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P H Y S I C S

Many-body thermodynamics on quantum computers 
via partition function zeros
Akhil Francis1, Daiwei Zhu2,3, Cinthia Huerta Alderete2,4, Sonika Johri5, Xiao Xiao1,  
James K. Freericks6, Christopher Monroe2,3,5, Norbert M. Linke2, Alexander F. Kemper1*

Partition functions are ubiquitous in physics: They are important in determining the thermodynamic properties 
of many-body systems and in understanding their phase transitions. As shown by Lee and Yang, analytically con-
tinuing the partition function to the complex plane allows us to obtain its zeros and thus the entire function. 
Moreover, the scaling and nature of these zeros can elucidate phase transitions. Here, we show how to find parti-
tion function zeros on noisy intermediate-scale trapped-ion quantum computers in a scalable manner, using the 
XXZ spin chain model as a prototype, and observe their transition from XY-like behavior to Ising-like behavior as 
a function of the anisotropy. While quantum computers cannot yet scale to the thermodynamic limit, our work 
provides a pathway to do so as hardware improves, allowing the future calculation of critical phenomena for sys-
tems beyond classical computing limits.

INTRODUCTION
Interacting quantum systems exhibit complex phenomena includ-
ing phase transitions to various ordered phases. The universal nature 
of critical phenomena reduces their description to determining only 
the transition temperature and the critical exponents. However, 
numerically calculating these quantities for systems in new univer-
sality classes is complicated because of critical slowing down, re-
quiring increasing resources near the critical point. An alternative 
approach is to analytically continue the calculation of the partition 
function to the complex plane and determine its zeros.

The partition function is a positive function of multiple real pa-
rameters representing physical quantities such as temperature and 
applied fields. When the partition function is analytically continued 
in one of the respective parameters, its zeros show notable structure 
for a variety of models of interest. Lee and Yang (1, 2) studied the 
partition function zeros of Ising-like systems in the complex plane 
of the magnetic field h and found that, at the critical temperature 
(and in the thermodynamic limit), the loci of zeros pinch to the real 
axis. Alternatively, Fisher (3) studied the partition function zeros by 
making the inverse temperature  complex.

Partition function zeros have been widely used (4, 5) in the anal-
ysis of thermodynamic phase transitions, dynamical phase transi-
tions (6, 7), and critical exponents (8). The divergence of the free 
energy near the phase transition is intimately connected to the loca-
tion of the partition function zero closest to the real axis (9, 10), and 
the critical scaling relations may be found from the density of zeros 
around a phase transition (11). Whenever the analytic continuation 
yields an analytic function in the complex plane (no poles or branch 
cuts), the partition function (and thus the free energy) can be recon-
structed from the location of the zeros; this is typical because the 
partition function is a finite sum of exponentials for finite systems.

The complex values for the physical parameters typically have 
no real interpretation, limiting the partition function zeros princi-
pally to being useful mathematical constructs. They may be deter-
mined either exactly for solvable systems (5, 12, 13) (of which there 
are few) or through numerical methods (7, 14), which are limited 
by Hilbert space size in exact diagonalization or sampling issues in 
Monte Carlo methods. However, following work showing the use of 
an ancillary spin to probe quantum criticality (15, 16), Wei and Liu 
(17) observed that the mathematical structure arising from having 
complex physical parameters appears in the dynamics of quantum 
systems. They proposed an experiment to measure the zeros of the 
Ising model via the decoherence of a probe spin coupled to the Ising 
system; this was subsequently executed in a liquid of trimethyl 
phosphite molecules using nuclear magnetic resonance (18). While 
this beautifully demonstrates the technique, it is clearly not scalable, 
as it is difficult to design molecules for every envisioned situation.

Here, we use a probe spin—which within this context will be re-
ferred to as an ancilla qubit—to calculate the partition function zeros 
on a universal quantum computer, overcoming numerical difficul-
ties in classical computation of quantum thermodynamics. In this 
manner, we can handle system sizes up to half the number of avail-
able qubits. We develop a quantum circuit that evolves a thermal 
state (19, 20) under an interaction with an ancilla qubit designed to 
represent the action of the complex field or temperature. Using this, 
we measure the zeros of the partition function of the XXZ spin 
chain model on a trapped-ion quantum computer and quantum 
circuit simulators as the model is tuned from Ising-like to XY-like. The 
locus of zeros undergoes clear qualitative changes, thus enabling the 
identification of a phase transition even on noisy intermediate-scale 
quantum (NISQ) hardware. With the design of the circuit being in-
dependent of a particular model, our approach goes beyond recent 
studies of the Ising model (21).

