)
Φ = 0

√
−2µE±

√
2µV0

ah̄ + 1
2Potential

1D SHO
Φ′′ − 2ξΦ′ +

(
2E
h̄ω − 1

)
Φ = 0 N/AMethod 2

As an illustration of this procedure, consider the even solutions of the one-dimensional
simple-harmonic oscillator, as given in the first row. We use ξ = µωx2/h̄, so the kinetic
energy operator becomes

− h̄2

2µ

d2

dx2 → −2h̄ω

(
ξ

d2

dξ2 +
1
2

d
dξ

)
(12)

and the time-independent Schrödinger equation transforms into the equation in the top
row of Table 2 after we divide both sides by −2h̄ω and we put all terms on the left-hand
side of the equation. The other rows are derived similarly.

To begin the Laplace method, we construct the P and Q polynomials as described in
the introduction. They become

P(z) = βz + δ, (13)

Q(z) = z2 − λ2 = (z− λ)(z + λ). (14)

The ratio of P/Q is then

P(z)
Q(z)

=
α+

z− λ
+

α−
z + λ

, (15)

where
α+ =

βλ + δ

2λ
and α− =

βλ− δ

2λ
. (16)

This can be immediately integrated and exponentiated to form the integrand for the
contour-integral form of the solution, which, up to a constant prefactor, is given by
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Φ(ξ) =
∫

γ
dz eξz(z− λ)α+−1(z + λ)α−−1, (17)

where we still need to choose the contour γ. We must choose the contour γ so that the value
of the integrand of Equation (17) multiplied by Q(z) = (z− λ)(z + λ), has equal values at
the endpoints. Closed contours will always satisfy this. If the contour is not closed, then
the function that must be equal at the endpoints is

V(z) = eξzQ(z)R(z) = eξz(z− λ)α+(z + λ)α− (18)

and this must hold for all ξ. Note that we always have α+ > 0 and α+ + α− = β > 0, but α−
can take on positive or negative values. In general, it is difficult to find contours where
this function will be equal at the endpoints (for arbitrary values of V) if the path is not a
closed path. However, special values, such as 0 or ∞, are easier to enforce, because they
automatically hold for all ξ; for V = ∞ one must use a careful limiting procedure to ensure
the difference of V at the two endpoints actually vanishes.

The selection of these contours, and examining the integral over inequivalent contours
is at the heart of the Laplace method. It requires a discussion of some technical details
from complex analysis. Specifically, the integrand is generically multivalued when α± are
non-integers. Consider a complex-valued function of the form zα. We can write this as

zα = eα log(z). (19)

The complex logarithm is multivalued in the complex plane; consider

log(z) = log
(
|z|eiθ

)
= log(|z|) + iθ, (20)

with z = |z|eiθ written in polar form. Clearly, if we fix |z| and move through θ from 0→ 2π,
we will return to the same point on the complex plane, but the value of the logarithm
will have picked up an additive shift by 2πi and thereby will not be a continuous (or
even well-defined) function. So, we instead write the logarithm function as log(z) =
Log(z) + 2πim, m ∈ Z, where Log indicates the principal value of the logarithm function,
which we take to be the complex logarithm function for 0 < θ < 2π in this example; note
that this choice is a domain that has a cut in the complex plane running from 0 to infinity
along the positive real axis. Log(z) is then single-valued, but the domain is smaller than the
full complex plane due to the cut. This part of the complex plane given by 0 < θ < 2π is a
branch of the logarithm, defined to be a domain in the complex plane on which a function
is single-valued. A branch is chosen to be maximal, in the sense that no point can be added
to it and still maintain single-valuedness.

The boundary of a branch is called the branch cut. From our definition of the complex
logarithm, it is clear that the branch cut will be the ray where θ = 0 (or more completely,
where θ = (2nπ for n ∈ Z) originating at the origin; that is, the positive real axis plus
the origin. In this case, the origin is a branch point of the logarithm function since it is a
point that is common to any branch cut one can draw for the logarithm. The branch cut
can be any curve that extends from the origin to infinity to have a single-valued logarithm
function. Note that the complex plane, C, does not include infinity, and as such there is no
“point at infinity;" instead approaching infinity, means that the complex number continues
to increase without bound (|z| → ∞).

Critical to our work is a procedure that determines the phase of a number z in a domain
on the complex plane that has a branch cut. In the preceding discussion, the phase θ on
the complex plane was defined in the standard convention: the phase is calculated with
respect to the origin. That is, to determine the phase of z, we set the origin as the anchor of
a vector of length |z| starting from the horizontal (and oriented along the positive real axis),
and rotate it counterclockwise until we reach the point z. Then, the phase of z is the angle
swept out by this line. When one needs the phase of a point z relative to a reference point
(zr), in a domain with a branch cut, one generalizes the process. We draw a path from the
reference point to z that does not cross any branch cut. Such a path will always exist for
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the cases we consider here. Then, we track the phase, relative to the reference point, as we
move along the path, until we reach z. The phase is tracked by observing how the angle
between the reference point and a line whose endpoint traverses along the path varies from
the reference point to z; explicit examples of how this works will be given below. Note that
while the path (and hence the tip of the line) never crosses a branch cut, the arrow drawn
from the reference point to the tip often does cross a branch cut. Hence, the final phase
that is used, may look like we rotated an arrow from the reference point to the final point z
across a branch cut. But, as we see above, because we follow a path that does not cross the
branch cut, this is fine.

We now return to the complex power function, which becomes

zα = eαLog(z)e2πimα. (21)

Clearly, if α ∈ Z, then eαLog(z) = zα, which is single-valued. Otherwise, it is multi-
valued. In general, α± in Equation (17) are not integers. This means that the integrand is
not single-valued in general. We must draw branch cuts to restrict the complex plane to a
domain where the integrand is single-valued. The contour is then required not to cross any
branch cut (but it can have endpoints at branch cuts or branch points).

For a given multivalued function, there can be many inequivalent ways to draw branch
cuts (the only requirement is that the integrand is single-valued within the domain that has
the branch cuts drawn). From the form of the integrand in Equation (17), we know that
the branch points will be determined by the exponents α±; that is, ±λ is a branch point if
and only if α± /∈ Z, respectively. By construction, α+ + α− = β, so looking at Table 2, we
immediately see two cases: those where β ∈ Z always (rows 3, 5, and 6) and those where
β /∈ Z (all other cases); note the Morse potential can be an integer in special cases. These
two cases have different allowed branch cuts. In addition to determining the branch cuts
and the allowed contours (which must have V(z) be equal at the endpoints for all ξ values),
we also require the function Φ(ξ) to be nonsingular for all ξ. This condition is different
from the conventional requirement of square-integrability of the wave function, but it is
the condition needed for the Laplace method. We will find all bound-state wave functions
that satisfy this condition are also square-integrable, but we do not prove this.

First, we can eliminate any closed contour that does not cross a branch cut or contain
any branch points. This is because such a closed contour always gives a zero integral due
to Cauchy’s theorem and the fact that the function is analytic inside the domain defined
by the branch. An open contour that goes from a finite point z to another finite point z′

inside the domain (that does not cross a branch cut) is also ruled out because it will not be
possible to satisfy V(z) = V(z′) for all 0 ≤ ξ < ∞.

These restrictions then imply that contours must go to infinity, or end at a branch point
(technically they could also end anywhere on a branch cut, but similar to the open contour
case above, one won’t be able to satisfy the condition V(z) = V(z′) for all allowed ξ in that
case). Rather than determine all possible contours next, we now consider the condition
that the solution must be finite as ξ → ∞. Since there is a factor of eξz in the integrand,
no contour can go to infinity with Re(z) > 0 without the integral diverging as ξ → +∞.
Moreover, the contour cannot have an endpoint at z = λ because using the stationary
phase method to asymptotically determine the limit of the integral for large ξ, again has an
exponential term that will diverge (for details see [9]).

For all cases, we can have a branch cut running from −∞ to −λ along the negative
real axis and from λ to ∞ along the positive real axis. When β is an integer, we can instead
have the branch cut run along the real axis between −λ and λ. These two possibilities are
depicted in Figure 1.
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Figure 1. The contours we consider when α± are not integers. The branch cuts in each case are shown
by the dashed red lines. In panel (a), we show a Hankel-like contour, in panel (b) a contour that runs
to infinity, and in panel (c) we show the dog-bone contour that surrounds the two branch points
when the branch cut is drawn between them.

