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What do the two times in two-time correlation functions mean for 
interpreting tr-ARPES? 
J.K. Freericks a,*, Alexander F. Kemper b 

a Department of Physics, Georgetown University, 37th and O Sts. NW, Washington, DC 20057, USA 
b Department of Physics, North Carolina State University, Raleigh, NC 27695, USA   

A R T I C L E  I N F O   

Keywords: 
Time-resolved angle-resolved photoemission 
spectroscopy 
Average time 
Relative time 
Nonequilibrium many-body physics 

A B S T R A C T   

Time-resolved angle-resolved photoemission spectroscopy is one of the most powerful pump–probe measure-
ments of materials driven far from equilibrium. Unlike the linear-response regime, where the frequency- 
dependent response function is independent of time, in a far-from-equilibrium experiment, the response func-
tion depends on two times in the time domain. In this work, we describe how one can use time-dependent 
frequency response functions and how they involve contributions from times that are near to each other. This 
implies that they should not be thought of as a frequency-dependent response at a single definite time. Instead, 
the Fourier uncertainty relations show that they involve contributions from ranges of times and must be inter-
preted in this light. We use this insight to help understand what time-resolved photoemission measurements 
actually measure.   

1. Introduction 

Much of experimental physics is based on measuring small pertur-
bations of systems from the equilibrium state—a practice that is called 
linear-response. In this regime, we can measure frequency-dependent 
responses, such as reflectivity, photoemission spectroscopy and so on. 
Because systems in equilibrium are time translation invariant (or, if you 
prefer, homogeneous in time), one can directly measure frequency- 
dependent properties that do not depend on the time at which they 
are measured. 

Recently, there has been an increasing interest in nonequilibrium 
systems, which are far from equilibrium. These systems are prepared by 
providing a strong excitation (a pump pulse) to the system and 
measuring the response (a probe pulse) as a function of some time delay 
relative to when the pulse was applied. While we might expect there to 
be similar frequency-dependent responses as functions of the delay time 
relative to the pump pulse, this concept is actually no longer well 
defined, because the system is no longer time-translation invariant (due 
to the pump). Just like one has an uncertainty relation between position 
and momentum, which can be thought of as arising from the Fourier 
transform that relates the two, frequency-dependent responses cannot 
be thought to occur at definite times in far from equilibrium system-
s—the Fourier transformation governs the question of what range of 

times are involved in determining a frequency-dependent response 
function centered at some average time. The situation is often further 
complicated by the fact that many nonequilibrium response functions 
depend on two times, when a system is driven far from equilibrium. 
These concepts can be easily confused and misunderstood. 

In this paper, we will describe how to carefully analyze and under-
stand what frequency measurements mean in the time domain (for 
systems driven into nonequilibrium). We focus our discussion on the 
problem of time-resolved photoemission. In this experiment, the system 
is excited by a low-photon-energy (but high amplitude) pump pulse and 
then a probe pulse (of a higher photon energy) is applied to photo-emit 
electrons. The electrons are then collected with both energy and mo-
mentum resolution (within a measurement time window). The theo-
retical goals for analyzing these experiments are to determine what this 
spectra looks like as a function of the delay time of the probe and to 
understand what these spectra are measuring. 

2. Two-time response functions 

When we make a measurement in physics, we typically measure a 
response function. That is, given some operator B̂(r′

, t′ ) at position r′ and 
time t′, we find the joint expectation value with another operator Â(r, t)
at another position r and a later time t: 
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χR(r, r
′

; t, t
′

) = −i
〈
[Â(r, t), B̂(r

′

, t
′

)]
〉

θ(t − t
′

). (1)  

The θ function (unit step function) ensures causality; that is, it ensures 
that Â is measured after B̂, and the resulting correlation function is thus 
called a retarded correlation function (denoted by a superscript R). The 
commutator enters, because in quantum mechanics, both processes (Â 
acting first on the state or B̂ acting first) are allowed and we must 
include both contributions). Common examples of these include the 
conductivity (a current–current correlation function 〈̂j(r, t), ĵ(r′

, t′ )]〉), 
spin-resolved neutron scattering response function (given by a spin–spin 
correlation function σ

x,y,z
αβ = 〈[Ŝα(r, t), Ŝβ(r′

, t′ )]〉), and angle-resolved 
photoemission. Note, that the generic term “response function” is 
often used for any correlation function defined in this fashion, even if 
not all such correlation functions can be easily measured by experiment. 

