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We propose and demonstrate a unified hierarchical method to measure n-point correlation functions that
can be applied to driven, dissipative, or otherwise open or nonequilibrium quantum systems. In this
method, the time evolution of the system is repeatedly interrupted by interacting an ancilla qubit with the
system through a controlled operation, and measuring the ancilla immediately afterward. We discuss the
robustness of this method as compared to other ancilla-based interferometric techniques (such as the
Hadamard test), and highlight its advantages for near-term quantum simulations of open quantum systems.
We implement the method on a quantum computer in order to measure single-particle Green’s functions of
a driven-dissipative fermionic system. This Letter shows that dynamical correlation functions for driven-
dissipative systems can be robustly measured with near-term quantum computers.
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Introduction.—Open quantum systems, and in particular
driven-dissipative systems, are among the most difficult
problems to study in many-body physics, but also among
the richest. The problem parameter space is vast; the bath as
well as the system have their own inherent dynamics, and
their interaction can be complex. Yet, in some sense there is
a unification and emergent simplicity as the details often do
not play a role when it comes to describing nonequilibrium
steady (or periodic) states. These can be captured with a
few parameters, have lost all knowledge of their history,
and are stable to perturbations away from their fixed point.
In other words, they are remarkably robust.
Their robustness has also recently been exploited in

simulations on quantum computers, either relying on the
hardware intrinsic decoherence [1–3], by implementing
Kraus maps and Lindblad operators [4–14], or by imple-
menting non-Hermitian dynamics [15,16]. In some cases,
the existence of a fixed point has enabled quantum
computers to perform the simulations far beyond the short
coherence time of the qubits when the fidelity of one Trotter
step is sufficiently high. It thus appears that driven-
dissipative systems are promising problems for applications
of near-term quantum computers.

Given this situation, it is critical to develop the tools and
methodology to be able to interrogate these long-lived
nonequilibrium states. For single-time operators this is not
a problem, one simply measures the desired operator at
some point during the evolution. However, there is a wide
class of observables—correlation functions—that are of
equal or greater importance as they describe the excitations
of the system, and make a direct connection to experimental

Driven-dissipative system

FIG. 1. Overview of the proposed new method and its region of
applicability. Ancilla decoherence (blue) limits the region where
the Hadamard test method (a),(c) yields a result, whereas the
reset-based method (b),(d) has no such limitation. For closed
system evolution (a),(b) the system decoherence naturally limits
the maximal time of interest, but for driven-dissipative systems
(c),(d) the reset method is necessary to go beyond the ancilla
coherence time.
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observables. The problem is that the typical protocols for
the measurement of correlation functions [17–22] are based
on the Hadamard test [23] [see Fig. 1(a)], where the
correlation function is measured with an ancilla qubit
[19,24–29].
This approach does not robustly generalize to measuring

correlation functions in open quantum systems, and we
illustrate the issues with it in Fig. 1 for a two-point
correlation function. In short, the ancilla cannot capture
the potentially long-time dynamics of the driven-dissipative
open quantum systems because the ancilla has a short
coherence time. For simulating closed quantum systems
[Fig. 1(a)] this is not a problem because the system has an
equally short coherence time, and the region of inacces-
sibility by the Hadamard test approach has no information.
On the other hand, for simulating open quantum systems
[Fig. 1(c)], this is a problem because the now-stable
dynamics of the driven-dissipative system are inaccessible
due to the ancilla decoherence.
In this Letter, we propose a strategy that (i) is a full

framework for computing n-point correlation functions in
open quantum systems, and (ii) is suitable for the near term
where we cannot rely on long ancilla coherence lifetimes.
Its crux is a measurement of the ancilla right after it is
entangled with the system, and using the result of the mea-
surement in postprocessing to construct the desired n-point
correlation function. We illustrate the idea in Figs. 1(b) and
1(d). For simulating closed quantum systems this approach
yields the same information as the standard Hadamard test;
however, for open quantum systems the region of inacces-
sibility by ancilla decoherence is now fully accessible.
Our method is a simple strategy capable of measuring

arbitrary unequal-time correlation functions between multi-
qubit Pauli operators, and which works for both dissipative
and unitary time evolution. As such, it subsumes and
unifies the approaches of Ref. [30] (unequal-time commu-
tators) and Ref. [31] (unequal-time anticommutators). It is
hierarchical in the sense that extracting the information of
an nth order correlation function requires previous knowl-
edge of lower-order correlation functions, but it restores the
robust nature of driven-dissipative systems because it does
not require system-ancilla entanglement to be maintained
during the time evolution of the system. We verify the
validity of our method by performing measurements of the
single-particle Green’s function of a driven-dissipative
fermionic model using a Quantinuum quantum computer.
Our results show excellent quantitative agreement between
data and the theoretical predictions.
Target quantities.—Our goal is the calculation of corre-