We describe next the three possible contours we can have for all 0 < ξ (we will
determine the behavior for ξ = 0 last). Two contours can be drawn when we have the
branch cuts extending from −λ to −∞ along the negative real axis and from λ to ∞ along
the positive real axis. The first one, γ1, is the so-called Hankel contour, which starts at −∞
just below the real axis, loops around the branch point, and goes back to −∞ above the real
axis (see Figure 1a). The second possibility, γ2, starts at the branch point at −λ and goes to
−∞ (either above or below the real axis, both end up giving the same asymptotic behavior
as ξ → 0; we draw it above the real axis here). The final contour can be drawn when the
branch cut extends from −λ to λ (which is only possible when α+ + α− = β is an integer).
This contour, γ3, encircles the branch cut and the branch points; it is sometimes called the
dog-bone contour. Note that a similar γ2 exists when the branch cut runs from −λ to λ,
but it behaves the same as the γ2 that we analyze. A stationary phase analysis of γ3 shows
that it diverges as ξ → ∞, so it is ruled out [9].

Now, we need to determine if any of the remaining contours yield a finite result as
ξ → 0. First, in the case of the Hankel contour, the phase of the integrand will be different
below and above the real axis, since we drew a branch cut along the negative real axis.
Hence, Φ(ξ)→ ∞ for ξ = 0 for the Hankel contour, because the integrand remains finite
but the contour extends an infinite length, and the difference in the phases means those
infinite contributions do not cancel. Thus, we can rule out the γ1 contour. For the contour
γ2 from −λ → ∞ (in the left half plane), if α− < 0, the integral will diverge as z → −λ.
If α− ≥ 0, we find that the contour does satisfy the condition that V(z) has equal values (in
fact V(z) = 0) at the endpoints of the contour γ2 for ξ > 0. But, when ξ = 0, V(−λ) = 0
because there is a factor of z + λ raised to a positive power (it is a finite number when
α− = 0), while for z→ −∞, |V| goes like |z|β → ∞. So, our condition that the endpoints
have equal values of V for all values of ξ does not hold for ξ = 0, eliminating γ2. This
eliminates all possible contours when α± are not integers.

We still have to consider the case when β /∈ Z for cases where this occurs. This does
not change any of the prior analyses; it simply restricts us to exclude the cases where the
branch cut ran from −λ to λ—hence, we have no dog-bone contour to consider when β is
not an integer.

Since there are no valid solutions for the general case, we must re-evaluate our prior
assumption, that in general α± /∈ Z, to see if we can find another contour in that case. It
is clear that we will require at least one of them to be an integer, in general. When β ∈ Z,
there is no ambiguity, as in this case, if one is an integer, they both must be. When β /∈ Z,
the analysis is more complex. Note that, as shown in Table 2, these cases are the one- and
three-dimensional oscillators and the Morse potential, since a /∈ Z, in general. Recalling
that in all cases, δ, λ > 0, we know that α+ > α−. Moreover, the only way to obtain a
new contour is to have one that surrounds a pole, that is a point z′ at which the integrand
is proportional to (z− z′)−N for N ∈ Z+. Since α+ + α− = β > 0 and α+ > α−, we can
only have α− be a non-positive integer (we can have α− = 0, because in Equation (17),
the exponent of (z + λ) is (α− − 1), so α− = 0 will result in a first-order simple pole).
That is,

|α−| = N, N = 0, 1, 2... (22)



Quantum Rep. 2023, 5 378

We will find that α− = 0 corresponds to the ground state, and α− < 0 ∈ Z will yield
higher order poles, corresponding to excited states.

Note that the constraint that α− is a nonpositive integer yields the quantization
condition for each bound state (see Table 3). Key to our analysis is that integer exponents
lead to single-valued powers, so z = −λ is no longer a branch point, and we can enclose it
with a closed contour (Figure 2). Since this point is a pole of order |α−|+ 1, this contour is
non-trivial and distinct from the previously analyzed ones. Notably, the cases when β /∈ Z
are only slightly different; z = λ is still a branch point, and we choose the branch cut to run
from λ→ ∞ along the positive real axis, as shown in Figure 2b. Thus, all cases of the form
in Equation (17) lead us to the same new contour, a closed contour about a pole of order
N + 1 at z = −λ. This yields the solution in the form of a closed contour integral (with the
contour encircling the point z = −λ once in the counter-clockwise direction, as shown in
Figure 2)

Φ(ξ) =
∮

dz eξz(z− λ)α+−1(z + λ)α−−1, (23)

which we evaluate by residues:

Φ(ξ) =
2πi
|α−|!

d|α− |

dz|α− |

[
eξz(z− λ)α+−1

]∣∣∣∣∣
z=−λ

. (24)

a) b)

Figure 2. Contours that lead to the correct solution for the wave function and provide the quantization
condition for the energy. The contour is always a closed contour in the counter-clockwise direction
encircling the point z = −λ, as shown in panel (a). In some cases, shown in panel (b), a branch point
remains at z = λ and the branch cut runs from there to z = ∞ along the real axis.

From the Rodrigues formula for the associated (alternatively, “generalized”) Laguerre
polynomials L(b)

N (ξ) [14],

L(b)
N (ξ) =

1
N!

eξξ−b dN

dxN

(
e−xxN+b

)∣∣∣∣
x=ξ

, (25)

we can see that the form of Equation (24) is similar. To establish the exact correspondence,
we define u = −(z− λ)ξ (the point at which we evaluate the derivative, z = −λ, corre-
sponds to u = 2λξ) and the inverse is z = (λξ − u)/ξ. Re-expressing the right-hand side
as a function of u yields

Φ(ξ) = 2πi
|α− |! (−1)|α− |ξ |α− | d|α−|

du|α−|

[
e−ueλξ(−1)α+−1

(
u
ξ

)α+−1
]∣∣∣∣

u=2λξ

= 2πi(−1)β−1

|α− |! ξ−β+1eλξ d|α−|

du|α−|
[
e−uuα+−1]∣∣∣

u=2λξ

= 2πi(−1)β−1

(2λ)−β+1|α− |!
e−λξ L(β−1)

|α− | (2λξ). (26)
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Hence, except for a constant prefactor, which will be set via normalization, we find that

Φ(ξ) ∝ e−λξ L(β−1)
|α− | (2λξ). (27)

Because the Laguerre polynomial of order N goes like ξN as ξ → ±∞, the asymptotic
behavior of Φ(ξ) is dominated by the exponentially decaying term. Thus, this solution will
be finite for all 0 ≤ ξ and is the wave function we sought to find.

The last detail we need to work out is how the integer from the quantization condition
N = |α−|, relates to the conventional principal quantum number n. In all harmonic
oscillator cases, we have n = N, while the two-dimensional Coulomb problem has n−
|m| − 1 = N and the three-dimensional Coulomb problem has n− l− 1 = N. These results
are summarized, in terms of the principal quantum number, in Table 3.

Table 3. Quantization condition for the Laplace method (by tradition, the principal quantum number
n starts from 0 for all cases, except the Coulomb cases, where it starts from |m|+ 1 in two dimensions
and from l + 1 in three dimensions); N is required to be a nonnegative integer from the quantization
condition arising from Laplace’s method. By tracing back through the definitions of Φ and ξ in each
case, one obtains the standard wave functions for each problem, up to a normalization constant, that
still needs to be determined. The δ in the index of the associated Laguerre polynomial in the last

column of the Morse potential satisfies δ =

√
2µV0

ah̄ . All models, except for the Morse potential, have
an infinite number of bound states. The Morse potential has a finite number, where we are required
to have n <

√
2µV0/ah̄. Hn(ξ) is the nth Hermite polynomial.