When the system is in equilibrium, it does not matter precisely when 
the experiment is performed; that is, we have time translation invari-
ance. In this case, the correlation function depends solely on the time 
difference t − t′ between the operators, also known as the relative time 
trel. Hence, 

χR(r, r
′

; trel) = −i

〈
[Â(r, trel), B̂(r

′

, 0)]
〉

θ(trel). (2)  

A similar consideration applies to spatial translation invariance in 
spatially homogeneous systems. 

Measurements in equilibrium are commonly done in the frequency 
domain and in momentum space, which is obtained from Eq. (2) via 
Fourier transformation with respect to the relative time and the relative 
position, and which satisfies 

χR(q,ω) = −i

∫ ∞

−∞

dr

∫ ∞

0

dt

〈
[Â(r, t), B̂(0, 0)]

〉
ei(ωt−q⋅r). (3) 

To illustrate how this works in detail, consider the specific example 
of angle-resolved photoemission spectroscopy (ARPES). ARPES involves 
making single-particle excitations out of the many-body state, which are 
typically expressed using second quantized language; that is, using fer-
mionic raising and lowering operators ĉ† and ĉ. The single-particle 
correlation functions are also termed Green’s functions and denoted 
by G. ARPES specifically measures the occupied states (denoted by G<, 
more on this later), which we can express as 
G<

σ (r, r
′

; t, t
′

) = i
〈

ĉ
†
σ(r

′

, t
′

)ĉ†
σ(r, t)

〉

= i𝒵−1Tr
{

e−βℋ̂(t0) ĉ
†
σ(r

′

, t
′

)ĉ†
σ(r, t)

}
;

(4)  

that is, the probability of a single-particle excitation making its way 
from (r′, t′) to (r, t). Here, the partition function is defined to be 𝒵 =

Tr
{

e−βℋ̂(t0)
}

and the angle brackets are defined by the second line; the 
time t0 is a reference time when the system is initially in equilibrium, or 
equivalently it is a time before the nonequilibrium perturbation is turned 
on. The operators are expressed in the Heisenberg representation. Note 
that the lesser Green’s function has no causal structure, nor does it have 
time-ordering or commutators in its definition; in addition, we are 
ignoring so-called matrix-element effects, which can play important 
roles, but are not discussed further in this work. Using spatial translation 
invariance, we transition to Bloch states with quasi-momentum k, so 
that the lesser Green’s function is given by 
G<

σ (k; t, t
′

) = i
〈

ĉ
†
kσ(t

′

)ĉ†
kσ(t)

〉 (5)  

In this work, we restrict to a single-band model for the electrons. 
To gain some insight into this correlation function, we write out the 

explicit expectation value in Eq. (5), 

G<
kσ(t, t

′

) = i
∑

γ

ργ

〈
Ψγ|ĉ

†
kσ(t

′

)ĉ†
kσ(t)|Ψγ

〉

= i
∑

γ

ργ

〈
Ψγ|Û(t0, t

′

)ĉ†
k Û(t

′

, t) ĉ
†
k Û(t, t0)|Ψγ

〉 (6)  

where ργ = exp(−βEγ)/𝒵 is the thermal weight of the energy eigenstate 
|Ψγ〉 (which satisfies ℋ̂(t0)|Ψγ〉 = Eγ |Ψγ〉). In the second line, we have 
introduced the time evolution operator ℋ̂, which satisfies i∂t Û(t, t0) =

ℋ̂(t)Û(t,t0); we also used the facts that this is a unitary operator and that 
Û(t′ , t0) = Û(t′ , t)Û(t, t0). 

The expectation value above can be viewed as the inner product 
between two states at time t′, 

|Φ1

〉
= ĉkσ Û(t

′

, t0)|Ψγ

〉
(7)  

|Φ2

〉
= Û(t

′

, t)ĉkσ Û(t, t0)|Ψγ

〉
(8)  

That is, to obtain |Φ1〉 we propagate |Ψγ〉 to time t′ and remove a particle 
with momentum k and spin σ; to obtain |Φ2〉 we propagate |Ψγ〉 to time t, 
remove a particle (also of momentum k and spin σ), and further prop-
agate it from t to t′; if t > t′ the time evolution would be backwards in 
time. Notice that if single-particle excitations are not an eigenstate of the 
many-body system, the action of Û(t′ , t) will cause the excitation to 
spread in the Hilbert space. The Green’s function is then formed by a 
weighted average of all of these overlaps between the two modified 
states. The final result has an amplitude and a complex phase repre-
senting the measurement. 