lation functions of a generic system (S) that can also
dissipate energy through an interaction with a bath (E); so
we employ the density matrix formalism, which is required
to study open quantum systems [32].
The correlation functions are constructed as follows. Let

fOig be a set of operators in the Schrödinger representation

acting on the system Hilbert space with i ¼ 1; 2;…n, and
let ftig being a set of ordered time values such that
t0 < t1 < t2 < � � � tn−1 < tn, where t0 is the initial time,
then we define the nth rank correlation function via

hOnðtnÞOn−1ðtn−1Þ…O1ðt1Þi
¼ TrSfOnVtn;tn−1…O2Vt2;t1O1Vt1;t0ρðt0Þg: ð1Þ

Here, OiðtiÞ is the operator Oi in the Heisenberg repre-
sentation, ρðt0Þ is the system density matrix evaluated at the
initial time, Vtiþ1;ti is the time evolution superoperator that
evolves the system from time ti to tiþ1 (i.e., ρðtiþ1Þ ¼
Vtiþ1;ti

ρðtiÞ acting from left to right), and TrS indicates a
trace over the system subspace (meaning that the degrees of
freedom of the bath have already been integrated out). For
simplicity, and without loss of generality, we assume that
the operators Oi are unitary and Hermitian operators;
addressing this case is sufficient to demonstrate the validity
of our method, because a nonunitary operator can always
be expanded as a linear combination of unitaries, chosen to
also be Hermitian (e.g., Pauli strings). As will be shown in
the next section, the correlation function in Eq. (1) can be
extracted from the Hadamard test.
The alternative strategy that we propose will naturally

yield correlation functions of nested commutators and
anticommutators of the form�½O1ðt1Þ; ½O2ðt2Þ;…½On−1ðtn−1Þ; OnðtnÞ�� � � �����

�
; ð2Þ

where ½:; :�� can be either commutators (−) or anticom-
mutators (þ), all chosen independently. The correlation
function in Eq. (1) can be obtained from the one in Eq. (2)
and vice versa by performing multiple measurements and
then combining the different outcomes together [33]. We
note that in the case of two-point functions, Eq. (1)
corresponds to lesser or greater Green’s functions while
Eq. (2) to advanced, retarded, and Keldysh Green’s
functions [37], so both methods produce all the physical
Green’s functions needed to describe a time evolving
quantum system. However, there are some limitations—
for example, one cannot directly calculate out-of-time-
ordered correlation functions with the circuit in Fig. 3
and we leave possible generalizations of this method to
future work.
Hadamard test for driven-dissipative systems.—In

Fig. 2, we show how the interferometry scheme proposed
in Ref. [23] generalizes to compute the n-time correlator
defined in Eq. (1) for an open quantum system. In order to
simulate dissipative dynamics, we need a generic k-qubit
ancilla register (called A2) that we take to be initialized into
the state j0i ¼ j0i⊗k. A suitable unitary operation U t;t0

K that
entangles A2 with the system register S followed by tracing
out (ignoring) the state of the ancilla register can encode the
nonunitary time evolution map Vt;t0 , which can be rewritten
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using the Kraus sum representation:

Vt;t0ρðt0Þ ¼
X2k−1
i¼0

Kiðt; t0Þρðt0ÞK†
i ðt; t0Þ; ð3Þ

where Ki are the so-called Kraus operators satisfying the
sum rule

P
i K

†
i ðt; t0ÞKiðt; t0Þ ¼ I. They are related to the

unitary evolution of the system and ancilla bank by
Kiðt; t0Þ ¼ hijU t;t0

K j0i, with fjiig being a complete basis
for A2. In the interferometry scheme, we need an extra
single-qubit ancilla register A1 in which all the information
about the correlation function (which is a complex number)
will be stored. For example, in the case of n ¼ 2, the final
quantum state of the A1 qubit reads

ρA1
¼

(
1
2
ÎA1

þ 1
2
Re½C�σ̂zA1

− 1
2
Im½C�σ̂yA1

; if α ¼ 0;

