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Simulating quantum dynamics on classical computers is challenging for large systems due to the
significant memory requirements. Simulation on quantum computers is a promising alternative, but fully
optimizing quantum circuits to minimize limited quantum resources remains an open problem. We tackle
this problem by presenting a constructive algorithm, based on Cartan decomposition of the Lie algebra
generated by the Hamiltonian, which generates quantum circuits with time-independent depth. We
highlight our algorithm for special classes of models, including Anderson localization in one-dimensional
transverse field XY model, where Oðn2Þ-gate circuits naturally emerge. Compared to product formulas
with significantly larger gate counts, our algorithm drastically improves simulation precision. In addition to
providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic
and numerical insight into optimal Hamiltonian simulations.
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Constructing arbitrary unitary operations as a sequence
of 1- and 2-qubit gates is the task of “unitary synthesis,”
which has applications from quantum state preparation
(e.g., via the unitary coupled cluster formalism [1,2]) to
quantum arithmetic logic. A paradigmatic problem [3,4] is
the unitary synthesis of time evolution under a time-
independent Hamiltonian H. Hamiltonian evolution plays
a key role in simulating quantum systems on quantum
computers [5–9] and thus has spurred recent interest in
order to solve difficult problems beyond the scope of
classical computing. It involves solving iðd=dtÞjψðtÞi ¼
HjψðtÞi via the unitary UðtÞ ¼ e−iHt, which yields
jψðtÞi ¼ UðtÞjψðt ¼ 0Þi. While the circuit complexity
for an arbitrary unitary grows exponentially with the
number of qubits, there are efficient product formulas
[6,10,11], series expansions [12], and other techniques
[13–15] for Hamiltonian simulation.
Despite these algorithms’ efficient asymptotic perfor-

mance, the fast fidelity decay with respect to circuit depth
before error correction prevents useful Hamiltonian simu-
lation in near term hardware [16]. Reducing the circuit
depth required for simulations remains of interest and
recent works have begun to incorporate additional problem
information such as algebraic properties, system sym-
metries [17], and initial state properties [18] to further
improve Hamiltonian time evolution. Orthogonally, varia-
tional approaches have been used to approximate the
time evolution [19], but the approximation worsens with
increasing time.
Concurrent with the above synthesis techniques, Cartan

decomposition emerged as a useful tool in the areas of

quantum control [20,21] and time evolution [22]. An
optimal unitary synthesis of arbitrary 2-qubit operations
based on the Cartan decomposition has emerged as
the state-of-the-art technique [23]. For larger unitaries,
Refs. [24–27] have formally laid out how any element in
SUð2nÞ can be decomposed, although these methods
generally require exponential circuit depth for arbitrary
unitaries and recursive algorithms [24,26,27]. The product
factorization works as follows: consider a generic
time-independent Hamiltonian for n qubits (or n spin-½
particles)

H ¼
X
j

Hjσ
j; ð1Þ

where Hj are real coefficients and σj are Pauli string
operators: i.e., elements of the n-site Pauli group
Pn ¼ fI; X; Y; Zg⊗n. Reference [24] recursively obtains
a factorization of the time-evolution unitary as

UðtÞ ¼ e−iHt ¼
Y

σ̄i∈suð2nÞ
eiκiσ̄

i
; ð2Þ

with, in the general case, Oð4nÞ angles κi for the Pauli
strings σ̄i that form a basis for the Lie algebra suð2nÞ.
We now provide a constructive decomposition algorithm

for Hamiltonian simulation with depth independent of
simulation time. We begin by applying Cartan decompo-
sition on a subalgebra of suð2nÞ generated from the
Hamiltonian. We further simplify the subsequent problem
of finding the parameters κi to locating a local extremum,
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rather than global minimum, of a cost function by extend-
ing the method given in Refs. [28,29]. This extension
allows us to directly generate a circuit and calculate the cost
function and its gradient. The algorithm is applicable to any
model without limitations of locality, although the scaling
varies depending on the model, and we provide software to
do so [30].
For certain classes of models (termed “fast-forwardable”