Problem Quantization Energy Form of Φ(ξ)Condition Quantization, En

1D SHO,
N = n = E

2h̄ω −
1
4 h̄ω

(
2n + 1

2

)
e−ξ/2L(

− 1
2 )

n (ξ)Even

1D SHO,
N = n = E

2h̄ω −
3
4 h̄ω

(
2n + 1 + 1

2

)
ξ1/2e−ξ/2L(

1
2 )

n (ξ)Odd

2D
N = n = E

2h̄ω −
2|m|+1

2 h̄ω(2n + |m|+ 1) e−ξ/2L(|m|)
n (ξ)SHO

3D
N = n = E

2h̄ω −
1
2

2l+3
2 h̄ω

(
2n + l + 3

2

)
e−ξ/2L(

l+ 1
2 )

n (ξ)SHO

2D N = n− |m| − 1 = h̄
a0
√
−2µE

−
(
|m|+ 1

2

)
− h̄2

2µa2
0(n− 1

2 )
2 e−ξ L(2|m|)

n−|m|−1(ξ)Coulomb

3D N = n− l − 1 = h̄
a0
√
−2µE

− (l + 1) − h̄2

2µa2
0n2 e−ξ L(2l+1)

n−l−1(ξ)Coulomb

Morse
N = n =

√
2µV0−

√
−2µE

ah̄ − a2 h̄2

2µ

(
n−
√

2µV0

ah̄

)2
e−ξ/2L(2n−2δ−1)

n (ξ)Potential

1D SHO
N = n = E

h̄ω −
1
2 h̄ω

(
n + 1

2

)
Hn(ξ)Method 2

3. Examples: Bound States for the Simple Harmonic Oscillator

Having now constructed the general methodology to solve bound-state problems
using the Laplace method, we show the concrete details of how the method is used for
the two-dimensional simple harmonic oscillator, which we treat in polar coordinates.
The Schrödinger equation is solved first by separating variables, that is by letting ψ(ρ, φ) =
R(ρ)Φ̄(φ). The solution for the angular function is

Φ̄(φ) = eimφ, m = ±1, ± 2, ... (28)

as summarized in Table 1. The angular function Φ̄ should not be confused with the
general function Φ used in our discussion of the Laplace method. From this, we obtain a
radial equation:
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R′′(ρ) +
1
ρ

R′(ρ) +
(

2µE
h̄2 −

µ2ω2

h̄2 ρ2 − m2

ρ2

)
. (29)

Now, we define the new independent variable ξ = µω
h̄ ρ2, and make the ansatz that

R(ξ) = ξ
|m|
2 Φ(ξ) (also summarized in Table 1). Making these substitutions we find the

Laplace form of the radial equation as

ξΦ′′(ξ) + (|m|+ 1)Φ′(ξ) +
(

E
2h̄ω

− 1
4

ξ

)
Φ(ξ) = 0, (30)

as summarized in Table 2. Hence,

β = |m|+ 1, δ =
E

2h̄ω
, and λ =

1
2

. (31)

Next, we construct

α+ =
1
2

(
|m|+ 1 +

E
h̄ω

)
and α− =

1
2

(
|m|+ 1− E

h̄ω

)
. (32)

The quantization condition becomes

N = |α−| = n⇒ En = h̄ω(2n + |m|+ 1). (33)

From Equations (27) and (32), we find the desired solution to the differential equation is

Φ(ξ) = e−
ξ
2 L(|m|)

n (ξ) (34)

as summarized in Table 3. This then yields the following for the full wave function:

ψn,m(ρ, φ) = ρ|m|e−
µω
2h̄ ρ2

L(|m|)
n

(µω

h̄
ρ2
)

eimφ, (35)

up to a normalization constant, which has not yet been determined.
The solutions we derived for the one-dimensional simple harmonic oscillator may

not look familiar to many. But they actually are the standard form, expressed in terms of
a Gaussian multiplied by a Hermite polynomial, once we realize that there is an identity
relating associated Laguerre polynomials to Hermite polynomials, given by

H2n(x) = (−4)nn!L(
− 1

2 )
n

(
x2
)

(36)

H2n+1(x) = 2(−4)nn!xL(
1
2 )

n

(
x2
)

,

where Hn is the physicist’s form for the Hermite polynomial defined by Rodrigues’ formula

Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)
. (37)

The remaining cases follow in a similar fashion and can be constructed by following
the summarizing formulas in Tables 1–3.

What remains is for us to discuss the second way to solve the one-dimensional har-
monic oscillator, which obtains the Hermite polynomials directly from Rodrigues’ formula
after determining the residue at the pole. This method is summarized in the last row
of Tables 1–3 and it uses a different ansatz for the wave function, which also leads to a
differential equation in the Laplace form, but a different one from all of the other cases. It is
given by

Φ′′(ξ)− 2ξΦ′(ξ)− 2αΦ(ξ) = 0, (38)

where α = 1
2 −

E
h̄ω ; note we must have E ≥ 0 (since the Hamiltonian is a positive semidefi-

nite operator in this case), so α ≤ 1
2 . In addition, we need to find a finite solution for all
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−∞ < ξ < ∞. We now go through the steps of the Laplace method. First, compute the
polynomials

P(z) = z2 − 2α (39)

Q(z) = −2z, (40)

and then exponentiate the antiderivative of the ratio P/Q, which now includes only one
power of z raised to a potentially noninteger exponent. This allows us to write the solution
to Equation (38) as the contour integral

Φ(ξ) =
∫

C
dz eξz− z2

4 zα−1. (41)

Next, we restrict the exponent of z such that α /∈ Z. The branch points of the integrand
in Equation (41) are at z = 0 and at infinity. To construct a single branch of the integrand,
we choose to draw the branch cut from z = 0→ z = −∞ along the negative real axis.

We next consider the possible contours as shown in Figure 3. By the same arguments
used before, we can eliminate all closed contours that don’t contain a branch point or end
at a branch cut and all open contours between any two finite points in the complex plane.
Thus, the only candidate contours are ones with at least one endpoint at z = 0 or that have
endpoints that go to infinity. As the contour goes to infinity, it must remain inside a cone
with an angle of ±π/4 of the real axis, to be bounded. There is a cone around the positive
real axis and also one around the negative real axis.

a) b)

Figure 3. Four possible contours for solving the one-dimensional simple harmonic oscillator using
the second ansatz. The contours must lie within the white “cone” regions as they go to infinity (there
is no other restriction on the contours except not to cross the branch cut for finite values of z). In panel
(a), we show the Hankel contour γ4, which goes around the branch cut, and γ5, a contour that runs
parallel to the real axis. In panel (b), we show two contours starting from the branch point and
running to infinity either below (γ6) or above (γ7) the branch cut.

Thus, the contours to analyze are a Hankel-like contour around the branch cut, which
we call γ4, a contour from negative infinity to positive infinity (which does not cross the
negative real axis), called γ5, and a contour from the origin going to infinity with Re(z) < 0,
called γ6, or from the origin to infinity with Re(z) > 0, called γ7; as long as we remain
inside the cones about the real axis as we go to infinity. It is fairly easy to see any other
contour with endpoints at 0 and ∞ can be deformed into one of these contours or can be
mapped to them by taking z → −z. For example, the integral over γ7 is converted into
a contour from the branch point at 0 that runs to infinity inside the white cone along the
positive real axis by transforming z→ −z, which is equivalent (up to a complex phase) to
the integral over γ7 but with ξ → −ξ.

The first condition we have is that the function V(z) has identical values at the
endpoints for all ξ. In this case, we have

V(z) = eξz− z2
4 zα. (42)



Quantum Rep. 2023, 5 382

It is easy to see that limz→0 V(z) = ∞ if α < 0, while limz→0 V(z) = 0 if α > 0.
The asymptotic behavior of V is dominated by the e−z2

term, when |z| → ∞, so we have
limz→∞ V(z) = 0 when we lie inside the white cone about the real axes. This implies, that
we can only have z = 0 as an endpoint, when α > 0. But, in that case, any integral that has 0
as an endpoint diverges, due to the power-law behavior of the integrand near z = 0 having
too negative of an exponent. So no contour can have z = 0 as an endpoint, eliminating γ6
and γ7.

The next condition is to check the integral as ξ → −∞. Since the contour lies inside
the cone, it seems like it will always be bounded, and should never diverge. But, in the
region near z ≈ 2ξ, the integrand actually behaves like eξ2

and can give large contributions.
The way to evaluate such situations is to perform an asymptotic analysis on the integrals
to determine their value for large |ξ|. The standard way to do this is called the steepest-
descents approach, which notes that the contributions to the exponential are largest near
the maximum of the exponent, which is then described by a simple quadratic near the
extremum, yielding a Gaussian integral that can be evaluated exactly. The analysis is
straightforward and we describe it carefully, starting with the Hankel contour γ4.