2.1. Equilibrium 

When there is no explicit time dependence in the Hamiltonian, that is 
we are in equilibrium, the inner product becomes 
〈
Ψγ |ĉ

†
kσ(t

′

)ĉ†
kσ(t)|Ψγ

〉
=

〈
Ψγ |e

−iℋ̂×(t0−t
′
) ĉ

†
kσ

×e−iℋ̂×(t
′
−t) ĉ

†
kσe−iℋ̂×(t−t0)|Ψγ

〉 (9)  

where ℋ̂ = ℋ̂(t0) is the time-independent Hamiltonian; the terms in the 
exponent in parenthesis are multiplying the Hamiltonian operator, not 
arguments of the Hamiltonian representing its time dependence. We can 
further insert a complete set of states (indexed by λ) to the right of the 
creation operator to find that 
G<

kσ

(
t − t’

)
= i

∑
γλ

ργ|〈ΨN
γ |ĉ

†
kσ |Ψ

N−1
λ 〉|2

×e−i(EN
γ −EN−1

λ )×(t−t’);

(10)  

this expression is usually called the Lehmann representation [1]. Here, 
the EN

γ denote the eigen-energies for the state |Ψγ〉 in the N-particle 
sector, and similar for EN−1

λ in the N − 1-particle sector. Note that this 
Green’s function determines an electron removal spectrum. 

2.1.1. Non-interacting systems 
In the limit where removing a single particle does not affect the 

eigen-energies of the remaining particles, this further simplifies to 
G<

kσ(t − t’) = if (ξk)e
−iξk×(t−t’), (11)  

where f(ξk) = 1/(1 + eβξk) is the Fermi-Dirac distribution function, and ξk 
is the quasiparticle energy. Note that, as expected, this is a function of 
trel = t − t′ only; moreover, the Fermi function appears, indicating that 
we are measuring the occupied states. Fig. 1 shows the dependence of 
G<

kσ(t, t
′
) as a function of trel for a few quasiparticle energies. Since it has 
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no absolute time dependence, it is a constant function along the average 
time tave =

1
2(t + t′ ) axis. 

In the frequency (energy) domain, a simple Fourier transform along 
trel yields 
G<

k (ω) = 2πi f(ξk)δ(ω − ξk) (12)  

= 2πi f(ω)δ(ω − ξk) (13)  

where δ(x) is the Dirac delta function. Thus, the lesser Green’s function 
(and ARPES) is peaked right at the quasiparticle spectrum, or at the band 
energies (see Fig. 2). 

We could have equally well considered the retarded (or “causal” 

version) of the Green’s function, which yields (in the same equilibrium 
and non-interacting limit) 
GR

kσ(t − t’) = −iθ(trel)e
−iξk×(t−t’), (14)  

GR
kσ(ω) =

1

ω − ξk + i0+
, (15)  

that is, the well-known expression for the noninteracting equilibrium 
retarded Green’s function. From here, we can also read off the rela-
tionship between the retarded and lesser components (in equilibrium), 
G<

kσ(ω) = −2i f(ω)ImGR
kσ(ω) (16)  

also known as the fluctuation-dissipation theorem. While this has been 
explicitly demonstrated in the non-interacting case, this form holds in 
general for interacting systems in equilibrium. 

2.1.2. Interacting systems 
When electrons are interacting, single-particle excitations (as found 

in |Φ1〉 and |Φ2〉) are no longer eigenstates, and thus |Φ2〉 will spread out 
in Hilbert space as time goes on. We may expect the overlap 〈Φ1|Φ2〉 will 
decay as |t − t′| → ∞. If the only affect is the decay over relative time, 
this changes the lesser Green’s function to 
G<

kσ(t − t’) = if (ξk)e
−iξk×(t−t’)e−

1
2

Γ×|t−t’ |. (17)  

In the frequency domain, this modifies the lesser Green’s function to the 
form 

G<
kσ(ω) = −2i f(ω)Im

1

ω − ξk − iΓ
. (18)  