1
2
ÎA1

− 1
2
Im½C�σ̂zA1

− 1
2
Re½C�σ̂yA1

; if α ¼ 1;
ð4Þ

where C ¼ hO2ðt2ÞO1ðt1Þi, and the binary variable α ¼
f0; 1g indicates whether the S gate was applied or not.
Measuring the ancilla in the Z and Y bases determines the
real and imaginary parts of the correlation function.
This method is convenient because the complex infor-

mation encoded in the correlation functions of a many-
body system are found from single-qubit measurements.
However, this scheme requires maintaining the coherence
of the A1 ancilla (and thereby its entanglement with the
system) for the full duration tn − t1. In the next section, we
introduce an alternative robust scheme that does not require
maintaining coherence of the A1 ancilla, but at the cost of
requiring a more complex measurement scheme.
Robust strategy.—In Fig. 3, we show the alternative

circuit to measure the correlation function defined in

Eq. (1). This circuit is schematic, because it encodes all
possible circuits that are employed to measure the set of
correlation functions in Eq. (2). Here, each realization has
chosen unitary operations acting on A1 [selected from
ðSÞαiH, where S and H are the phase gate and the
Hadamard gate, respectively] for each time ti measured
in the correlation function. The circuit shown in Fig. 3
naturally measures the set of correlation functions de-
fined in Eq. (2) with the commutator or anticommutator
chosen from the n − 1 dimensional binary vector α ¼
fα1; α2;…; αn−1g. It is important to note that after the
SαiH operation is performed, the ancilla qubit A1 is
measured immediately afterward and the measurement
outcome (mi) is stored; such a measurement destroys the
entanglement between A1 and the state encoded in the
system and the A2 ancilla bank. The state is then evolved to
the next ti using the Kraus map decomposition defined in
Eq. (3). The A1 ancilla is then reset to its jþi state and the
process is repeated for each operator in the correlation
function. In the last step, after the final time evolution from
tn−1 to tn, the S register qubits will be in a final state ρn and
the operator On is measured directly on the S register
qubits, yielding results that depend on α. The correlation
function is determined by classical postprocessing of the
accumulated results and the choice of α.
In general, the state of the system qubits at time tjþ1 is

obtained from the state at tj through the following
map [35]:

ρjþ1 ∝Vtjþ1;tjðρjþOjρjOjþ½ð−1ÞmjiαjOjρjþH:c:�Þ; ð5Þ

where the proportionality constant is given by tracing the
rhs of the equation. Here,mj ¼ f0; 1g is the result of the A1

qubit measurement, and ρj¼1 ¼ ρðt1Þ is given by the initial
state of the system at time t1 (see Fig. 3).
In order to show how this method works in practice, we

discuss the two simplest cases, i.e., the two-point and the
three-point correlation functions. For n ¼ 2, the result of
measuring O2 directly on the system register will yield

TrO2ρ2¼N fhO2ðt2ÞiþhO2ðt2ÞiO1

þð−1Þm1 ½iα1hO2ðt2ÞO1ðt1Þi−i−α1hO1ðt1ÞO2ðt2Þi�g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
∝h½O1ðt1Þ;O2ðt2Þ�∓i

;

ð6Þ

FIG. 2. The standard interferometric scheme for measuring the
n-time correlation function [23], as given in Eq. (1), for a
dissipative circuit. Accurate results require that the ancilla register
A1 maintain coherence over the entire duration of the circuit.

FIG. 3. Circuit to measure a generic n-time correlation function of the kind defined in Eq. (2) using the robust strategy.
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where N ¼ f2 þ ½ð−1Þm1iα1hO1ðt1Þi þ H:c:�g−1,
hO1ðt1ÞO2ðt2Þi¼TrðO2Vt2;t1 ½ρðt1ÞO1�Þ, and hO2ðt2ÞiO1

≔
TrðO2Vt2;t1 ½O1ρðt1ÞO1�Þ. Hence, when α1 ¼ 0, 1 the
term in square brackets in Eq. (6) is proportional to
h½O1ðt1Þ; O2ðt2Þ�∓i. This is precisely Eq. (2) when
n ¼ 2. In order to isolate our target quantity, i.e., the
two-time correlation function h½O1ðt1Þ; O2ðt2Þ�∓i, we need
to subtract the first two terms in Eq. (6) multiplied by N ,
which are determined by equal-time averages that can be
obtained by performing a set of simple extra measurements
[35]. It is worthwhile to note that the measurement outcome
of the ancilla m1 ¼ 0, 1 must be stored for extracting our
target quantity.
For n ¼ 3, measuring O3 results in the following

quantity:

TrO3ρ3 ¼ ð−1Þm1þm2Cα
t1;t2;t3 þ Rα; ð7Þ

where Cα
t1;t2;t3 is a three-time correlation function that

depends on the values of α. There are four possible values:
h½O1ðt1Þ; ½O2ðt2Þ; O3ðt3Þ����i. In addition, there are con-
tributions denoted by Rα, which is a remainder function. It
is determined by performing additional measurements
comparable to what is needed for lower-rank correlation
functions (see Supplemental Material for details [35]).
We note that in the case of single-qubit [30,31,38] and

two-qubit [39] correlators, there are alternative ways of
measuring correlation functions that do not require the
extra ancilla register A1, at the cost of performing more
measurements on the system [35].
Hardware implementation.—In order to verify the valid-

ity of the protocol, we applied it to measure the Green’s
function of spinless free fermions in a lattice driven by a
constant electric field that also dissipate energy through a
coupling with a thermal bath. The Hamiltonian of this
chosen system plus bath can be brought into a block-
diagonal form after performing a Fourier transform to
momentum space as described in Ref. [7]. Hence, the
system’s reduced density matrix factorizes as a tensor
product in momentum space, i.e., ⊗k ρk, and we can de-
fine a (diagonal in k) master equation for each 2 × 2
k-dependent density matrix ρk,