[31]), such as spin models that can be mapped to
noninteracting fermion models [32], the circuit complexity
and calculation of the cost function scales polynomially
in the system size. To illustrate our algorithm, we use
it to time evolve a ten-site random transverse field
XY (TFXY) model and compare the result to a Trotter
approach to illustrate the dramatic improvements obtained.
Hamiltonian algebra.—For a given Hamiltonian, we

determine whether the entirety of suð2nÞ is necessary for
the expansion in Eq. (2), or whether a subset suffices. The
Baker-Campbell-Hausdorff theorem states that only nested
commutators of the individual terms in the Hamiltonian
appear in the final exponent. This leads us to the first step of
our algorithm:
Step 1: Using the expansion of the Hamiltonian in terms

of the Pauli terms σj in Eq. (1), find the closure (under
commutation) of the set of those Pauli terms. This closure
forms a basis for the “Hamiltonian algebra,” which we
denote as gðHÞ and which is a subalgebra of suð2nÞ [21].
We can now restrict the expansion in Eq. (2) to only the
elements of gðHÞ.
We now provide some examples on the scope and

limitations of our resource cost across selected spin
Hamiltonians. Figure 1 illustrates the dimension of the
Hamiltonian algebra jgðHÞj for various models of interest
as a function of system size n, where j · j denotes the
dimension of the algebra. The dimensions of the

Hamiltonian algebra for the n-site nearest-neighbor XY,
transverse field Ising model (TFIM), and TFXY model
are jgðXYÞj ¼ nðn − 1Þ and jgðTFIMÞj ¼ jgðTFXYÞj ¼
nð2n − 1Þ; these scale quadratically with the number
of qubits n. On the other hand, jgðHÞj for the
nearest-neighbor Heisenberg model scales exponentially,
jgðHeisenbergÞj ¼ 4n−1 − 4. We observe a similar expo-
nential growth in the TFXY model and TFIM with longer
range interactions. However, even in these cases, jgðHÞj is a
constant factor smaller than jsuð2nÞj, providing a com-
mensurate improvement in circuit depth over the generic
case studied in Ref. [24].
Cartan decomposition.—We must now determine the

parameters κi in the gðHÞ restriction of Eq. (2). The Cartan
decomposition and related methods in Refs. [24,28,29]
provide the necessary tools to do so. We briefly review the
Cartan decomposition and the “KHK theorem.”
Definition 1.—A Cartan decomposition of a Lie algebra

g is defined as an orthogonal split g ¼ k ⊕ m satisfying

½k; k� ⊂ k; ½m;m� ⊂ k; ½k;m� ¼ m; ð3Þ

and denoted by ðg; kÞ. A Cartan subalgebra denoted by h
refers to a maximal Abelian algebra within m.
We will replace g in Definition 1 above with gðHÞ ⊆

suð2nÞ for a given n-spin Hamiltonian.
In practice, finding a Cartan decomposition by directly

using Definition 1 and picking basis elements one by one is
difficult. Instead, the Lie subalgebra is partitioned into k
and m by an involution: i.e., a Lie algebra homomorphism
taking θ: g → g, which satisfies θ½θðgÞ� ¼ g for any g ∈ g
and preserves all commutators. Then by using the
involution, one can split the algebra by defining subspaces
via θðkÞ ¼ k and θðmÞ ¼ −m, which is equivalent to
Definition 1. We discuss further details of involutions in
the Supplemental Material [33].
A consequence of Cartan decomposition, which we will

use to synthesize Hamiltonian evolution unitaries, is an
extension of the KHK theorem:
Theorem 1.—Given a Cartan decomposition g ¼ k ⊕ m

and a nondegenerate invariant bilinear form h:; :i on g, then
for any m ∈ m there exists a K ∈ eik and an h ∈ h, such
that

m ¼ KhK†; ð4Þ

where we have generalized the KHK theorem to any Lie
algebra that has a nondegenerate invariant bilinear form.
This statement is proven by construction via Theorem 2
(see Supplemental Material [33]). We use hA; Bi ¼
trðABÞ, which is proportional to the Killing form in
suð2nÞ ⊃ gðHÞ and is therefore guaranteed to be non-
degenerate due to semisimplicity of suð2nÞ. Moreover, it
is invariant and symmetric due to the cyclic property of
the trace.