Here, Γ plays the role of the line width. In more general cases, Γ gets 
replaced by the self energy Σk(ω), which encodes the effects of the in-
teractions on the single-particle excitations (corresponding to a 
frequency-dependent change in the energy of the excitation via its real 
part and a frequency-dependent change to the linewidth via its imagi-
nary part). Since the self-energy encodes information about the 

interactions, the self-energy typically exhibits features that reflect spe-
cific features of different forms of electron interactions. For example, 
Fig. 3 shows the typical self-energy and resulting spectra due to elec-
tron–phonon (el–ph) coupling, Coulomb (electron–electron (el–el)) in-
teractions, and impurity scattering (el-imp) in the approximation where 
the self-energies are local. We use Migdal–Eliashberg theory for the 
electron–phonon self-energy (in the Holstein model), the first-Born 
approximation for the impurity scattering, and a second-order pertur-
bation theory for the Coulomb interaction (in the Hubbard model). 

When multiple interactions are present, the various components 
typically add according to Matthiessen’s rule, 
Σ = Σel−ph + Σel−el + Σel−imp. (19)  

Separating the self-energy into these different components has led to 
significant insight into the physics of strongly correlated matter (see e.g. 
[2]). Going back to the time domain, the correlation function decay rate 
is related to the self-energy via 
Γ = −2 Im Σ (20)  

when there is a single decay rate for all momenta. This relation becomes 
more complex when the self-energy has energy and momentum depen-
dence (which is what usually occurs). 

2.2. Non-equilibrium 

When studying correlation functions out of equilibrium (say, for 
pump-probe experiments), time-translation invariance is broken by the 
presence of a pump pulse, which sets an absolute reference point in time. 
This implies that we can no longer work with trel only, and we have to 
account for the full dependence on both t and t′ as illustrated in Eq. (1). 
We can, however, rotate the time axes to the diagonals, which corre-
spond to relative and average times trel and tave and provide additional 
insight to the dynamics (see Fig. 4). Now, in equilibrium, there is no 
change in the spectra along the tave axis; this steady state is achieved 
through a balance of scattering rates for each state. Out of equilibrium, 
there are dynamics along tave, however they are expected to be different 
from those occurring along the trel axis; in general, the dynamics along 
the two directions do not separate. 

One situation where we can make some progress is when  

1. We are making measurements long after the pump, i.e. when the 
external driving field has returned to zero.  

2. The time dependence along the measurement time (tave) is slow 
compared to the time dependence along trel. 

In this case, the time dependence along tave may be mapped onto the 
parameters of the correlation function. For example, the scattering rate 
Γ may acquire an average time dependence: Γ(tave): 

Fig. 1. Lesser Green’s function in equilibrium for non-interacting electrons as a function of relative time trel. Here, the temperature satisfies T = 1.  
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G<
kσ(t, t

’) = if (ξk)e
−iξk×trel e−Γ(tave)×|trel |, (21)  

as illustrated in Fig. 4. We can subsequently take the Fourier transform 
along trel (which is allowed because the support of the signal is limited to 
a regime where there is essentially no tave dependence) approximating 
the average time dependence of the parameters to be fixed as trel varies. 
Typical parameters that are modeled to change as a function of tave are 
the electronic/lattice temperature, scattering rates (in a Drude 
formalism), order parameters (e.g. superconducting gaps), or lattice 
vibration (phonon) frequencies. In a few cases, the self-energy itself has 
been treated as weakly average-time dependent, although the times 
scales are harder to separate in the self-energy. 

The positive side of using (average) time dependent parameters is 
that it makes a direct connection to equilibrium physics and is easy to 
interpret. However, it also means that we are forcing nonequilibrium 

behavior into an effective equilibrium form, and hence it must be 
limited. Moreover, it is difficult to tell when these approximations are 
valid, and when they break down, but it is also clear that one would not 
expect that the average time dependence of a parameter would always 
be fixed as the relative time varies. So this approximation must become 
inaccurate at some point. In fact, it was shown both experimentally [3] 
and theoretically [4] that a direct connection between the 
out-of-equilibrium average time decay rate Γ(tave) and the equilibrium 
self-enery Σ breaks down except in very simple cases (see e.g. Refs. 
[5–8]). We discuss this further in Section 5.1. 

3. Gentle introduction to Keldysh Green’s Functions 

In Section 2, we have introduced the “lesser” and “retarded” com-
ponents of the Green’s function. These different components arise from 

Fig. 2. Left: Lesser Green’s function in equilibrium for non-interacting electrons as a function of frequency ω. Right: False color plot of the equivalent band structure. 
Here, T = 1. Both panels include an artificial broadening Γ of 0.01 in order to be able to represent the otherwise infinitely sharp spectral lines. 