RESULTS
Partition function zeros
Our method applies to both Fisher and Lee-Yang zeros, which are 
zeros in the complex plane of inverse temperature  and a complex 
Hamiltonian field, respectively. First, we focus on the latter Lee-Yang 
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case. We consider an arbitrary spin Hamiltonian ℋs in the presence 
of an external magnetic field given by   ℋ  B   = h  ∑ i       i  

z  = h  ℋ  I    .  As in 
the original work by Lee and Yang (1), the external magnetic field is 
complex: h = hr + ihi. The partition function is then

  Z(, h ) = Tr exp (−  ℋ  0   − i  h  i    ∑ 
j
       j  z )  (1)

where ℋ0 = ℋs + Re ℋ(B). The system is initially prepared in a ther-
mal state of ℋ0 and then “time evolved” under ℋI for a “duration” hi. 
This form suggests a direct measurement

  L(h ) =   1 ─  Z  0     Tr exp (−  ℋ  0   − i  h  i    ℋ  I   ) ≡   1 ─  Z  0     Z(, h)  (2)

where 𝒵0 = Tr e−ℋ0 = 𝒵(, hr). The zeros of L(h) are the Lee-Yang zeros of 
the partition function. For a finite system of N spins, we can reconstruct 𝒵 
from its Lee-Yang zeros through the fundamental theorem of algebra, 
because the partition function is a polynomial in    ~ z   = exp (2h) 

  Z(β,   ̃  z   ) = P Π  
 j

   (  ̃  z   −    ̃  z    j  )  (3)

where 𝒫 is a numerical constant, independent of    ~ z   .
As was discovered by Wei and Liu (17), L(h) can be measured by 
coupling the system qubits to an ancilla qubit (or probe spin). Alter-
nate proposals include measuring two-spin entanglement, but these 
have not yet been realized (22, 23). In the simplest case, when ℋ0 
and ℋI commute, the necessary coupling Hamiltonian is given by

   ℋ   ′  =   1 ─ 2   (  anc  
z   ⊗  ℋ  I  )  (4)

with the evolution matrix U(hi) = exp (−i hiℋ′); for noncommut-
ing Hamiltonians, a more complex ℋ′ must be constructed (24). 
With the ancilla initialized in a superposition state ∣+〉 and the sys-
tem in its thermal state, the initial density matrix is

  (0 ) = (∣+ 〉〈+∣) ⊗    e   − ℋ  0    ─  Z  0      (5)

After evolution with U(hi) and tracing out the system qubits, the 
off-diagonal element of the ancilla density matrix is L(h).

Fisher zeros are measured using an analogous procedure; since 
in this case  is complex, the evolution is with respect to the Hamil-
tonian ℋ′, where for Fisher zeros ℋI = ℋ0, which always commutes 
with itself, and hence, Eq. (4) always applies. The evolution matrix 
for Fisher zeros is U() = exp (−iℋ′).

Model
We apply the above method to the one-dimensional periodic XXZ 
spin chain model—an interacting spin model with anisotropy be-
tween spin exchange in the x-y plane versus spin exchange along the 
z direction—whose Hamiltonian is given by

   ℋ  s   = J ∑ 
i
    (  i  

x    i+1  x   +   i  
y    i+1  y   ) +  J  z    ∑ 

i
       i  

z    i+1  z    (6)

We will work within the ferromagnetic Ising regime, i.e., Jz = −∣Jz∣. 
The model may be tuned between an Ising-like regime (∣Jz∣≫∣J∣) 
and an XY-like regime (∣Jz∣≪∣J∣) (see Fig. 1). To obtain the Lee-
Yang zeros, we use a magnetic field ℋB along the z axis.

The Lee-Yang zeros of the ferromagnetic Ising model are well 
known to be purely imaginary in h or to lie on the complex unit 

circle in    ~ z   = exp (2h)  (2, 17, 25). Figure 1 shows the position of 
the zeros in the complex planes of h and    ~ z    for a 100-site chain. At 
the other end, i.e., in the XY-like regime, the Lee-Yang zeros are 
qualitatively different. The zeros (in h) have a constant imaginary 
component 2hi = (2n + 1), and their real part is given by the dis-
persion of the model after diagonalization via Jordan-Wigner trans-
formation hr = −2J cos (k) (5) (in the quantum circuit, any finite hr 
must be included in the thermal state preparation). In between these 
limits, the zeros transition from one type to the other; we denote 
the character of the zeros as Ising-like or XY-like for the two cases, 
respectively. For zero temperature, the ground state abruptly changes 
from Ising-like to XY-like at J = ∣Jz∣, but for finite temperatures, 
this becomes a gradual change.