FIG. 1. Hamiltonian algebra dimensions of the nearest-neigh-
bor Heisenberg, XY, TFXY models, and TFIM and dimension of
full suð2nÞ for comparison to the generic case. The dimensions
can exactly be calculated as jgðHeisenbergÞj ¼ 4n−1 − 4,
jgðTFIMÞj ¼ jgðTFXYÞj ¼ nð2n − 1Þ, and jgðXYÞj ¼ nðn − 1Þ.
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We can now describe the second step of our algorithm:
Step 2: Find a Cartan decomposition of gðHÞ such that

H ∈ m (in practice, one finds an involution) and find a
Cartan subalgebra h ⊆ m. A direct application of Theorem
1 withH ¼ KhK† then leads to the desired unitary for time
evolution

UðtÞ ¼ e−iHt ¼ Ke−ihtK†: ð5Þ

Since h is Abelian, each Pauli string in h ∈ h commutes,
and therefore a quantum circuit for e−ith can easily be
constructed. This reduces the circuit construction problem
to finding K, which we address below.
As long as an involution is found such that θðHÞ ¼ −H,

this method is applicable to any Hamiltonian H.
Specifically, for the models discussed in Fig. 1, this step
is achieved by using the involution θðgÞ ¼ −gT , which is an
AI type Cartan decomposition for suð2nÞ. This involution
works because the listed models have time reversal sym-
metry [25]. We then construct h by choosing an element of
m randomly (or with certain symmetries if desired) and
finding all the elements inm that are mutually commutative
with the chosen element and each other. We discuss further
details of finding involutions and Cartan subalgebras in the
Supplemental Material [33].
Note that the simulation time t in Eq. (5) enters as an

independent parameter and does not alter the structure of K
or h. This means that new parameters do not need to be
found for different simulation times (although this situation
may change for time-dependent Hamiltonians).
Determining parameters.—We provide the following

theorem to determine the group element K in Eq. (5),
which is an improved version of Lemma 6.3 (iii) in [28] and
Eq. (18) in [29]:
Theorem 2.—Assume a set of coordinates θ⃗ in a chart of

the Lie group eik. For H ∈ m, define the function f

fðθ⃗Þ ¼ hKðθ⃗ÞvKðθ⃗Þ†;Hi; ð6Þ

where h:; :i denotes a nondegenerate invariant bilinear form
on g, and v ∈ h is an element whose exponential map is
dense in eih. Then for any local extremum of fðθ⃗Þ denoted
by θ⃗c, and defining the critical group element Kc ¼ Kðθ⃗cÞ,
we have

Kðθ⃗cÞ†HKðθ⃗cÞ ¼ K†
cHKc ∈ h: ð7Þ

According to the theorem, we only need to find a local
extremum of fðθ⃗Þ, without determining the resulting h ∈ h.
This is achieved by using v such that eitv is dense in eih; this
is sufficient to represent the entirety of h. This reduces the
number parameters from jkj þ jhj to jkj. Since we consider
single Pauli strings as basis elements, we can choose
v ¼ P

i γihi, where the hi are basis elements of h, and
the γi are mutually irrational [29]. After determining Kc,
the h ∈ h in Eq. (5) is then obtained via Eq. (7). Further
details and the proof of the theorem are discussed in the
Supplemental Material [33].
Because the parametrization does not need to cover the

entire eik, there is a choice in how to represent the group
element K in Theorem 2. While Refs. [24,29] use
K ¼ expðiPi αikiÞ, we express it as a factorized product