∂tρk ¼ −i½HkðtÞ; ρk� þ
X

l¼f1;2g
LlρkL

†
l − fρk; L†

lLlg; ð8Þ

where the Lindblad operators are L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓnF½ϵkðtÞ�

p
dk and

L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓnF½−ϵkðtÞ�

p
d†k, with dk being the destruction

operator of a lattice fermion with quasimomentum k,
ϵkðtÞ ¼ −2J cos ðkþ ΩtÞ, with J being the hopping ampli-
tude, Ω the amplitude of the applied dc field, and k the
crystalline momentum. Γ sets the strength of the system-
environment coupling and nFðxÞ ¼ ½1þ expðβxÞ�−1 is the
Fermi-Dirac distribution with β being the inverse of the bath
temperature. In Fig. 4, we show the circuit implementingUK
for the Kraus map related to Eq. (8). The Lindblad operator

L1ð2Þ encodes the physical process of a Bloch electron (hole)
with momentum k to hop from the lattice to the bath with a
probability given by ΓnF½−ϵkðtÞ� (ΓnF½ϵkðtÞ�). Such a decay
process introduces a time dependence of the momentum
distribution function of fermions and a damping of Bloch
oscillations that eventually leads to a nonzero average of the
dc current [7,10,35,40].
In Fig. 5, we show the retarded fermion Green’s func-

tion GðRÞ
k ðt; t0Þ ¼ −iθðt − t0Þ�½dkðtÞ; d†kðt0Þ�þ� measured

on Quantinuum’s model H1-2 quantum computer. The

FIG. 4. Circuit implementing the Trotterized time evolution
UKðt; tþ ΔtÞ of the model defined in Eq. (8).

FIG. 5. Imaginary (upper panel) and real (lower panel) parts of
the retarded fermion Green’s function as a function of time
(parameters are wave vector k ¼ −0.5=a0 where a0 is the lattice
constant, dimensionless electric field is Ω ¼ 1, the dissipation
rate to the fermionic bath is Γ ¼ 1=16, and the bath temperature is
0.01 in units of the hopping). Circles represent data from a
Quantinuum model H1-2 quantum computer, with error bars
representing 2σ confidence intervals. The primary source of error
in the implemented circuits is due to noise on the two-qubit gates
[ð2 − 3Þ × 10−3 average infidelity]. However, the resulting noise
model leads to results that are barely distinguishable by eye from
exact circuit simulations (black lines) and are omitted from the
figure.
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retarded Green’s function of the model can be computed
exactly and its derivation and analytical form are given in
the Supplemental Material [35].
There is excellent quantitative agreement between the

data produced by the quantum computer and the expected
curves in presence of noise. It is worthwhile to note that
in the presence of a driving field, the Green’s function
does not oscillate as a simple sinusoidal function and it
presents extra features, such as the additional maxima
and minima occurring between time 10 and time 19 [see
Fig. 5], that are faithfully reproduced by the quantum
computer data.
Conclusion and outlook.—We have put forward a robust

technique for the measurement of multipoint correlation
functions of driven-dissipative quantum systems that can be
applied in the realm of quantum simulations of complex
models such as the Hubbard model. Unlike the Hadamard
test, which requires us to keep the ancilla and system qubits
coherently entangled, our new approach does not. This is
advantageous for driven-dissipative systems, where the
system is not coherent (see Fig. 1), although it comes at
the cost of performing extra measurements, as well as
requiring additional circuits of lower depth than the one
needed to extract the target quantity. Our method naturally
computes correlators of the form given in Eq. (2), which
represent a myriad of response functions and experimental
measurements. We applied our method to measuring the
Green’s function of free fermions driven out of equilibrium
and interacting with a bath. The data obtained from the
quantum computer are in an excellent agreement with the
curves predicted by the theory. While these data constitute
an important proof of principle enabling the measurement
of correlation functions on near-term quantum computers,
further work needs to be done to use this approach to solve
new problems in science.
Interestingly, given its generality, the Hadamard test has

applications other than the measurement of correlation
functions; for example, it has been proposed for determin-
ing important overlaps in the realm of variational quantum
dynamics simulations [41,42] and also for the simulation of
open quantum systems using quantum imaginary-time
evolution [13]. We therefore expect our robust alternative
strategy to the Hadamard test to be suitable for these other
applications as well.
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