Quantum circuit
The circuit is constructed in two parts. First, a thermal state corre-
sponding to the XXZ spin chain model at finite temperature needs 
to be produced. For this, we prepare a thermofield double (TFD) 
state (19, 20), which is a purification of the thermal Gibbs state; it 
involves a doubling of the number of system qubits, half of which 
are then discarded to produce the thermal density matrix (see Fig. 1). 
Several methods to prepare TFD states exist (20, 26, 27). Here, we use 
a variational procedure reminiscent of the quantum approximate 

Fig. 1. Lee-Yang zeros for the limiting cases of the XXZ model and the quan-
tum circuit for measuring them. (Top) Positions of the Lee-Yang zeros for 100-
site Ising/XY models at  = 1 in the complex planes of h (left) and    ~ z   =  e   2h   (right). 
For both Ising/XY models, the zeros in h occur away from the real axis. (Bottom) 
Circuit for obtaining partition function zeros. The TFD state is prepared using a 
variational quantum circuit. The thermal density matrix in subsystem A is subse-
quently evolved under a Hamiltonian coupling it to an ancilla spin. The ancilla co-
herence reflects the complex partition function. The measurement operation here 
represents the characterization of the real/imaginary parts of the coherences 
(off-diagonals) of the ancilla density matrix. We achieve this through measurement 
in both the x and y basis (see Materials and Methods for details).
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optimization algorithm (QAOA) (28), consisting of the application 
of alternating Hamiltonians within and between the subsystems of the 
TFD state. The parameters (angles) are optimized classically (see 
the Supplementary Materials). Next, we perform evolution under 
the coupling Hamiltonian ℋI, which is straightforwardly imple-
mented as controlled rotations on the ancilla qubit. Last, we mea-
sure the off-diagonal elements of the ancilla. For implementation 
on the trapped-ion hardware, UAA, UAB, and UTE are broken down into 
native XX gates (see Materials and Methods and the Supplementary 
Materials), where the rotation angles in UAA and UAB are determined 
by the TFD optimization. To simulate an N site system, 2N + 1 qubits 
are required, where the factor of 2 comes from the doubling required 
for preparing the TFD state.

The general difficulties in preparing an arbitrary thermal state 
(29) cannot be avoided. For preparing TFD states, although empir-
ically the number of QAOA steps scales linearly in the system 
size (19), the classical optimization is a costly step. A hybrid opti-
mization is also possible based on a measurement of the Rényi 
entropy (30–34).

However, a number of alternate approaches to producing thermal 
states already exist; these include approaches where the thermal state 
is directly produced on a subset of the quantum hardware (35–41), 
and those where the sampling over the density matrix is performed 
classically (42, 43). Given a thermal state prepared by any of these methods, 
the partition function zeros are then obtained via a unitary evolution, 
which does not require any further scaling with the system size.

Implementation on trapped-ion hardware
Figure 2 shows the results on the two-site XXZ model, where we 
focus on the behavior of the zeros around the phase transition at 
J ≈ ∣Jz∣; we use  = 10 and Jz = −1. The figure shows the magni-
tude and real/imaginary parts of the ancilla coherence L(h) in the 
top and bottom panels, respectively. The Lee-Yang zeros are found 
where both the real and imaginary parts of L(h) vanish. When J < ∣Jz∣, 
the zeros have no real part, in agreement with the general results for 
Ising-like zeros (see Fig. 1), and for two sites, we expect two zeros, 
symmetric about hi = /2; these are shown in the top panel plots of 
∣L(h)∣. The bottom panels present the real and imaginary parts of 
L(h) as a function of hi (a cut along constant hr as indicated in the 
top panel), comparing the exact result and the experimental results 

from the trapped-ion quantum computer. Although the exact 
position of the zeros is slightly different in the experiment, the qual-
itative behavior is clearly the same; L(h) is entirely real, starts at 
unity, and changes sign once in between hi values of 0 and /2. As 
J is increased toward the transition, the minimum in the real part of 
L(h) gets shallow.