The saddle-point approximation allows us to approximate integrals of the form

Φ(ξ) =
∫

γ
dz eh(z;ξ)g(z), (43)

which corresponds to the integral we need to evaluate for the Laplace method solution.
Note that we have two options for how to proceed here. We can pick g(z) = zα−1, or we
can pick g(z) = 1 via writing zα−1 = e(α−1) ln z and absorbing this term into the exponent
h(z; ξ). Both approaches yield the same final results, but the former is simpler than the
latter, because there is only one saddle point in this case, making the analysis easier. This
means we have h(z; ξ) = ξz− 1

4 z2. Taking the derivative, to find the extrema, we have
h′(z; ξ) = ξ − 1

2 z. Setting this equal to zero, tells us the extremum occurs at z = z0 = 2ξ,
which is called the saddle point; note that we have h(z0; ξ) = ξ2. In complex analysis,
one direction through the saddle point is a minimum, while the other is a maximum,
yielding a saddle-point shape for the exponent near the saddle point z0. One must choose
the direction for the contour through the saddle point to traverse the maximum, not the
minimum. In this case, the maximum direction is along the real axis, which is simple to see,
because we have a quadratic for the exponent with a negative real coefficient.

The asymptotic analysis next deforms the contour to go through the saddle point
along the maximum direction. When ξ < 0, this saddle point lies on the branch cut, so we
will deform the Hankel contour to pass infinitesimally below it and parallel to the real axis—
once below the negative real axis and once above. This yields two contributions for the
steepest-descents integral. For the contribution from below the real axis, we parameterize
the contour as given by γ ≈ z0 + t near the saddle point, so that

h(z0 + t; ξ) ≈ h(z0; ξ)− 1
4

t2. (44)

Since the integrand decays quickly away from the saddle point, we extend the limits
on t to run from −∞ to ∞ and we approximate g(z) ≈ g(z0). This then gives us the
contribution from the saddle point below the real axis to be∫ ∞

−∞
dteh(z0;ξ)− 1

4 t2
g(z0) ≈ 2

√
π(2|ξ|)α−1e−iπ(α−1)eξ2

. (45)

The contribution from the saddle point above the negative real axis is similar—it has
an overall negative sign, because the contour runs from right to left instead of left to right
and the sign of the phase in the exponent is positive because we are above the branch point.
The total asymptotic estimate for the integral is then∫

γ4

dzeξz− 1
4 z2

zα−1 ≈ −2α+1i
√

π|ξ|α−1 sin π(α− 1)eξ2
. (46)
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Since we assume α is not an integer, the coefficient is nonzero and this gives a leading
contribution that goes like eξ2

. Looking at Table 1, we see that the full wave function is

proportional to e−
1
2 ξ2

Φ, so this solution will go as e
1
2 ξ2

as ξ → −∞, which diverges. So,
γ4 does not yield a finite wave function. Moreover, a similar analysis yields the same
asymptotic behavior for γ5. Note that this analysis is similar to the Fröbenius analysis
when the series does not truncate, and we reject the solution due to the wave function
growing as we go to infinity.

So we do not obtain a finite solution from any of the possible contours, and we again
must change our assumption that α /∈ Z to allow for a new contour. When α ∈ Z, the inte-
grand is single-valued, so there no longer is a branch point or branch cut. Consequentially,
we can now enclose the origin with a new closed contour. Our only choice is then that
α ≤ 0, yielding the quantization condition given by

n = −α =
E

h̄ω
− 1

2
⇒ En = h̄ω

(
n +

1
2

)
, n = 0, 1, 2... (47)

This determines the energy levels of the one-dimensional oscillator. Now, we write
the (unnormalized) solution to the differential equation for this closed contour as

Φ(ξ) =
∮

dz eξz− z2
4 z−n−1, n = 0, 1, 2 · · · , (48)

with a closed contour that encircles the origin. By completing the square in the exponential
term in Equation (48), we can re-write this integral as

Φ(ξ) = eξ2
∮

dz e−(ξ− z
2 )

2
z−(n+1). (49)

Now, we let u = ξ − z
2 , and by making this substitution, we obtain, up to a constant

prefactor,
Φ(ξ) = eξ2

∮
du (−1)ne−u2

(u− ξ)−(n+1). (50)

This integral can be evaluated by residues about the pole of order n + 1 at u = ξ:

Φ(ξ) = (−1)neξ2
lim
u→ξ

dn

dun

(
e−u2

)
= (−1)neξ2 dn

dξn

(
e−ξ2

)
. (51)

This is precisely the Rodrigues formula for the nth degree Hermite polynomial Hn(ξ).
That is, up to a constant prefactor,

Φ(ξ) = Hn(ξ) = Hn

(√
µω

h̄
x
)

, (52)

which allows us to write the (unnormalized) wave function for the 1D harmonic oscillator as:

ψ(x) ∝ e−
µω
2h̄ x2

Hn

(√
µω

h̄
x
)

. (53)

4. Continuum Solutions with the Laplace Method

There are several quantum systems whose energy eigenstates have energy eigenvalues
that lie in the continuum and that we can also treat with the Laplace method; this includes
the free particle in two, and three dimensions, the continuum solutions of the Coulomb
problem in two- and three-dimensions, and the continuum solutions of the one-dimensional
Morse potential. The steps for obtaining a differential equation in the Laplace form are
similar to what we already showed above, and in Table 4 we summarize the results for
these different models. Note that the substitutions required for the free-particle problems
look like the final wave function will diverge at the origin, but we require the function Φ(ξ)
to have a high-enough order zero at the origin that the final wave function remains finite
everywhere. In Table 5, we show the final differential equations obtained by this procedure,
which is similar to the bound-state form in Equation (11), but with the sign of the λ̄2 term
changed. We have written that term as −(iλ̄)2 instead of +λ̄2 to simplify the notation that
we need in solving the problem. The Morse potential, on the other hand, keeps the form of
Equation (11), but some parameters now become complex.
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Table 4. Summary for how to convert the Schrödinger equation into the Laplace equation for the five
problems with continuum solutions. For each, we give the form of the potential, the general form
of the wave function where Φ is the part of the solution that is found by using the Laplace method,
and the independent variable ξ used for each problem. Note that E > 0 for these continuum problems.
We have m denoting the quantum number for the z-component of angular momentum and l denoting
the quantum number for the total angular momentum and Ym

l (θ, φ) the spherical harmonic.

Problem Potential Independent Wavefunc.
Variable Form

2D Free V = 0 ξ =
√

2µE
h̄2 ρ ρ|m|Φ(ξ)eimφ

Particle

3D Free V = 0 ξ =
√

2µE
h̄2 r rlΦ(ξ)Ym

l (θ, φ)Particle

2D V = − e2

ρ ξ =
√

2µE
h̄2 ρ ρ|m|Φ(ξ)eimφ

Coulomb

3D
V = − e2

r ξ =
√

2µE
h̄2 r rlΦ(ξ)Ym

l (θ, φ)Coulomb

Morse
V = V0

(
e−2ax − 2e−ax)

ξ =
2
√

2µV0

ah̄ e−ax ξ i
√

2µE
ah̄ Φ(ξ)Potential

Table 5. Final differential equation and exponents α± for continuum cases to be solved by the Laplace
method. The second column summarizes the final form of the Schrödinger equation obtained by the
substitutions detailed in Table 4. Note that because δ = 0 for the free-particle cases, there is only one
exponent for those problems. In all problems except for the Morse potential, we have λ̄ = 1.