Fig. 3. Top: Local (momentum-summed) self-energies for various scattering processes. Bottom: resulting equilibrium ARPES spectra.  
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the various orderings of the creation/annihilation operators in the 
Green’s function. For example, the greater/lesser components are given 
by 
G>

kσ(t, t
′

) = −i
〈

ĉ
†
kσ(t)ĉ

†
kσ(t

′

)
〉 (22)  

G<
kσ(t, t

′

) = i
〈

ĉ
†
kσ(t

′

)ĉ†
kσ(t)

〉 (23)  

These correspond to the unoccupied/occupied states, respectively, 
which can be seen from the fixed ordering of the operators. Alterna-
tively, these are single-particle hole/electron excitations. The names 
“lesser” and “greater” come from the ordering of the times along the 
Keldysh contour described below. Note that these Green’s functions are 
not causal or acausal, but they exist for all values of the two times. The 
other relevant component, the retarded Green’s function, combines the 
two to form the full spectrum (including the causal unit step function) 
GR

kσ(t, t
′

) = θ(t − t
′

)(G>
kσ(t, t

′

) − G<
kσ(t, t

′

)) (24)  

= −iθ(t − t
′

)
〈
{ĉ

†
kσ(t), ĉ

†
kσ(t

′

)}
〉 (25)  

In the frequency domain, the spectra of the greater/lesser Green’s 
functions correspond to the unoccupied/occupied spectra, and the 
spectrum of the retarded Green’s function to the full spectrum. In other 
words, the retarded/advanced Green’s functions tell us about the den-
sity of quantum states, while the lesser/greater Green’s functions tell us 
how those quantum states are occupied. This means the retarded/ 
advanced Green’s functions usually relax to their steady-state values 
before the lesser/greater Green’s functions do so. 

Since photoelectron spectroscopy measures the occupied spectrum 
(both in and out of equilibrium), the relevant Green’s function is always 
the lesser one. However, it is sometimes useful think about changes in 
the spectrum and the occupations separately. This does not always work; 
the spectrum can change as the occupations change in a many-body 
interacting system [9], or to put this another way, there may be signif-
icant self-energy effects on the spectrum. However, when it does work a 
useful framework to treat this is the generalized Kadanoff–Baym 
approximation (GKBA). In this case, we can write G<

kσ 
schematically via 

G<
kσ(t, t

′

) ≈ −GR
kσ(t, t

′

)ρ<
kσ(t

′

) + GA
kσ(t, t

′

)ρ<
kσ(t) (26)  

with ρ<
kσ(t) = −iG<

kσ(t, t) is an effective time-dependent density for mo-
mentum k and spin σ. This is useful for some calculations; but has a 
mean-field-like character to its spectral moments as described in 
Ref. [10]. It corresponds to some additional approximations, similar to 
the quantum Boltzmann equation, which we will discuss below. 

4. tr-ARPES from G< 

Going beyond an approximate equilibrium based on slowly varying 
time-dependent parameters requires obtaining the full, two-time 
dependent G<

kσ
(t, t′ ); this is usually accomplished via numerical means 

as closed form expressions are difficult to obtain for interacting systems. 
The numerical approaches include exact diagonalization (appropriate 
for small clusters), non-equilibrium Dyson equation solvers [11], 
embedding methods such as nonequilibrium dynamical mean field 
theory [12,13], or time domain density matrix renormalization group 
[14]. Each method has their own pros and cons, but eventually they all 
evaluate Eq. (5) in one way or other. After this is done, time-resolved 
ARPES is obtained via post-processing. Following Freericks et al. [15], 
the formal expression for the time-resolved ARPES signal is found to be a 
Gaussian-windowed Fourier transform along trel, with the window s 
(t − t0) centered around tave = t0: 

I(k,ω, t0) =

∫ ∞

−∞

dtdt
′

G<
k (t, t

′

)s(t − t0)s(t
′

− t0)e
−iωtrel , (27)  

where s(t) = exp(− t2/2σ2) and σ is the width of the Gaussian window 
that sets the trade-off between energy and time resolution (one sums 
over both spin components as well, not shown, when the spin of the 
electron is not measured). A small window provides good time resolu-
tion, but is only able to resolve the fastest (highest energy) oscillations 
and is thus limited in energy resolution. Conversely, a wide window will 
smear the dynamics along tave, but is able to resolve small energy fea-
tures. When multiple bands are present, that is, the Green’s function has 
band (or orbital) indices G<

k,a,b,σ , band (orbital) dependent matrix ele-
ments may also play a role. Note that the probe envelope functions 
depend on t and t′, respectively, which mixes the average and relative 
time dependence. This governs why one cannot think of spectra as 
occurring at a specific time. 

