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Abstract Quantum chemistry has been viewed as one of the potential early applications of quantum
computing. Two techniques have been proposed for electronic structure calculations: (1) the variational
quantum eigensolver and (2) the phase-estimation algorithm. In both cases, the complexity of the problem
increases for basis sets where either the Hamiltonian is not sparse, or it is sparse, but many orbitals are
required to accurately describe the molecule of interest. In this work, we explore the possibility of mapping
the molecular problem onto a sparse Hubbard-like Hamiltonian, which allows a Green’s-function-based
approach to electronic structure via a hybrid quantum-classical algorithm. We illustrate the time-evolution
aspect of this methodology with a simple four-site hydrogen ring.

1 Introduction

In the variational quantum eigensolver algorithm [1,2],
one prepares a trial wavefunction and evaluates the
expectation values needed to determine the expectation
value of the Hamiltonian with respect to that wave-
function. The number of measurements scales with the
number of nonzero terms in the Hamiltonian, which
typically grows like the fourth power of the number of
spin orbitals used in the basis set for the given calcula-
tion. The state is usually prepared with a simple strat-
egy like a unitary coupled-cluster approach [3]. A self-
consistent loop optimizes the parameters in the varia-
tional ansatz until the required accuracy is achieved.
The phase-estimation algorithm [4] instead determines
the phase of exp(−iλĤ) and requires many operations
of the exponential of the Hamiltonian onto the wave-
function, similar to time-evolution, to complete the cal-
culation (λ is a scaling factor). If the initial wavefunc-
tion has high overlap with the ground state, then the
chance to project onto the ground state with the mea-
surement is high.

In both cases, the complexity of the algorithm grows
with the number of nonzero terms in the Hamiltonian
matrix—for the variational quantum eigensolver, this
is seen in the number of measurements required, while
in the phase-estimation algorithm, it is in the number
of independent Trotter steps required for each applica-
tion of the exponential of the Hamiltonian (multiplied
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by a constant). Given the fact that current noisy inter-
mediate scale quantum (NISQ) computers can only run
low-depth circuits, this is problematic for running these
algorithms on complex molecules. Even when fault-
tolerant quantum computers become available, they
may still require low-depth circuits due to drift of the
tuning of the machine over extended periods of time
(which is not normally corrected by error correction
algorithms). This then implies that methods focused
on making the Hamiltonian matrix sparse are critical
to the success of quantum chemistry applications on
quantum computers in the near term.

In this work, we describe the time-evolution piece of
the algorithm to do this. It is based on a simple premise
that the electron correlations in the molecule can be
efficiently encoded in the self-energy of the molecule.
Then, if we can construct a sparse Hamiltonian that
approximates the self-energy of the molecule well, we
can use it to determine the properties of the molecule.
We describe just how such a process can be carried out
on a quantum computer with a simple example below.
We examine the accuracy of using an approximate uni-
tary coupled-cluster wavefunction to estimate the zero-
temperature Green’s function of the sparse Hamilto-
nian, which is the Hubbard Hamiltonian here.

Of course, this algorithm can be carried out for small
systems on conventional computers (essentially those
that can be solved with a full configuration interac-
tion approach). The need for quantum computer enters
when the number of spin orbitals used in describing the
electronic structure of the molecule is more than about
20. Then, the mapping to the Hubbard model becomes
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difficult to employ to calculate the Green’s function on
a classical computer. However, if the Hamiltonian is
sparse enough, time-evolution can still be carried out on
a quantum computer. If one has a simple (and accurate)
ground-state preparation protocol, then this approach
can successfully describe molecules that could not be
tackled by conventional computers to the same level
of accuracy, nor by conventional VQE or QPE, because
those circuits would be too deep. This situation is likely
to continue to hold even when fault-tolerant quantum
computers become available in the future.

2 Formalism

The retarded Green’s function in position space is
defined to be:

Gijσ(t) = −iθ(t)Tr e−βĤ{ĉiσ(t), ĉ†
jσ} 1

Z , (1)

where Z = Tr exp(−βĤ) is the partition function, β is
the inverse temperature, and θ(t) is the unit step func-
tion. Here, we have that ĉiσ (ĉ†

iσ) are the annihilation
(creation) operators for an electron at site i with spin σ.
The curly braces denote the anticommutator, and the
time-evolution of the operators is given in the Heisen-
berg representation. The trace is over all many body
states with a fixed number of electrons (that is, we are
calculating a canonical, not a grand canonical Green’s
function here). In this work, we focus on T = 0, where
the trace includes just one state, the ground state. We
also can work in momentum space (we assume the lat-
tice is periodic), where

ĉkσ =
1√
V

V −1∑

j=0

e−ikj ĉjσ, (2)

V is the number of lattice sites and we set the lattice
constant a = 1. The allowed k values are 0, π/2, π, and
3π/2 for a four-site lattice.