Problem Laplace Form of the
α±Schrödinger Equation

2D Free
ξΦ′′ + (2|m|+ 1)Φ′ + ξΦ = 0 |m|+ 1

2Particle

3D Free
ξΦ′′ + 2(l + 1)Φ′ + ξΦ = 0 l + 1Particle

2D
ξΦ′′ + (2|m|+ 1)Φ′ +

(
2h̄

a0
√

2µE
+ ξ

)
Φ = 0 |m|+ 1

2 ∓
ih̄

a0
√

2µECoulomb

3D
ξΦ′′ + 2(l + 1)Φ′ +

(
2h̄

a0
√

2µE
+ ξ

)
Φ = 0 l + 1∓ ih̄

a0
√

2µECoulomb

Morse
ξΦ′′ +

(
2i
√

2µE
ah̄ + 1

)
Φ′ +

(√
2µV0

ah̄ − 1
4 ξ

)
Φ = 0 i

√
2µE±
√

2µV0

ah̄ + 1
2Potential

We begin with the free particle and Coulomb problems, each treated in both two and
three dimensions, because they all are treated similarly. The differential equation in the
Laplace form takes the form

ξΦ′′(ξ) + βΦ′(ξ) +
(

δ− (iλ̄)2ξ
)

Φ(ξ) = 0, (54)

for all of these cases. This means that we can write the solution as

Φ(ξ) =
∫

γ
dz eξz(z− iλ̄

)α+−1(z + iλ̄
)α−−1, (55)

by following the Laplace method. Here, we have

α± =
iβλ̄± δ

2iλ̄
. (56)

In each of these four cases, λ̄ = 1. For the free-particle problems, we have δ = 0, so
there is only one α.
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As with bound states, we restrict the contours over which we integrate by requiring
that the wave function be finite everywhere. As discussed in [9], this constraint yields a
rotated dog-bone shaped contour which encloses the branch points ±i, as seen in Figure 4.
The reason why is that any contour that runs out to infinity will yield an infinite result for
Φ(0). We do, however, mention that the case of a 3d free particle actually does not need
the branch cut, because both α± are positive integers, and the integrand is not multivalued.
In this case, the integral must be taken along the imaginary axis from −i to i, connecting
the two points where V = 0 for all ξ. Note that this choice could also have been used for
the Coulomb potential cases (because V = 0 at the branch points for all ξ as well), but there
is value to using the dog-bone contour because it allows us some additional options for
evaluating Φ(ξ) numerically, as we discuss below; since the solutions corresponding to
both choices of the contour are proportional to each other (shown below), we can freely
choose either one. The ambiguity in the prefactor is always removed when the final wave
function is normalized (but we will not discuss normalization in this work).

Figure 4. Rotated ’dog-bone’ shaped contour for evaluating the contour integral for the continuum
wave functions of the Coulomb problem in two and three dimensions.

It is critical to evaluate the phases properly when determining the integrand. With the
branch cut structure we use, the function is single-valued everywhere in the complex plane,
except along the branch cut itself, but the function has different values on both sides of
the branch cut. We start by picking a reference point, which will be the origin, just to the
right of the branch cut, which we call z = 0+, as shown in Figure 5a. The multivalued
function in the integrand is f (z) = (z − i)α+−1(z + i)α−−1 and we focus on how to de-
termine the phase consistently for this function. We find that f (0+) = (−i)α+−1(i)α−−1,
which we evaluate with the standard phases i = ei π

2 and (−i) = e−i π
2 . Then we have

f (0+) = exp
(

i π
2 (α− − α+)

)
. Noting the form of α±, we find f (0+) = exp(−π

2 δ).

Now, to calculate f (z) anywhere in the complex plane, we first draw a path from
the reference point 0+ to z that does not cross the branch cut (see Figure 5b,c). Then, we
examine how arrows drawn from the upper branch point i to a point on the path rotate
as we move along the path from 0+ to z. This determines the change in the phase for the
factor (z− i). We repeat with an arrow drawn from −i to a point along the path, and follow
it from 0+ to z. The rotation of the arrow here, again determines the change in the phase
for the factor (z + i). Each of those factors will have the change in phase multiplied by the
corresponding exponent, and that will determine the phase of f (z). We will show below
that using this procedure produces a single-valued function over the entire complex plane.
But first, we will use this procedure to convert the integral form of our solution to a single
integral that runs along the real axis.
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a) b) c)

Figure 5. Procedure for determining the phases of the integrand in Equation (55) along the vertical
pieces of the contour (we deformed the contour slightly for clarity in the image). (a) We pick a
reference point z = 0+ and show arrows from i and −i to the reference point. (b) We draw paths
from the reference point 0+ to each point z of this piece of the deformed contour γc (here running
upward vertically to the right of the branch cut). The arrows drawn from the upper and lower branch
points to z do not change their net direction as they move along the path from 0+ to z, thus the phase
for f (z) is the same as the phase for f (0+) on the right side of the branch cut. (c) For reaching the
points of the contour on the left side of the branch cut, the arrow drawn from i to z needs to rotate by
2π, while the net change in direction of the arrow drawn from the lower branch point is zero; note
that the arrow along the path from the reference point to z is allowed to cross the branch cut, even
though the path never crosses the branch cut.

We deform the contour in Figure 4 to be infinitesimally close to the imaginary axis
along the vertical portions, and wrapping infinitesimally close to the branch points in the
circular portions, we obtain a result expressed as the sum of the contributions from two
vertical lines (downward from i→ −i just to the left of the axis and upward from −i→ i
to the right of the axis) and from the infinitesimal circular arcs enclosing the two branch
points. It is easy to see that the contributions from the circular arcs around the branch
points will be zero. Since Re(α±) > 0, the integral around each arc will go to zero, so the
branch points do not contribute to the integral. The integral over the full contour then
reduces to the sum of the contributions from the two vertical lines. Note that since they
lie on either side of the branch cut, there is a phase difference between the two integrals,
and the contributions will not cancel.

To determine this phase difference, we follow the procedure described above (see
Figure 5 for a graphical representation). We start with the piece of the contour that runs
from −i to i along the right-hand side of the imaginary axis. We can draw a path from the
reference point at 0+ to any point along this piece of the deformed contour as a straight
vertical line. We can immediately see that the arrow from i to z on the contour does not
change direction after moving along the path. Neither does the arrow drawn from −i to
z. This means the phase for f (z) is the same as the phase for f (0+) along the entire piece
of the contour. We write z = iy, with y real, and this part of the contour integral becomes
the following:

I1 =
∫ 1

−1
i dy eiyξ |y− 1|α+−1|y + 1|α−−1e−

π
2 δ. (57)

The second piece of the contour runs along the left-hand side of the imaginary axis
from i to −i. We draw a path from the reference point 0+ to z along the contour, by an
arc that goes around the upper branch point at i. One can immediately see that an arrow
drawn from i to the reference point 0+, winds by 2π in the counterclockwise direction as it
goes around the path to z. So the change in the phase for the factor (z− i) is 2π. The arrow
drawn from −i to the reference point, will rotate first to the right, and then to the left, but it
ultimately accumulates no net phase, so its change in phase is 0. The fact that the final point
ended on the left-hand side of the branch point does not determine the change in the phase
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along the path, it is the net motion of the arrow as we follow along the path that does this.
This point can often be misunderstood. It is important to note that our rule for determining
the phase of the function does not input by hand a change of phase when crossing the
branch cut. Instead, we follow the described procedure to determine the change in the
phases. Again, we let z = iy and we note that the integral runs down the imaginary axis,
so we find the contribution from this piece of the contour is the following:

I2 =
∫ −1

1
i dy eiξy|y− 1|α+−1|y + 1|α−−1e2iπ(α+−1)e−

π
2 δ. (58)

The factor e−2iπ = 1 can be ignored. The real part of α+ is either an integer or a
half-odd integer. In the former case, the added factor is 1 and can be ignored, in the latter
case it is −1. The imaginary part of α+ adds in a factor of eπδ. Hence, when we combine
the two integrals together (and recall that we have to switch the order of the limits in the
second integral) we find the total contour integral becomes

Φ(ξ) = i
(

e−
π
2 δ ∓ e

π
2 δ
) ∫ 1

−1
dy eiξy|1− y|α+−1|1 + y|α−−1, (59)

where the minus sign is for when the real part of α+ is an integer and the plus sign is for
when it is a half-odd integer.