Explicit calculations are always performed in a specific gauge. While 
the total photoemission signal calculated in this gauge is gauge- 
invariant, the ARPES calculation is not, and hence one needs to pay 
attention to gauge-invariance properties of the photoemission spectra. 
For single-band tight-binding-based models, the solution has been to 
instead use the so-called gauge-invariant Green’s function to calculate 
the response function [16]. When one works with multiple bands, the 
situation is much more complicated, as matrix element effects must be 
explicitly taken into account. Recent work has shown that this can be 
handled, at least in principle, but it can greatly complicate the formalism 
[17]. Of course, even for single-band models, the gauge-invariance 
properties become more complicated when one includes 
matrix-element effects in the expressions used to determine the theo-
retical signal. 

5. Observed dynamics 

With the conceptual basis of time-resolved ARPES in hand, we now 
turn to the observed dynamics. In this section, we illustrate some of the 
phenomena that can be described by model-system calculations using 
advanced numerical methods. 

5.1. Population dynamics 

The primary observable in trARPES tends to be the population dy-
namics; experiments are good at tracking the number of carriers in the 
(otherwise) unoccupied states. Beyond the initial identification of the 
unoccupied band structure (made visible by non-equilibrium pumping 
into thermally unoccupied states), the second quantity of interest is the 
transfer of the electron population from one state to another. For 
example, experiments on a topological insulator Bi2Se3 showed that 
while electrons rapidly disappear from the bulk conduction band, the 
dynamics of the topological surface state are much slower [18]. More 

Fig. 4. Illustration of the two-time retarded Green’s function GR(t, t′). Due the 
pump, the decay rate τ−1 undergoes a decrease and subsequent increase as a 
function of tave, which is reflected in the longer range of the oscillations. The 
figure also illustrates the relationship between the t, t′ and tave, trel directions. 
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detailed analysis may reveal intricate details of the population dy-
namics, which has been applied to a wide variety of systems [19,20,3, 
21–23] 

A question arose from this work: what do the obtained dynamics 
(typically decaying exponentials) correspond to? This particular point is 
where the connection to equilibrium breaks down; the decay rate along 
trel, which is related to the equilibrium self-energy via Eq. (20), is not the 
same as the population decay rate(s) (long tave) observed with trARPES. 
This divergence was pointed out experimentally by Yang et al. [3]., who 
demonstrated that in the high-Tc cuprates the (equilibrium) line width 
was much larger than the population decay rates. 

We can gain some insight into this question by considering well- 
defined quasi-particles (which exist when the line width is not large) 
some time after the pump. First, let us assume the relationship between 
the occupations and the spectrum (the fluctuation-dissipation theorem) 
above in Eq. (16) holds, but with a tave dependence as 
G<

kσ(tave,ω) = −2if G
k (tave)ImGR

kσ(tave,ω) (28)  

where fG
k (tave) is the occupation of the state k at time tave; it is a gener-

alization of the Fermi function to an arbitrary nonequilibrium occupa-
tion function. We write a similar relation for the self-energy, with 
fΣ
k (tave). For on-shell quasi-particles (i.e. at ω = ξk), the population dy-

namics then obey the differential equation [24] 
dnk(tave)

dtave

= 4Im
[
ΣR(tave, ξk)

]
Im

[
GR(tave, ξk)

]

×
[
f G(tave, ξk) − f Σ(tave, ξk)

] (29)  

The quantities in this equation are nk(tave)—the population in mo-
mentum state k and the spectra (densities of states) of the interactions 
ΣR(tave, ξk) and the Green’s function GR(tave, ξk). Note that on the right 
hand side, the term controlling the dynamics is the difference in occu-
pation functions for G and Σ, rather than nk(tave) (which would have led 
to simple exponential decay); in equilibrium, both occupation functions 
revert to the same Fermi–Dirac distribution function and the time de-
rivative of the populations vanishes. This balance between the occupa-
tion functions is the origin of much of the observed dynamics and the 
mismatch of nonequilibrium dynamics from the equilibrium intuition. 