K ¼
Y
i

eiaiki ; ð8Þ

where ki is an element of the Pauli string basis for k. The
representation (8) does not always cover eik fully, except in
some specific cases [34,35], but this is not necessary [33].
However, using Eq. (8) has three benefits. First, the
gradient of Eq. (6) can be obtained analytically at any
point, in contrast to the complicated derivative of the
exponential map expðiPi αikiÞ; second, this allows us

(a) (c)

(d)(b)

FIG. 2. (a) Schematic relationship of the Hamiltonian algebra gðHÞ and its partitioning into a subalgebra k, its complimentm, and the
Cartan subalgebra h. (b) KHK decomposition (Theorem 1) applied to a time-evolution operator generated by an element of m.
(c) Hamiltonian algebra gðHÞ for the two-site TFIM and the Cartan decomposition generated by the involution θðgÞ ¼ −gT . Here we list
the bases that span gðHÞ and its Cartan decomposition. (d) Decomposed time evolution for the two-site TFIM.
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to apply K on v and H exactly [33]; and third, since a
circuit implementation for exponentiated individual Pauli
strings is known [36,37], we avoid the need for further
decomposition of K.
We now reach the third step of our algorithm:
Step 3: Minimize Eq. (6) over the parameters ai in K in

Eq. (8) to find K ∈ eik. In this Letter, we use a standard
Broyden-Fletcher-Goldfarb-Shanno optimization routine.
Calculating Eq. (6) and its gradient and obtaining h ∈ h
by using Eq. (8) requires OðjkjjmjÞ, Oðjkj2jmjÞ, and
OðjkjjmjÞ operations, respectively. For models where
jgðHÞj is quadratic in the number of spins, these become
Oðn4Þ, Oðn6Þ, and Oðn4Þ [33].
In summary, our algorithm can be listed as the following

three steps: 1. Construct the Hamiltonian algebra gðHÞ.
2. Find a suitable Cartan decomposition (or involution)
such that H ∈ m, and construct a Cartan subalgebra h.
3. Find a local extremum of fðθ⃗Þ by representing K as in
Eq. (8), obtain h ∈ h via Eq. (7), and then construct the
circuit.
Figure 2 is a schematic illustration of the algorithm.

Figure 2(a) shows the relationships between suð2nÞ, the
Hamiltonian H, the Hamiltonian algebra gðHÞ, and its
Cartan decomposition. Figure 2(b) shows the resulting
factorization of the time-evolution operator. Figures 2(c)
and 2(d) demonstrate steps 1 and 2 of our algorithm
for a simple two-site Ising model. In this case, the
Hamiltonian terms fZZ; IX; XIg generate a six-
dimensional Hamiltonian algebra gðHÞ, which is parti-
tioned into k and m via the involution θ. Among infinitely
many possibilities, there are two maximal Abelian sub-
algebras h of m that have single Pauli strings as basis
elements (rather than a linear combination of them),
namely, spanfZZ; YYg and spanfXI; IXg; we choose the
latter without loss of generality. The resulting factored
time-evolution operator is shown in Fig. 2(d). This fac-
torization is clearly suboptimal for the Hamiltonian evo-
lution unitary in SU(4), where a minimal three-CNOT
circuit is known [23]; however, our decomposition algo-
rithm is applicable to any system size.