To convert this into a form that is easily expressed in terms of confluent hypergeometric
functions, we let y = −1 + 2x and substitute into the integral to find that

Φ(ξ) = i
(

e−
π
2 δ ∓ e

π
2 δ
)

2α++α−−1e−iξ
∫ 1

0
dx e2iξx|1− x|α+−1xα−−1. (60)

Comparing to the standard integral form of the Kummer function (for Re(b) >
Re(a) > 0) (as given by Equation (13).4.1 of Ref. [15])

M(a, b, z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0
dx ezxxa−1(1− x)b−a−1, (61)

with Γ(x) the Gamma function, we find that

Φ(ξ) = i
(

e−
π
2 δ ∓ e

π
2 δ
)

2α++α−−1 Γ(α+)Γ(α−)
Γ(α+ + α−)

e−iξ M(α−, α+ + α−, 2iξ). (62)

Note that for E > 0, the numerical prefactor is never zero, so we can always remove
it from further discussion in the summary of the wave functions. It will enter, and is
important, when we evaluate the results numerically below. One does need to complete the
normalization step for the final wave functions (which is usually done with delta-function
normalization), but we will not discuss that further here and instead will only summarize
unnormalized wave functions, with the prefactor removed. Note that the result here
corrects a sign error in the final result for the continuum wave function in Ref. [9] arising
from an inconsistent definition of the phase of the multivalued function.

We comment briefly here on the 3d free particle. This case results in just the I1 term,
which has the same final form as we have for the cases with the “dog-bone” contour (just
with a different prefactor). So its result falls into the same category as the other three cases.
It is just that we do not need to worry about any phase issues in working with the integrand
in this case. Because there is no branch point, we cannot describe that solution with a closed
contour, because such an integral always vanishes. Instead, we simply integrate from one
“zero” point to the other.

One other point to note is the Kummer relation (Equation 13.2.39 of Ref. [15])

M(a, b, z) = ez M(b− a, b,−z), (63)
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we can show that the unnormalized Φ(ξ), given by e−iξ M(α−, α+ + α−, 2iξ), is real for real
ξ. In particular, we have(

e−iξ M(α−, α+ + α−, 2iξ)
)∗

= eiξ M(α∗−, α+ + α−,−2iξ), (64)

where we used the facts that α+ + α− and ξ are both real. Then, if you note that α∗− = α+ =
(α+ + α−)− α−, and use the Kummer relation, the right hand side of the equation becomes
eiξe−2iξ M(α−, α+ + α−, 2iξ), which is equal to the original function and hence shows that
this combination is real. Thus, if we drop the constant prefactor, the unnormalized Φ(ξ)
can always be chosen to be real-valued. Note as well that at ξ = 0, we have Φ(ξ) = 1,
because M(a, b, 0) = 1 for all cases where the Kummer function is well defined from its
power-series, which is the situation we have here. So this choice of contour leads to the
correct continuum wave function, as we claimed earlier. A summary of the unnormalized
wave functions for all potentials (which have real radial functions) is given in Table 6. These
results follow by simply plugging in the explicit values of α± and noting that there are
identities between confluent hypergeometric functions and other functions, such as Bessel
functions and spherical Bessel functions (as summarized in Section 13.6 of the NIST Digital
Library of Mathematical Functions [15]). We do not show the details for how to carry out
that algebra here.

Table 6. Summary of the results of the Laplace method for continuum cases in terms of the variable ξ.
The solution for Φ(ξ), as defined in Table 5, is expressed in terms of the confluent hypergeometric
functions M(a, b, z) and U(a, b, z).

Problem Confluent Hypergeometric Form of Φ(ξ)

2D Free Particle e−iξ M
(
|m|+ 1

2 , 2|m|+ 1, 2iξ
)

3D Free Particle e−iξ M(l + 1, 2l + 2, 2iξ)

2D Coulomb e−iξ M
(
|m|+ 1

2 + ih̄
a0
√

2µE
, 2|m|+ 1, 2iξ

)
3D Coulomb e−iξ M

(
l + 1 + ih̄

a0
√

2µE
, 2l + 2, 2iξ

)
Morse Potential (−1)β−1Γ(α−)e−ξ/2U(α−, β, ξ)

One of the benefits of using contour-integral representations for the continuum wave
functions is that it allows us to explore different ways to determine the wave functions
numerically. For example, in this case we have three equivalent numerical representations.
The first involves a real integral and is given in Equation (62). The second involves our
original integral representation in Equation (54), where, for concreteness, we use a circular
contour of radius R centered at the origin for evaluating the wave function. The third is to
develop a power series representation and then to numerically evaluate the series. This
is done by deforming the contour until it has a very large radius, and then extracting the
residue at infinity.

We describe how to determine this power series next. The key to completing the
calculation is the determination of the Laurent series near the point at infinity. This is most
easily determined by approaching infinity along the positive imaginary axis; we add a
constant shift by −i first, because we know the final result has a factor of e−iξ . So, we
let z = −i + i/y for y a positive real number near zero. The phase for the factor z− i is
iπ, because the arrow from the reference point wraps by π as we move up the imaginary
axis, while the phase from z + i is zero. This gives us an overall phase factor of −eiπα+ .
The integrand (including the change of variables factor −i/y2) is then given by

ieiπα+− π
2 δe−iξei ξ

y
1

yα++α−
|1− 2y|α+−1 (65)
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(the term e−
π
2 δ comes from the phase of the function at our reference point). We now want

to expand this in a Laurent series for small y. Using the generalized binomial theorem for
complex powers, yields

ieiπα+− π
2 δe−iξ

∞

∑
m=0

(iξ)m

m!

∞

∑
j=0

(α+ − 1)j

j!
(−2)jyj−m−α+−α− , (66)

where (α− 1)j is the Pochammer symbol for the falling factorial, given by (α− 1)(α− 2)
· · · (α− j). If we now perform a contour integral around the point at infinity, the result
will be given by the residue, which is determined by the coefficient of the expansion in
Equation (66) of the term 1/y. Since α+ + α− is an integer, we can immediately determine
the residue. It is given by

Residue = ieiπα+− π
2 δe−iξ

∞

∑
j=α++α−−1

(α+ − 1)j

j!
(−2)j (iξ)j+1−α+−α−

(j + 1− α+ − α−)!
. (67)

Shifting the summation to start from zero, then gives

Residue = ieiπα+− π
2 δe−iξ(−2)α++α−−1

∞

∑
j=0

(α+ − 1)j+α++α−−1

(j + α+ + α− − 1)!
(−2iξ)j

j!
. (68)

The confluent hypergeometric functions are typically expressed in terms of the rising
factorials, instead of the falling factorials. Converting between them gives

(α+ − 1)j+α++α−−1 = (−1)j+α++α−−1(1− α+)
(j+α++α−−1). (69)

This can then be expressed in terms of Gamma functions as

(α+ − 1)j+α++α−−1 = (−1)j+α++α−−1 Γ(j + α−)

Γ(1− α+)
= (−1)j+α++α−−1(α−)

(j) Γ(α−)
Γ(1− α+)

. (70)

The term in the denominator can be written as

(j + α+ + α− − 1)! = (α+ + α−)
(j)Γ(α+ + α−). (71)

This means we have established that

(α+ − 1)j+α++α−−1

(j + α+ + α− − 1)!
= (−1)j+α++α−−1 (α−)(j)

(α+ + α−)(j)
Γ(α−)

Γ(1− α+)Γ(α+ + α−)
. (72)

Using Euler’s reflection formula Γ(z)Γ(1− z) = π/ sin(πz) gives our final result:

Residue = e−
π
2 δ e2iπα+ − 1

4π
2α++α− Γ(α+)Γ(α−)

Γ(α+ + α−)
e−iξ

∞

∑
j=0

(α−)(j)

(α+ + α−)(j)
(2iξ)j

j!
. (73)

Multiplying by −2πi to determine the integral via the calculus of residues then pro-
duces a result equal to that in Equation (62), provided the Kummer function satisfies

M(α−, α+ + α−, 2iξ) =
∞

∑
j=0

(α−)(j)

(α+ + α−)(j)
(2iξ)j

j!
, (74)

which is the standard definition of this confluent hypergeometric function, as long as
α+ + α− is not a nonpositive integer. This provides a numerical way to evaluate the wave
function via a power series expansion.

We can also evaluate the wave function using a simple numerical integration over the
two different integral formulas for Φ. The real-valued integral in Equation (60) is straight-
forward to evaluate, with the caveat that one evaluates the complex exponentials carefully,
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noting that xa+ib = xaeib ln x, for example. Care must also be taken when the real part of
the exponents is less than one, because those functions are not so easily integrated using
traditional integration rules, without changing variables to remove their non-polynomic
behavior first.