This analysis, coupled with further theoretical work [4], showed that 
one or more of the population decay channels can saturate, which re-
solves the experimental dilemma. The most extreme example of this is 
impurity scattering, which contributes to the line width but does not 
contribute to the population decay rate. The underlying reason for this is 
that any population decay must dissipate energy, and impurity scat-
tering (in the Born approximation) is elastic. Similar considerations arise 
for el–el scattering; the role el–el scattering plays is proportional to how 
far an electronic system is from a thermal distribution. Since the elec-
tronic system can be at effective temperatures far above the lattice (its 
thermal bath), electron-phonon dominated dynamics continue even as 
the el–el dynamics shut off. This was experimentally verified by Rameau 
et al., who showed that in a strongly correlated system, the dynamics 
after the pump were dominated by electron–phonon scattering [25,26]. 

The underlying reason for this is that the population dynamics are in 
a sense determined by that of energy transfer. Elastic impurity scattering 
can at most redistribute momentum, and thus once a momentum bal-
ance in the Brillouin has been restored, it no longer plays a role. Simi-
larly, Coulomb scattering maintains the energy within the electronic 
system, and thus can at most lead to quasi-thermalization of the elec-
tronic subsystem. However, electron-phonon scattering can take energy 
out of the electronic populations, and thus determines dynamics over a 
longer time scale. In fact, this can lead to the electron-phonon coupling 
entirely dominating the time dynamics even in strongly correlated sys-
tems, as was shown by Rameau et al. [25] who demonstrated this for the 
high-Tc cuprates. 

5.2. Changes in spectral shape 

The self-energy strongly depends on the populations, and thus can 
acquire dynamics as well. This results in changes to the spectral line 
shape, which can be resolved using trARPES [27–29]. These observa-
tions were interpreted as a decoupling of the electrons and phonons 
because the kink in the quasiparticle bandstructure softened. However, 
this is a place where equilibrium intuition also fails. As was shown by 
Kemper et al. [11], the weakening of the kink can simply be understood 
by observing that the sharp structures in the electron-phonon self-energy 
(c.f. Fig. 3) become less sharp after a pump, and this weakens the kink in 
the quasiparticle band structure. Similarly, one can consider the effect of 
the pump to produce a higher effective temperature for the electrons, 
which would yield the same changes in the spectra. 

5.3. Excitons 

Recently, trARPES has been used to observe bound states of electrons 
and holes, namely excitons [30]. Here, while the overall theoretical 
approach outlined above becomes more complex in order to take into 
account two-particle bound objects, the conceptual framework can be 
similar as that developed by Freericks et al. [15]. However, unlike for 
the single-particle excitation spectra, the topic of observing excitons 
with photoemission is still evolving; in addition to the simple questions, 
complications arise due to the possibility of exciting virtual excitons or 
coherences [31]. Several theoretical efforts have begun in this direction, 
showing that the resulting spectra are a complex mixture of the valence 
and conduction bands [32–37]. Experimentally, in the two-dimensional 
di-chalcogenide materials, where the exciton binding energy is high, a 
direct excitation into the exciton yields a clear signature in trARPES [38, 
23,39–41]. 

6. From NEGF to quantum Boltzmann to N-temperature models 

Alternative formulations to the full non-equilibrium Green’s func-
tions discussed above are the quantum Boltzmann equation and the 
Boltzmann equation. The latter is essentially a rate equation, where one 
counts the particles scattering into/out of a given state, which has been 
used successfully to interpret population dynamics in various settings 
[42,43]; however, along the way several approximations are made that 
neglect some of the potential effects discussed above. We will outline 
these approximations, and indicate the effects of the approximation. 
This brief outline is further detailed by Kamenev [44]. 

(i) The time axes are rotated to tave/trel. Similar to the above, assume 
that the non-equilibrium dynamics of the system are slow compared to 
the inverse energies of the system; this lets us Fourier transform trel → ω. 
This approximation disregards time dynamics on fast time scales. 

(ii) Perform a gradient expansion in ∂
∂t and ∂

∂ω
, that is, keep terms to 

linear order in a series expansion. This limits the ways that the in-
teractions can change. At this point, we have recovered the quantum 
Boltzmann equation. Here, the Dyson equation’s history kernel (that 
leads to non-Markovian dynamics) has been removed via the gradient 
expansion, and only single-time dynamics remains. 