Application.—To demonstrate the flexibility of our
method, we simulate a ten-site TFXY spin chain with
random magnetic field with open boundary conditions,
with the Hamiltonian

H ¼
Xn−1
i¼1

ðXiXiþ1 þ YiYiþ1Þ þ
Xn
i¼1

biZi; ð9Þ

where n ¼ 10 is the number of qubits and the bi coef-
ficients are chosen via a normal distribution with zero mean
and σ2 variance; we use standard notation for the Pauli
spin matrices. We consider a single spin-flip initial state
jψi ¼ j↓↑↑↑↑↑↑↑↑↑i. In the absence of the random
magnetic field, this excitation diffuses throughout the
system. By increasing the random magnetic field
strength, the excitation is prevented from diffusing by
amplitude cancellation due to random phases acquired via
probing the random magnetic field, which is called the
Anderson localization mechanism [38]. Specifically, in one
dimension, it was shown that any pth moment of the
displacement of the excitation has a time-independent
upper bound [39] hjN̂jpit < C, where C is a time-inde-
pendent constant, and the position operator for the exci-
tation is N̂ ¼ P

n
r¼1ðr − 1Þð1 − Zr=2Þ.

We first perform steps 1 and 2 of our algorithm. The
Cartan decomposition and subalgebra for this model are

k ¼ spanfdXiYj;dYiXjji; j ¼ 1; 2;…; n; i < jg;
m ¼ spanfZj; dXiXj;dYiYjji; j ¼ 1; 2;…; n; i < jg;
h ¼ spanfZiji ¼ 1; 2;…; ng; ð10Þ

with dimensions jkj ¼ nðn − 1Þ, jmj ¼ n2, and jhj ¼ n,
and

dAiBj ¼ AiZiþ1Ziþ2…Zj−1Bj: ð11Þ

We then perform step 3 of our algorithm and find the
parameters minimizing Eq. (6).

(a) (b)

(c)

FIG. 3. (a) Circuit implementation of the given exponentials of Pauli strings and the compact arrow notation. The R gate shown here is
Rxðπ=2Þ. (b) Unoptimized and (c) optimized circuit for K in an n ¼ 5-site TFXY model (this system size is chosen for illustrative
purposes). The circuits have Oðn3Þ (80) and Oðn2Þ (20) controlled NOT (CNOT) gates, respectively.
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Using Eq. (8) generates the circuit shown in Fig. 3(b),
which has 2nðn2 − 1Þ=3 CNOT gates (1320 CNOTs for
n ¼ 10). As illustrated in Fig. 3(c), this circuit can be
further simplified to a circuit with nðn − 1Þ CNOT gates
(180 CNOTs for n ¼ 10) (see Supplemental Material [33]).
We compare the simulation results conducted via our
algorithm to Trotter evolutions with varying time steps
and fixed depth (fixed number of CNOTs) that is equal to
the optimized (10 steps/180 CNOTS) and the unoptimized
Cartan circuits (74 steps/1332 CNOTS).

Figure 4 shows N ¼
ffiffiffiffiffiffiffiffiffiffi
hN̂2i

q
, the rms position of the

single-spin excitation for various values of σ, as simulated
with our algorithm and with Trotter time evolution. We
renormalized the Hamiltonian for each standard deviation
of the transverse field; i.e.,H → ½H=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
trðH2Þ

p
� to eliminate

any norm dependence of the time evolution.
As expected, the Trotter evolution diverges from the

exact result after some time τ, which occurs later if there are
more Trotter steps. τ depends on the standard deviation of
disorder σ in the magnetic field; the results improve with
increasing randomness because this decreases the relative
diffusion probability for the excitation to hop to another
site. Nevertheless, for any value of σ and any number of
steps, the Trotter evolution eventually diverges from the
exact result.
On the other hand, the result from the Cartan decom-

position is indistinguishable from the exact solution. We
show the error (absolute deviation from the exact result) for
the two methods in Fig. 4. Except for the earliest times,
there are 3–5 orders of magnitude less error for the Cartan
decomposition approach compared to the Trotter-based
approach. The error of the Cartan-based method stems from

the nonzero gradient tolerance used in the optimization step
of the algorithm (which was chosen to be 10−6) and does
not increase with simulation time, which shows the
suitability of this constant-depth circuit for long-time
simulations. While this particular application is for a
free-fermionic model, the minimal error does not follow
from this property. Rather, it stems from the precise
factorization via Cartan decomposition, which is equally
applicable to interacting fermion models. However, a
similar tolerance may lead to larger errors simply due to
the larger number of terms required for the decomposition
[Eq. (8)]. Data for Fig. 4 are provided at [40].
Discussion and applications.—We have introduced an