At the phase transition, the character of the zeros changes: hi 
becomes fixed at /2, and the real part hr becomes nonzero. We 
track hr by including it in the TFD state preparation part of the cir-
cuit, and continue to sweep hi (indicated by horizontal lines in the 
top panels). This transition occurs in between J/∣Jz∣ values 1.03 
and 1.06. On the XY-like side of the phase transition, the real part 
of L(h) only touches zero at hi = /2, and L(h) acquires a nonzero 
imaginary part. This behavior is also captured correctly by the 
quantum computer; the experimental data are shown in the right-
most panel.

These data demonstrate that even with current generation NISQ 
hardware, a phase transition can be identified via the qualitative 
character of the Lee-Yang zeros and the ancilla coherence. This is an 
advantage of this method; rather than relying on a precise measure-
ment of a quantity (such as the position of the zeros), a qualitative 
difference is sufficient to distinguish the Ising-like from the XY-like 
regime of the model. Understanding the effect of the noise in the 
quantum computer on the results can further help to predict the 
accuracy of the locations of the zeros as the system size grows larger 
(see the Supplementary Materials).

The experimental results also show that the zeros are robust to 
deviations of the prepared density matrix from the optimized result 
obtained from the variational TFD procedure. The implementation 
on the quantum computer inevitably introduces noise because of 
the inherent errors in the gates, resulting in L(h) never being si-
multaneously zero in both real and imaginary components. These 
differences are consistent with errors in the experimental parame-
ters, as shown in section SIII. Nevertheless, the qualitative patterns 
remain clear; furthermore, as we will show below, finding the smallest 
value of ∣L(h)∣ by linear interpolation between the data points quan-
titatively identifies the correct location for the minimum.

Although here we have chosen to continue to sweep along hi and 
fix hr, to avoid having to know an exact value of hr, a sweep along 
constant hi could also be performed. More generally, if nothing is 

Fig. 2. Phase transition from Ising to XY at =10 as demonstrated by the nature of the Lee-Yang zeros. (Top) False color plots of log ∣L(h)∣ in complex h space. The 
line in the color plot shows the h values we are probing through the quantum circuit to find L(h), where h = hr + ihi. The location of the zeros is marked in the top panels 
with a red cross. (Bottom) Real and imaginary parts of L(h) along the cut indicated in the top row. Experimental results from the trapped-ion quantum computer are 
shown, with error bars connected with dotted lines. Around J ≈ ∣Jz∣, the nature of the zeros changes qualitatively from Ising-like to XY-like. The error bars on the exper-
imental results correspond to the measurement statistical error.
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known about the position of the zeros, then a full scan of complex h 
is possible by preparing a thermal state for each hr. If a precise loca-
tion of the individual zeros is required, then this will increase the 
computational effort; however, qualitative changes will remain clear. 
Moreover, knowledge of the first few zeros already yields thermo-
dynamic information, as will be discussed below.

Our approach scales readily to larger systems. In Fig. 3, we show 
the results when the method is applied to an eight-site system. Be-
cause of hardware limitations (this calculation would require 17 qubits 
and a similarly larger number of gates for the TFD state prepara-
tion), only quantum circuit simulator data are available. The number 
of zeros is now larger, and they exhibit a more complex pattern, in 
particular around the phase transition. However, the overall quali-
tative difference between the two states remains clear—the zeros 
obtain a real part and shift to lie purely along the line hi = /2.

DISCUSSION
Our results so far show that zeros of the partition function for a 
thermal state on a quantum computer may be obtained by the cir-
cuits shown in Fig. 1 (and Supplementary Materials), that these may 
be used to identify a phase transition by observing qualitative changes 

in the nature of the zeros, and that this method can be executed on 
NISQ-era hardware. However, given the location of the zeros, we 
can reconstruct any thermodynamic quantity. As proof of principle, 
we focus on the free energy. While this is implicitly known in this 
case because a thermal state was prepared, this knowledge is not 
generally necessary. Although reconstructing the free energy in-
volves the evaluation of an infinite sum, when a closed form can be 
obtained the full thermodynamics are determined. Here, this is ac-
complished by considering the polynomial in    ~ z   ≡ exp (2  h  i  )  in-
stead of hi (this is because the energy spacing of the initial spin 
model is uniform). From the results shown in Fig. 2, we can extract 
the set of Lee-Yang zeros {h0}, or equivalently  {   ~ z    0  }  once the prefactor 
𝒫 in the polynomial expansion is determined (see the Supplemen-
tary Materials). From the partition function, we compute the free 
energy at zero field F = −(1/) ln 𝒵(, h = 0), shown in Fig. 2. In the 
experimental data, L(h) is never precisely zero; instead, we find the 
value of hi corresponding to the smallest value of ∣L(h)∣ by linear 
interpolation between the data points (hr is assumed to be known 
from the TFD preparation). The reconstructed free energy is 
shown in Fig. 4, where we have used data that were post-selected to 
have the correct total magnetization; the agreement between the 
exact values and those obtained from the trapped-ion quantum 
computer is very good.