(iii) We assume that all the quasi-particles live on-shell. In other 
words, the quasi-particle distribution is infinitely sharply peaked around 
ω = ξk. This neglects non-trivial many-body effects—which can be quite 
significant—that play a role in the description of the quasi-particles. At 
this point, we find the Boltzmann equation. 

(iv) The Boltzmann equation, combined with considerations of en-
ergy conservation and approximating the Fermi/Bose functions for 
electrons and phonons, respectively, leads to the two-temperature 
model (as outlined in Allen [5]). If one has more reservoirs involved 
in the dynamics, one can generalize this to N-temperature models, with 
one temperature for each reservoir. 

One can see that the Boltzmann equation approach (leading 
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ultimately to a rate-equation approach and N-temperature models) in-
volves a significant number of approximations. It should never be 
viewed as a starting point for analysis, but rather should be thought of as 
an approximate description, when the approximations are warranted. 
For example, when we examine the exact many-body dynamics, we say 
that if the Green’s function and the self-energy share the same distri-
bution function, then the population dynamics vanish and the system 
stays in a steady state. This occurs even if the distribution functions are 
not Fermi-Dirac distributions. Hence, it brings in a complex interplay 
between the two different times. Rigorously N-temperature models can 
never be exact, but if the distribution functions are close to Fermi–Dirac 
distributions, they can be quite accurate. This is why we see N-tem-
perature models used so successfully in the analysis of pump-probe 
experiments. 

7. Conclusions 

In this work, we provided a brief overview of how spectral response 
functions are modified in a nonequilibrium setting, especially in a pump- 
probe experiment. While this work only touched the surface, we pro-
vided a clear illustration of why one should not think of spectral re-
sponses as occurring at a definite time. Instead, they mix together the 
responses over a range of times, typically determined by the temporal 
spread of the probe function. While exact theory never allows a rigorous 
separation into time-dependent spectra, with well-defined times, there 
are situations where this becomes a quite accurate description. When the 
time variation along the average time is slow, or as we approach the 
long-time steady state, the system can be more and more accurately 
approximated by slowly varying spectra at “definite” average times. But, 
even in this case, the dynamical rules governing the decay of dynamics 
in the relative-time direction are often quite different from the decay 
dynamics along the average-time direction. This helps explain some of 
the puzzling results that can arise when one tries to force equilibrium 
reasoning into a nonequilibrium setting. Oftentimes, it will not work 
perfectly. In many cases the issue is simply with misinterpreting the two- 
time behavior of the response functions. One should always look into 
that first to see if it will clear up misconceptions. 

In this work, we also focused on describing how this behavior occurs 
in the context of tr-ARPES experiments. But the general principles have a 
much wider application. They govern the behavior of all two-time 
response functions. 
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[13] H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, P. Werner, Rev. Mod. Phys. 86 

(2014) 779. 
[14] A.E. Feiguin, in: A. Avella, F. Mancini (Eds.), Strongly Correlated Systems: 

Numerical Methods, Springer, Heidelberg, Berlin, 2013. 
[15] J.K. Freericks, H.R. Krishnamurthy, T. Pruschke, Phys. Rev. Lett. 102 (2009) 

136401. 
[16] R. Bertoncini, A.P. Jauho, Phys. Rev. B 44 (1991) 3655. 
[17] M. Schüler, J.A. Marks, Y. Murakami, C. Jia, T.P. Devereaux, 2021. arXiv:2 

101.01143. 
[18] J.A. Sobota, S. Yang, J.G. Analytis, Y.L. Chen, I.R. Fisher, P.S. Kirchmann, Z.- 

X. Shen, Phys. Rev. Lett. 108 (2012) 117403. 
[19] R. Cortés, L. Rettig, Y. Yoshida, H. Eisaki, M. Wolf, U. Bovensiepen, Phys. Rev. Lett. 

107 (2011) 097002. 
[20] C.L. Smallwood, J.P. Hinton, C. Jozwiak, W. Zhang, J.D. Koralek, H. Eisaki, D.- 

H. Lee, J. Orenstein, A. Lanzara, Science 336 (2012) 1137. 
[21] M. Na, A.K. Mills, F. Boschini, M. Michiardi, B. Nosarzewski, R.P. Day, E. Razzoli, 

A. Sheyerman, M. Schneider, G. Levy, et al., Science 366 (2019) 1231. 
[22] I. Gierz, J.C. Petersen, M. Mitrano, C. Cacho, I.C.E. Turcu, E. Springate, A. Stöohr, 
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