We will be mapping the hydrogen ring to a sparse
Hamiltonian given by the Hubbard model [5], which is:

Ĥ =
∑

ijσ

tij ĉ
†
iσ ĉjσ + U

∑

i

ĉ†
i↑ĉi↑ĉ

†
i↓ĉi↓. (3)

Here, tij is the hopping matrix and U is the on-
site Coulomb interaction. The first term is the kinetic
energy, and the second term is the potential energy. In
this mapping, the hopping matrix is a full matrix, with
nonzero coefficients for all hopping terms.

The Hamiltonian can also be written in momentum
space as:

Ĥ =
∑

k,σ

εk ĉ†
kσ ĉkσ +

U

V

∑

kk′q

ĉ†
k↑ĉk′↑ĉ

†
q↓ĉk−k′+q↓, (4)

and we will be primarily working with this form.
Here, we have the bandstructure given by εk =
1
V

∑
jj′ tjj′ exp(ikj), which is independent of j′ due to

the translational invariance of the lattice (hydrogen
ring). If the molecule is not a translationally invari-
ant ring, a more complicated single-particle term to the
Hamiltonian is needed, but we do not discuss this fur-
ther here. Note that the hopping matrix also includes
diagonal terms with j = j′.

The mapping of the molecular Hamiltonian to the
Hubbard Hamiltonian is designed to recover the
dynamic part of the finite temperature self-energy of
the parent molecular problem with all two-body inter-
actions present. We call such a mapping the dynami-
cal self-energy mapping (DSEM). Such a mapping was
described in Ref. [6] where the effective on-site two-
body integrals were chosen to recover the first moment
of the frequency dependent self-energy. Here, as a proof
of principle, the given sparse Hamiltonian is created
to recover the first moment of the exact self-energy
obtained in the exact-diagonalization procedure. In
general, the following scheme of mapping can be used
to design quantum–classical hybrid algorithms where a
classical computer is used to calculate the sparse Hamil-
tonian that is then employed by the quantum com-
puter. Details of the preparation of such a mapping are
described in Ref. [7].

3 Results

The fitting procedure produces a diagonal term t0, a
nearest neighbor hopping t1, and a second neighbor
hopping t2, along with the on-site repulsion U (see
Table 1).

The exact ground state is found by diagonalizing the
Hamiltonian with four electrons. It yields:

|Ψ0〉 = α
(
ĉ†
0↑ĉ

†
1↑ĉ

†
0↓ĉ

†
1↓|0〉 − ĉ†

0↑ĉ
†
3↑ĉ

†
0↓ĉ

†
3↓|0〉)

+ β
(
ĉ†
0↑ĉ

†
1↑ĉ

†
2↓ĉ

†
3↓|0〉 + ĉ†

0↑ĉ
†
3↑ĉ

†
1↓ĉ

†
2↓|0〉

+ ĉ†
1↑ĉ

†
2↑ĉ

†
0↓ĉ

†
3↓|0〉 + ĉ†

2↑ĉ
†
3↑ĉ

†
0↓ĉ

†
1↓|0〉

+ 2ĉ†
1↑ĉ

†
3↑ĉ

†
0↓ĉ

†
2↓|0〉

+ 2ĉ†
0↑ĉ

†
2↑ĉ

†
1↓ĉ

†
3↓|0〉)

+ γ
(
ĉ†
2↑ĉ

†
3↑ĉ

†
2↓ĉ

†
3↓|0〉 − ĉ†

1↑ĉ
†
2↑ĉ

†
1↓ĉ

†
2↓|0〉),

(5)

with α = 0.6895316741725, β = 0.059610737681519,
and γ = 0.056792869544809. While we could compute

Table 1 Parameters for the sparse Hubbard Hamiltonian
that represents the four-site hydrogen ring

U t0 t1 t2

0.6830907036 −0.3025 −0.380776 0.03035031

All parameters are in Hartrees
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Table 2 Doubles unitary coupled-cluster operators used in
creating the approximate ground state