5. Contour Integral around Circular Path for the Coulomb Problem

For the contour integral around the circular path (see Equation (54)), we need to
carefully determine the phase of the multivalued function in the integrand again. We
use our standard approach, relating everything to our reference point. With the angle
θ measured relative to the positive imaginary axis, the parametrization of the radius R
integral is z = Rei(θ+ π

2 ) = R(− sin θ + i cos θ); for concreteness, we will pick R = 2 in the
figures. Note that the conventional angle for describing z in the complex plane is measured
from the real axis, hence, the polar angle for z is θ + π

2 . The integral then becomes

Φ(ξ) = i
∫ 2π

0
dθ Rei(θ+π

2 )eRξ(− sin θ+i cos θ)
∣∣∣Rei(θ+ π

2 ) − i
∣∣∣α+−1∣∣∣Rei(θ+ π

2 ) + i
∣∣∣α−−1

× eiφ2(α+−1)eiφ1(α−−1)e−
π
2 δ. (75)

Now we need to determine the phases φ1 and φ2 as a function of θ. The graphics in
Figure 6 are helpful for this task, and represents the situation when 0 ≤ θ < π.

a) b)

Figure 6. Geometry for determining the relationship between the phases φ1 and φ2 and θ. In the
figures, the symbol l is used for the unknown length on each triangle, and R is chosen to equal 2, for
concreteness; do not conflate l with the quantum number for total angular momentum. This case
corresponds to 0 ≤ θ ≤ π. Panel (a) shows the geometry for the angles from the lower branch point
at −i, while panel (b) shows the results for the geometry from the upper branch point i.

The phase φ1 corresponds to the angle, from which an arrow is drawn from −i to 0+

winds when it moves along the indicated path from the reference point 0+ to a point on
the circle (Figure 6a). From the angles and sides of the shaded triangle, we can extract the
relation between φ1 and θ. We employ the law of cosines

l2 = R2 + 1− 2R cos(π − θ) = R2 + 1 + 2R cos θ, (76)

and the law of sines
sin φ1

R
=

sin(π − θ)

l
=

sin θ

l
, (77)

and thus find
sin φ1 =

R sin θ√
R2 + 1 + 2R cos θ

. (78)

For extracting φ1, we need to take the arcsin of the right-hand side, and be careful
about which quadrant to choose φ1 (will be discussed in detail later). Note that the final
result looks like we just drew the angle ignoring the branch cut, but we did carefully follow
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the procedure of traversing a path that does not cross the branch cut, as required for the
determination of the angle.

The phase φ2 we determine in a very similar way. This phase φ2 is the winding angle
of an arrow drawn from +i to 0+, which winds along the indicated path from the reference
point 0+ to a point on the circle (see Figure 6b). Note that for θ = 0, the arrow has already
flipped, i.e., rotated by π. The corresponding angle in the shaded triangle is thus 2π − φ2.
Again, we employ the law of cosines

l2 = R2 + 1− 2R cos θ = R2 + 1− 2R cos θ, (79)

and the law of sines
sin θ

l
=

sin(2π − φ2)

R
=
− sin φ2

R
(80)

Thus, we find

sin φ2 =
−R sin θ√

R2 + 1− 2R cos θ
. (81)

Now we repeat the same procedure for π ≤ θ < 2π. The corresponding plots for
determining φ1 and φ2 are shown in Figure 7. In Figure 7a, the angles in the shaded triangle
are θ − π and 2π − φ1. The law of cosines

l2 = R2 + 1− 2R cos(θ − π) = R2 + 1 + 2R cos θ, (82)

and the law of sines

sin(2π − φ1)

R
=
− sin φ1

R
=

sin(θ − π)

l
=
− sin θ

l
, (83)

yield

sin φ1 =
R sin θ√

R2 + 1 + 2R cos θ
, (84)

which is the same as Equation (78). For φ2, the geometric relation are shown in Figure 7b.
Again, we use the law of cosines

l2 = R2 + 1− 2R cos(2π − θ) = R2 + 1− 2R cos θ, (85)

and the law of sines
sin(2π − θ)

l
=
− sin θ

l
=

sin φ2

R
(86)

and obtain
sin φ2 =

−R sin θ√
R2 + 1− 2R cos θ

, (87)

which is the same as Equation (81). Thus, the same formulae for sin φ1 and sin φ2 are valid
for all 0 ≤ θ < 2π. It remains to determine correctly φ1 and φ2, i.e., choosing them from the
right quadrants depending on the integration angle θ. Figures 6 and 7 are helpful in this
respect. Let us start with φ1. The phase φ1 (arrow from −i to z) rotates from 0 to π/2, when
θ rotates from 0 to cos−1

(
− 1

R

)
. Then, when θ rotates from cos−1

(
− 1

R

)
to π, φ1 rotates

from π/2 to π, etc. Overall, this yields the following relations

0 ≤ θ < cos−1
(
− 1

R

)
: 0 ≤ φ1 < π

2

cos−1
(
− 1

R

)
≤ θ < π : π

2 ≤ φ1 < π

π ≤ θ < π + cos−1
(

1
R

)
: π ≤ φ1 < 3π

2

π + cos−1
(

1
R

)
≤ θ < 2π : 3π

2 ≤ φ1 < 2π. (88)
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a) b)

Figure 7. Similar figure as in Figure 6, except here we have π ≤ θ ≤ 2π. Again, panel (a) shows
the geometry from the lower branch point, while panel (b) shows the geometry from the upper
branch point.

We can repeat the procedure for φ2, which regards the arrow drawn from +i to z. We
get for φ2

0 ≤ θ < cos−1
(

1
R

)
: π ≤ φ2 < 3π

2

cos−1
(

1
R

)
≤ θ < π : 3π

2 ≤ φ2 < 2π

π ≤ θ < π + cos−1
(
− 1

R

)
: 2π ≤ φ2 < 5π

2

π + cos−1
(
− 1

R

)
≤ θ < 2π : 5π

2 ≤ φ2 < 3π. (89)

In general, when evaluating the integral, we can simply use a trapezoidal rule, dividing
the θ interval evenly. While the result is independent of the radius R, the appearance of
zξ in the exponent of the exponential function produces accuracy issues for large R and
ξ—this means, for accurate numerical work, we should use as small an R as possible (we
found R = 1.1 to be good with 100 000 steps). It also means at some point, the direct
numerical integration will fail when ξ is large enough, due to precision issues similar to
using the power series to compute e−x for large x.

As an example, we plot three results for the radial Coulomb wave function for small
ξ and three different energies in the continuum in Figure 8. These results are normalized
according to the result from the one-dimensional integral for comparison. The results agree
with the exact results, as expressed in terms of the confluent hypergeometric function,
but requires no knowledge of that function. It instead requires just a moderate comput-
ing exercise.

All the other continuum solutions except for the Morse potential, proceed in a similar
fashion and can be evaluated with the circular contour integral. The Morse potential is
different for two reasons: (i) the contour is not given as a rotated dog-bone contour about
the imaginary axis and (ii) the function must vanish as x → −∞. We treat its continuum
solutions next.
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Figure 8. Plot of the continuum Coulomb wave functions for l = 0 and three different values of E:
(a) E = 0.1; (b) E = 1, and (c) E = 10 (all energies are in Hartrees). The power series is shown in
red, the contour integral with R = 1.1 in green, and the one-dimensional integral in black. The three
approximations lie on top of each other until they start to fail—the power series fails around ξ ≈ 20,
while the contour integral fails around ξ ≈ 30. The errors typically occur due to the loss of digits of
precision in the expressions being evaluated.