algorithm based on the Cartan decomposition for syn-
thesizing Hamiltonian time-evolution unitaries and pro-
vided software to do so [30]. In contrast to previous related
approaches [24,26,27,29], the current work develops
explicit digital quantum circuit constructions for K via
an implementable factorized form [Eq. (8) and Fig. 3]. An
analytic cost function and its derivatives, straightforward
circuit construction, and only needing a single optimization
for any time t are several improvements with respect to
previous algorithms. We have discussed illustrative and
paradigmatic examples where our algorithm’s complexity
grows polynomially, as in the TFIM and TFXY spin model.
Here the polynomial complexity follows a mapping from
the spin representation to a noninteracting (free-)fermionic
representation. In this sense, the Hamiltonian algebra
reveals the existence of such a map and is complementary
to a recent graph-theoretic approach to identify spin models
solvable by fermionization [32]. This idea has already
formed the basis for related compression algorithms
[41,42]. Our work also provides an intuition to under-
standing heuristic “variational fast-forwarding” methods
[19,43,44]; the scaling of the Hamiltonian algebra indicates
an upper bound on the required circuit depth.
In addition to the applications demonstrated here, we

expect our algorithm and its components to find broader
use in more quantum computing application areas. First,
our method can be applied directly to simulating both free
and interacting theories and directly deployed on quantum
computers. Although the algebra does not scale favorably
in the latter case, circuits for interacting fermionic problems
can be composed via our technique nevertheless. Given that
near term devices scale poorly with circuit depth, and
consequently, simulation time, employing our algorithm to
small systems yields results that we are not aware of other
methods achieving [45]. Next, a generalization to the
unitary coupled cluster (UCC) formalism [1,2,46] is also
straightforward. In order to represent the wave function, the
UCC applies excitations on an ansatz wave function. The
usual Trotter-based approach to construct circuits to do so
does not respect the symmetries inherent in the problem—
this is true for UCC excitations [47] as well as Hamiltonian
evolution [17]; this issue can be addressed either by adding

(a)

(b)

FIG. 4. Displacement of the spin excitation N ¼
ffiffiffiffiffiffiffiffiffiffi
hN̂2i

q
and

its absolute difference from the exact result jN − Nexactj in the
TFXY model with a random Z field, for standard deviation σ ¼ 0
in (a) and σ ¼ 3 in (b). The excitation becomes trapped around its
original position as σ increases. The localization is captured to
within a small constant error by our Cartan algorithm (solid
curves). The two Trotter decompositions use 180 (dotted) and
1332 (dashed) CNOTs, which correspond to the CNOT counts of
the optimized and nonoptimized Cartan circuits, respectively.
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additional symmetry-restoring terms [17] or constructing
explicit symmetry-preserving circuits [47]. Since the
Cartan decomposition is exact, it preserves all of the
symmetries without further effort, even though the indi-
vidual terms may break symmetries. We will detail this
application area in a future work. This concept of using
Cartan decomposition to generate a subcircuit for sym-
metrized UCC factors—a portion of a larger problem—
could be applied as a generic quantum compilation routine.
Looking forward, we expect that perturbative approaches

beginning from either the free or only interacting algebras
will enable further progress in the development of
Hamiltonian evolution algorithms. Symmetries and other
problem structures are naturally expressed in the language
of Lie algebras and further developments are required to
fully utilize problem structure. Interestingly, preliminary
findings indicate that imposing symmetry complicates
quantum circuit construction, while it reduces the dimen-
sion of the Hamiltonian algebra; this interplay between
physical symmetry and algebraic analysis for quantum
circuits has been recently investigated within the contexts
of quantum control theory [48–51] and symmetry-preserv-
ing circuits [47,17] and could be combined with the
methods presented here in future work.
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