Order Unitary coupled-cluster factor

1 e
−θ1ĉ

†
2↑ĉ

†
3↓ĉ0↓ĉ1↑+θ1 ĉ

†
1↑ĉ

†
0↓ĉ3↓ĉ2↑

2 e
−θ1ĉ

†
3↑ĉ

†
2↓ĉ1↓ĉ0↑+θ1 ĉ

†
0↑ĉ

†
1↓ĉ2↓ĉ3↑

3 e
− π

4 ĉ
†
3↑ĉ

†
3↓ĉ1↓ĉ1↑+ π

4 ĉ
†
1↑ĉ

†
1↓ĉ3↓ĉ3↑

4 e
+θ3 ĉ

†
2↑ĉ

†
3↑ĉ1↑ĉ0↑−θ3ĉ

†
0↑ĉ

†
1↑ĉ3↑ĉ2↑

5 e
+θ3 ĉ

†
2↓ĉ

†
3↓ĉ1↓ĉ0↓−θ3ĉ

†
0↓ĉ

†
1↓ĉ3↓ĉ2↓

6 e
−θ3ĉ

†
1↑ĉ

†
2↑ĉ3↑ĉ0↑+θ3 ĉ

†
0↑ĉ

†
3↑ĉ2↑ĉ1↑

7 e
−θ3ĉ

†
1↓ĉ

†
2↓ĉ3↓ĉ0↓+θ3 ĉ

†
0↓ĉ

†
3↓ĉ2↓ĉ1↓

8 e
−θ4ĉ

†
2↑ĉ

†
2↓ĉ0↓ĉ0↑+θ4 ĉ

†
0↑ĉ

†
0↓ĉ2↓ĉ2↑

The operators are applied in sequential order according to
the rows of the table

the Green’s function for the exact ground state, that
would not be representative of what a true quantum
computation would be that is based on the variational
quantum eigensolver, so we instead use an approximate
ground state based on a factorized unitary coupled clus-
ter ansatz that uses just doubles excitations from the
reference state where both the level with k = 0 and
the level with k = 1 are filled. This state was described
in Ref. [8], where the excitation operators for a factor-
ized unitary coupled cluster are given. That approach
is generalized here and summarized in Tables 2 and 3.

The factorized form of the unitary coupled-cluster
approximation applies each doubles excitation (and de-
excitation) operator in the order given in Table 2 to
the initial reference state, ĉ†

0↑ĉ
†
1↑ĉ

†
0↓ĉ

†
1↓|0〉. The result-

ing, approximate ground state in terms of the three
angles θ1, θ3, and θ4 is summarized in Table 3. We use
the same notation as used in Ref. [8], which is why we
have no θ2, since that was used for a quad excitation
that we do not include here.

Once the analytical coefficients of Table 3 are
obtained, numerical values are calculated from the ana-
lytical coefficients. To do this, equations for the angles
θ1, θ3, and θ4 are needed. These equations are given in
Ref. [8] and the angles depend on the values of α, β,
and γ from the exact ground state. They are

θ1 =
1
2

sin−1(4β) (6)

θ3 =
1
2

sin−1

(
2
√

2β

c21

)
(7)

θ4 = tan−1
(γ

α

)
− tan−1

(
tan2 θ3

)
. (8)

After substituting the values for α, β, and γ into the
equations for the angles, the approximate ground state
with numerical coefficients is obtained (see Table 3).
This wavefunction is representative of a generic state
that one would obtain after performing a variational
quantum eigensolver calculation.

Using this approximate ground state, we compute
the (approximate) time-dependent Green’s function,
where the ground-state wavefunction is replaced by the
approximate ground state, and compare it to the exact
Green’s function with the exact ground state. Figure
1 shows these two results (real and imaginary parts).
One can see that the two Green’s functions are nearly
identical; their differences are on the order of 10−4.
The reason why is that the square of the overlap of
the approximate state with the ground state is very
high (the fidelity is 0.99979). This value is surprising
given that the approximate ground state differs from
the exact one with coefficients that are on the order
of 0.01, but there is a cancellation leading to a higher
fidelity.

Unfortunately, for such a small system, it does not
make sense to use Dyson’s equation to extract the
frequency-dependent self-energy, because the data are
truncated to too short of a time. This leads to inaccu-
racies here, because the system is finite and the Fourier
transform of the Green’s function yields a sum over
delta functions. However, if the Green’s function is
cut-off too early in the time domain, the results of
the Fourier transform would be significantly distorted.
This becomes less of a concern for larger molecules,
because they have so many frequencies that they tend
to dephase and create a decaying Green’s function in
the time domain, which can be cut off, resulting in just
a small broadening of the delta functions, so the calcu-
lations can proceed more normally for larger systems.
Most molecules will fall into this category.