6. Continuum Solutions of the Morse Potential

The Morse potential differs from the other continuum cases. We see in Table 5 that
the Laplace form of the Schrödinger equation is once again of the form of Equation (11),
so ±λ ∈ R once again, but now β ∈ C. This differs from both the previous problems of
the form in Equation (11), where β was real, as well as the previous continuum problems,
where β was an integer. As a result, the solution for Φ can still be written in the contour
integral form given in Equation (17), but the sum of the exponents α+ + α− − 2 = β− 2 is
not an integer. This means the integrand is not single-valued as |z| → ∞, so we must draw
the branch cut as two pieces, each running from infinity to one of the branch points ±λ.
Hence, we draw the branch cut along the real axis in two pieces: one piece travels from −λ
to Re(z)→ −∞ and the other piece travels from Re(z) = ∞ to λ. This branch-cut structure
does not allow us to enclose the branch points at ±λ with a contour (as we did for previous
continuum cases), nor enclose just one of the two branch points (as in the bound-state
problems). However, we can now try another possible contour that connects the two points
±λ. For concreteness, we choose it to run through the origin, and we already see a parallel
to the other continuum cases, where we took the limiting behavior of a contour running
just next to the imaginary axis. For the Morse potential, we have 0 ≤ ξ < ∞. Recall that

ξ = 2
√

2µV0
ah̄ e−ax, so as x → −∞ we have ξ → ∞ and as x → ∞ we have that ξ → 0. Since

the Morse potential becomes large and positive for x → −∞, we must have ψ(x) → 0.
Hence, φ(ξ) must go to zero as ξ → ∞. This is a more stringent condition than just having
the wave function be bounded as we used previously. This condition eliminates the new
contour from −λ→ +λ, because an analysis similar to the previous cases shows that this
solution diverges as ξ → ∞.
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Now, let us instead consider the contour as shown in Figure 1b: the contour running
from −λ→ −∞. The integral solution over that contour is

Φ(ξ) =
∫ −∞

−λ
dz eξz(z− λ)α+−1(z + λ)α−−1, (90)

where λ = 1
2 . Now, we make the substitution z = −t− λ to obtain

Φ(ξ) = e−
ξ
2 (−1)β−1

∫ ∞

0
dt e−ξt(t + 1)α+−1tα−−1. (91)

Immediately, we see that this integral will go to zero as ξ → ∞ because the exponential
term in the integrand guarantees a convergent integral that will vanish in the limit. More-
over, this integral closely resembles the integral representation of the Tricomi confluent
hypergeometric function U(a, b, z), given by (Equation 13.4.4 in Ref. [15])

U(a, b, z) =
1

Γ(a)

∫ ∞

0
dt e−zt(t + 1)b−a−1ta−1. (92)

This means we can write the integral solution to the Morse differential equation as

Φ(ξ) = (−1)β−1Γ(α−)e−ξ/2U(α−, β, ξ). (93)

One might be concerned that this function is not bounded for ξ → 0. Indeed, a simple
power-counting argument shows that the magnitude of the integrand behaves like 1

z when
ξ = 0. But, because the exponent is complex, it will produce oscillations, which can allow
the integral to converge and be bounded. To settle this question, we look at the well-known
asymptotics of the Tricomi function U. In the limit where the argument ξ goes to zero,
the behavior of U is governed by the value of the real part of the second parameter, in our
case β. For the Morse potential, Re(β) = 1, so the asymptotic behavior of U as ξ → 0 is
(Equation 13.2.18 of Ref. [15])

U(α−, β, ξ) =
Γ(β− 1)

Γ(α−)
ξ1−β +

Γ(1− β)

Γ(1− α+)
+ O(ξ2−Re(β)). (94)

Once again, Re(β) = 1, so the ξ1−β term will be ξ−iIm(β), which has a modulus of 1
(ξ−iIm(β)ξ iIm(β) = 1) and a phase that varies rapidly as ξ → 0. Thus, the Tricomi function
does not diverge, but oscillates, as ξ → 0. We will see below that the behavior generally
looks like a cosine of x for x → ∞.

This contour yields a solution that will be finite everywhere, as well as going to zero
as ξ → ∞. Thus, it satisfies all of our requirements, and we can write the solution for the
unnormalized Morse potential wave function in one dimension ψ(ξ) as

ψ(ξ) = ξ
β−1

2 e−
ξ
2 U(α−, β, ξ), (95)

Recall that ξ = 2
√

2µV0
ah̄ e−ax in this solution. Finally, we note that we can use the

so-called Kummer relation (see Equation (13).2.42 of Ref. [15])

U(a, b, z) =
Γ(1− b)

Γ(a− b + 1)
M(a, b, z) +

Γ(b− 1)
Γ(a)

z1−b M(a− b + 1, 2− b, z), (96)

to relate the above solution in terms of the Tricomi function U to the sum of two complex
conjugate Kummer functions M, which is the form of the Morse continuum wave function
that appears in the literature [16,17]. The divergence in each M as x → −∞ is canceled
exactly by their sum leading to a finite result. We plot the continuum wave functions for
some typical values in Figure 9. You can see the behavior is as anticipated. We have a rapid
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decay for x < 0, there is a transition region near x = 1, and then the form is of a constant
amplitude sinusoidal oscillation as x increases in the positive direction.

Figure 9. Plot of the continuum Morse wave function for three different values of E: (a) E = 0.1;
(b) E = 1, and (c) E = 10. We use h̄2a2

2µ as the energy unit and 1
a as the length unit. The case we

consider is for V0 = h̄2a2

2µ . Note how the continuum wave rapidly decays for x < 0, where the Morse
potential becomes large and positive. Because the Morse potential decays to zero exponentially fast,
the continuum solution rapidly looks like a simple cosine wave for large positive x with a fixed
amplitude. In the region around x = 0 we see a transition between the two behaviors.

We summarize all of our continuum solution results in two tables. Table 6 shows the
results expressed as functions of ξ, while Table 7 shows the results in terms of the original
variables. The normalization of these wave functions is subtle and depends on the scheme
that will be used, so we do not discuss the issue of normalization here.

Table 7. Summary of the results of the continuum cases we solved with the Laplace method in terms
of the original independent variable. For the free particle cases, we express the more common form of
the confluent hypergeometric function. Here, Jn(x) is the Bessel function of the first kind, and jn(x)
is the spherical Bessel function of the first kind.

Problem Unnormalized Wave Function

2D Free Particle J|m|
(√

2µE
h̄2 ρ

)
ei|m|φ

3D Free Particle jl
(√

2µE
h̄2 r

)
Ym

l (θ, φ)

ρ|m|e
−i
√

2µE
h̄2 ρ

ei|m|φ2D
Coulomb ×M

(
|m|+ 1

2 + ih̄
a0
√

2µE
, 2|m|+ 1, 2i

√
2µE
h̄2 ρ

)

rle
−i
√

2µE
h̄2 r

Ym
l (θ, φ)3D

Coulomb ×M
(

l + 1 + ih̄
a0
√

2µE
, 2l + 2, 2i

√
2µE
h̄2 r

)
(

2
√

2µV0
ah̄ e−ax

)i
√

2µE
ah̄

exp
(
−
√

2µV0
ah̄ e−ax

)
Morse

Potential

U
(

i
√

2µE−
√

2µV0
ah̄ + 1

2 , 2i
√

2µE
ah̄ + 1,

2
√

2µV0
ah̄ e−ax

)
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7. Conclusions

We have shown how the almost forgotten Laplace method can be employed as a
powerful tool to determine the bound and continuum states of all problems that are
solved with confluent hypergeometric equation wave functions. The bound-state solutions
provide a way to relate the orthogonal polynomials that arise to their Rodrigues formulas,
which naturally emerge via the poles in the contour integrals needed to determine the
wave functions. Quantization of the energies in the bound states also occurs naturally.
For the continuum solutions, we find a simple contour integral that gives us the wave
functions, but it requires a precise determination of the phases of the terms that are raised
to complex-valued powers—hence it requires a proper understanding of branch cuts and
how to evaluate the polar radius and phase of complex numbers on a cut plane. The main
result we developed here is a contour-integral representation of the continuum wave
functions, which can be easily programmed, and may be a more useful way to represent
these functions than the more common approach via confluent hypergeometric functions.

This method also allows for a solution to the linear potential problem (which we did
not discuss here). That problem is treated with methods similar to what we developed here
in textbooks. In particular, the textbook by Konishi and Paffuti [7] has a nice treatment
of this. Curiously, Landau and Liftshitz [5] and Messiah [6] both use the Laplace method
to determine the properties of the confluent hypergeometric functions in their appendix,
but they do not use the Laplace method for finding solutions to the Schrödinger equation
in the main part of the text.
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