Beyond exactly reconstructing the partition function, the zeros 
also yield information regarding the thermodynamic properties near 
the phase transition. The partition function zeros lead to divergences 
in the free energy; moreover, in the limit N → ∞, the zeros form a 
branch cut ending in an edge singularity. It is known from complex 
analysis that the knowledge of a function around its branch cuts is 
sufficient to determine the entire function. Furthermore, even if 
only the first zero is known (i.e., the closest zero to the positive real 
axis of    ~ z    or the edge singularity), then the temperature and field de-
pendence of thermodynamic functions is dominated by its position 
(9, 10): In the expansion of a complex function near a singularity, 
the terms after some order n are determined by the properties of the 
singularity. Last, Abe (11) showed that the dependence of density of 
zeros on the system size (i.e., finite size scaling) can be used to de-
termine critical exponents of the phase transition. The limiting den-
sity of zeros may also be used to characterize the phase transition (44).

Hence, studying partition function zeros on a quantum com-
puter can efficiently determine much of the critical phenomena at 

Fig. 3. Lee-Yang zeros for the eight-site XXZ model. (Top) The color plots show log ∣ L(h)∣ in complex h space. (Bottom) Cuts along the lines indicated in the corre-
sponding top panel; note that for J > ∣ Jz∣, the cuts are vertical.

Fig. 4. Free energy of the two-site XXZ model at =10 reconstructed from the 
Lee-Yang zeros. Red squares indicate F constructed using the experimental data. 
The experimental data were post-selected by discarding the states where the mea-
sured TFD qubits do not have the correct total magnetization (see the Supplemen-
tary Materials) before computing the free energy. The statistical error bars are 
smaller than the plot symbols.
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the transition. A similar approach has been used to study distri-
butions of many-body observables in spin systems using quantum 
computers (45).

In this work, we have outlined how partition function zeros may 
be obtained and demonstrated that this is feasible even on NISQ 
hardware. Thus, as improvements to quantum computers enable 
ever growing complex calculations, partition function zeros can 
play a broadly applicable role in the simulation of physics at zero 
and finite temperatures. They may be evaluated with relative ease 
with a suitably chosen time evolution and yield a wealth of informa-
tion regarding the thermodynamics of the system under study.

MATERIALS AND METHODS
We use a reconfigurable digital quantum computer for this study. 
The system is made of a chain of 171Yb+ ions trapped with a radio 
frequency electric field (46). The qubits are made of a pair of states 
in the hyperfine-split 2S1/2 ground-level manifold of each ion, con-
nected by a magnetic field–insensitive 12.642821-GHz transition. 
We use optical pumping to initialize qubits to ∣0〉. The qubit read-
out is implemented via the state-dependent fluorescence detection 
(47). The complete set of quantum gates is realized with a pair of Raman 
beams derived from a single 355-nm mode-locked laser. Our native 
single-qubit gates are rotations along arbitrary axes in the XY plane 
of the Bloch sphere by arbitrary angles, achieved by driving resonant 
Raman transitions of defined phases. Our native two-qubit gates are 
XX (Ising) gate based on the phonon-mediated Molmer-Sorensen 
interaction (48, 49). Our scheme uses multiple phonon modes to 
reach optimal performance. An amplitude modulation technique is 
applied to disentangle the phonon modes from the qubits at the end 
of each two-qubit gate (50). Our single- and two-qubit gate fidelities 
are typically around 99.5(2)% and 98 to 99%, respectively. The re-
sidual entanglement between the qubits and the phonon modes is 
the primary factor limiting the fidelity of each two-qubit gate. In 
addition, for circuits used in this study, which involve 20 two-qubit 
gates, heating of phonon modes also plays a nontrivial role.

The qubit readout is simultaneously performed on all the qubits 
in the computational (Z) basis. We append the circuit with an addi-
tional Ry(−/2) or Rx(/2) rotation to perform measurements in the 
X or Y basis, respectively. We repeated each circuit 2000 times to 
obtain the statistics of the observables, assuming that the outcomes 
follow the binomial distribution. The data have been corrected for 
readout error (dominantly cross-talk, ~1%) assuming perfect qubit 
initialization (initialization errors are measured to be <0.1%).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/34/eabf2447/DC1
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