4 Discussion

The algorithm on the quantum computer is now
straightforward. After mapping the problem from the
molecule to the sparse Hubbard Hamiltonian, we use
the factorized form of the unitary coupled cluster ansatz
to create an approximate ground state. In general, such
an approach will involve many different types of exci-
tations, but in this simple example, it involves only
doubles excitations. The lower the order of the exci-
tation, the lower the depth of the circuit for the quan-
tum computer, so it is likely that many calculations will
opt to only use singles and doubles, if possible. Then,
we would invoke the algorithm from the Los Alamos
group [9,10] to calculate the Green’s function by mea-
suring the x or y Pauli spin operator on the ancilla
qubit to determine the real and imaginary parts of G.
Both of these steps can be carried out with relatively
low-depth circuits due to the sparsity of the effective
Hamiltonian, but they do require time-evolution, which
is still beyond the capability of currently available NISQ
machines (see Ref. [11] for a discussion of strategies to
determine Green’s functions on NISQ machines). Once
one has determined the Green’s function to far enough
time on the quantum computer, then we would take the
Fourier transform, extract the self-energy from Dyson’s
equation, and employ it to describe the Green’s func-
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Table 3 General form and final numerical values of the coefficients of the approximate ground state after applying the
doubles-only excitations, with ci ≡ cos θi and si ≡ sin θi

State Analytical coefficient Numerical coefficient

ĉ†
0↑ĉ†

1↑ĉ†
0↓ĉ†

1↓|0〉 c4√
2
(c21c

2
3 + s21s

2
3) + s4√

2
(s21c

2
3 − c21s

2
3) 0.6902877166375496

ĉ†
0↑ĉ†

3↑ĉ†
0↓ĉ†

3↓|0〉 c4√
2
(s21s

2
3 − c21c

2
3) + s4√

2
(s21c

2
3 + c21s

2
3) −0.6886258223794277

ĉ†
0↑ĉ†

1↑ĉ†
2↓ĉ†

3↓|0〉 c21√
2
s3c3 − s21√

2
s3c3 0.05873846703927717

ĉ†
0↑ĉ†

3↑ĉ†
1↓ĉ†

2↓|0〉 c3s3√
2

0.06048300832376081

ĉ†
1↑ĉ†

2↑ĉ†
0↓ĉ†

3↓|0〉 c3s3√
2

0.06048300832376081

ĉ†
2↑ĉ†

3↑ĉ†
0↓ĉ†

1↓|0〉 c21√
2
s3c3 − s21√

2
s3c3 0.05873846703927717

ĉ†
1↑ĉ†

3↑ĉ†
0↓ĉ†

2↓|0〉 c1s1 0.11922147536303802

ĉ†
0↑ĉ†

2↑ĉ†
1↓ĉ†

3↓|0〉 c1s1 0.11922147536303802

ĉ†
2↑ĉ†

3↑ĉ†
2↓ĉ†

3↓|0〉 c4√
2
(s21c

2
3 + c21s

2
3) + s4√

2
(c21c

2
3 − s21s

2
3) 0.06687536735226934

ĉ†
1↑ĉ†

2↑ĉ†
1↓ĉ†

2↓|0〉 c4√
2
(s21c

2
3 − c21s

2
3) − s4√

2
(c21c

2
3 + s21s

2
3) −0.04669803278042805

tion of the molecule. This then allows the ground-state
energy of the molecule to be determined. Alternatively,
one can extract the self-energy from imaginary axis cal-
culations at the Matsubara frequencies, which may be
numerically more stable.

5 Conclusions

In this work, we described an approach to use on near-
term quantum computers that will allow us to calcu-
late the electronic structure of more complex molecules
sooner. The approach maps the molecule onto a sparse
Hamiltonian that has a full single-particle hopping
matrix, but only local interactions. Due to the signif-
icant reduction in the number of nonzero matrix ele-
ments, this sparse Hamiltonian becomes much easier to

simulate on a quantum computer and one should be
able to determine its Green’s function once time evo-
lution becomes possible; this may occur in near-term
NISQ machines or may need to wait until fault-tolerant
computers are available. Once the Green’s function for
the sparse Hamiltonian is found on the quantum com-
puter, we extract the self-energy and use it as the self-
energy for the molecule in the full molecular problem.
We showed how using an approximate form for the
ground state leads to an accurate approximation to
the exact result for a relatively long period of time.
Hence, this makes it promising that such an approach
can lead to accurate and efficient ways to perform elec-
tronic structure calculations on quantum computers.

In terms of quantum computing complexity, a factor-
ized form of UCC state preparation uses only doubles
excitations here, and the time-evolution needed to com-
pute the Green’s function requires only control opera-

Fig. 1 Exact (solid) and approximate (dashed) retarded Green’s function for the sparse Hubbard Hamiltonian. The time
is in units of �/H
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tions for the application of the creation or annihila-
tion operators, but not for the time-evolution. This is
contrary to the quantum phase-estimation algorithm,
which requires controlled application of the Hamilto-
nian. Hence, the approach described here has the poten-
tial to be quite efficient for implementation on both
near-term and fault-tolerant quantum computers.
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