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mechanics classroom
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The Landau–Zener problem, where a minimum energy separation is passed with constant rate in a

two-state quantum-mechanical system, is an excellent model quantum system for a computational

project. It requires a low-level computational effort, but has a number of complex numerical and

algorithmic issues that can be resolved through dedicated work. It can be used to teach

computational concepts, such as accuracy, discretization, and extrapolation, and it reinforces

quantum concepts of time-evolution via a time-ordered product and of extrapolation to infinite time

via time-dependent perturbation theory. In addition, we discuss the concept of compression

algorithms, which are employed in many advanced quantum computing strategies, and easy to

illustrate with the Landau–Zener problem. # 2023 Published under an exclusive license by American
Association of Physics Teachers.

https://doi.org/10.1119/5.0139717

I. INTRODUCTION

The Landau–Zener problem is an exactly solvable prob-
lem in quantum mechanics that describes how a quantum
particle tunnels between two states as a function of the speed
with which it traverses an avoided crossing.1,2 The exact
solution involves mapping the time-dependent Schr€odinger
equation onto the so-called Weber equation, which is solved
with parabolic cylinder functions. However, because these
functions are not so familiar to most students, this mapping
is rarely taught. Instead, because the system is just a two-
state system, one can compute the results numerically. This
brings in issues related to discretization and to accuracy,
which can be particularly acute for high accuracy because
the solution has slowly decaying oscillations that make
determining the final tunneling probability challenging with-
out invoking some form of averaging. Instead, one can use
time-dependent perturbation theory to append the long-time
results and achieve much higher accuracy solutions.

This makes the Landau–Zener problem an excellent
choice for a computational project in a quantum mechanics
class. The time evolution, via a Trotter product formula, is
easy to code. Appending the time evolution at long times
requires a mastery of time-dependent perturbation theory
and the interaction representation. Modifying the discretiza-
tion size and the time cutoff for the time evolution allows
students to understand issues related to the accuracy of the
computation. Finally, this specific problem has a few differ-
ent compression strategies that can be employed—these
strategies replace the product of a string of operators by a
single operator exactly equal to the product. Compression
strategies are employed in quantum computing to reduce the
depth of a quantum circuit.3,4 Here, one can learn how such
compression strategies work and how to parameterize SU(2)
rotations in two different ways to complete the compression.

In this work, we describe a student-led project on the
Landau–Zener problem that will enable students to learn
many of these different topics related to quantum mechanics
and computation. This can be achieved even with beginner
to intermediate competency with programming because the

codes required are quite simple to implement. It also pro-
vides a nice mix between formal development and computa-
tional work, similar to much of contemporary research.

The Landau–Zener problem was originally solved in 1932
by Landau,1 Zener,2 Stueckelberg,5 and Majorana.6 We also
have found it discussed in two textbooks: Konishi and
Pafutto7 and Zweibach.8 Interestingly, the Landau–Zener
problem is not widely discussed in other quantum mechanics
textbooks, even though it is ubiquitous in modern physics.
Historically, it was initially applied to inelastic atomic and
molecular collisions. Beyond collisions, two-level systems
that exhibit nonadiabatic transitions include Rydberg atoms
in rapidly rising electric fields, qubit states in an NV center
in diamond, and double-quantum dots. Other systems include
qubits based on Josephson junctions, charge qubits in semi-
conductor quantum dots, graphene devices with an avoided
crossing near the Dirac point, ultracold molecules in a laser
trap, and even time-resolved photoemission in charge-den-
sity-wave systems. A discussion of many of these applica-
tions is given in a recent review article.9

The problem has also been discussed in the pedagogical
literature. One study explores the accuracy of Runge–Kutta
integration of the Schr€odinger equation,10 while another uses
the Landau–Zener approximation,11 which turns out not to
be very accurate. The problem is mapped to the problem of a
sphere rolling without slipping12 and solved classically, and
it is also solved using a simple conceptual approximation
that averages probabilities, not probability amplitudes, due
to the fast oscillations.13 Finally, another approach uses con-
tour integrals.14 Our work focuses on developing a computa-
tional project that employs perturbation theory, compression,
and numerical evaluation of the time-ordered product to
explore the interesting physics and numerics.

The remainder of the paper is organized as follows: In
Sec. II, we introduce the Landau–Zener problem and discuss
the Pauli spin matrix identities needed to work with the prob-
lem. In Sec. III, we describe the discretized time evolution
via the Trotter product formula. In Sec. IV, we illustrate how
time-dependent perturbation theory can append the time evo-
lution of the semi-infinite tails using the interaction picture
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in a first-order expansion. Compression algorithms are dis-
cussed in Sec. V, followed by implementation strategies for
the classroom and conclusions in Sec. VI.

II. THE LANDAU–ZENER PROBLEM AND PAULI

SPIN-MATRIX IDENTITIES

The Landau–Zener problem consists of determining the
probability to transition from the ground-state to the excited
state of a two-level system, after the two states approach
each other with an avoided crossing and then depart from
each other. The Landau–Zener system is described by the
Hamiltonian,

ĤðtÞ ¼
vt d

d �vt

 !
¼ vtrz þ drx; (1)

where t is time, v is the rate at which the two levels approach
each other, and d is the coupling between them that deter-
mines the minimal energy gap (2d) of the avoided crossing
(occurring at time t¼ 0). Both v and d are real numbers with
units of energy/time and energy, respectively. The symbols
rz and rx represent Pauli spin matrices,

rx ¼
0 1

1 0

 !
; ry ¼

0 �i

i 0

 !
; rz ¼

1 0

0 �1

 !
:

(2)

By diagonalizing the Landau–Zener Hamiltonian using time
as a parameter, one obtains two instantaneous eigenenergy
levels shown in Fig. 1(a). Initially, when t ¼ �1, the two
energy eigenvectors jw6i given by

jwþi ¼
1

0

� �
and jw�i ¼

0

1

� �
(3)

are infinitely separated in energy and the system starts in the
ground-state jwð�1Þi ¼ jwþi. As the system evolves with
time, the two levels EþðtÞ (the upper instantaneous energy
level) and E�ðtÞ (the lower instantaneous energy level)
approach each other as t! 0 and then move apart as
t!1. Because the ground state smoothly changes from
jwþi as t! �1 to jw�i as t!1, the probability to remain
in the ground state for large positive times is given by
P�ðtÞ ¼ jhw�jwðtÞij

2
. Similarly, the probability to end in the

excited state at long times is given by PþðtÞ ¼ 1
�P�ðtÞ ¼ jhwþjwðtÞij

2
. We are interested in both of these

probabilities when t!1; Pþð1Þ and P�ð1Þ.
As shown in Fig. 1(a), to transition from the lower-energy

state to the higher-energy state, when traversing the avoided
crossing, the system has to tunnel through a gap of size at
least 2d, so the probability to transition is associated with a
tunneling process. Depending on the value of the rate v and
the level separation d, we distinguish between two types of
transitions. If the system evolves adiabatically, that is,
extremely slowly, it will always remain in the lower-energy
state (the lower band); that is, it will make perfect transitions
from one instantaneous ground state to another along its time
evolution. According to the diagram in Fig. 1(a) this means
that around t¼ 0 there will be a slow and smooth transition
from jwþi to jw�i. If we let the system evolve diabatically
(fast), it tunnels from the lower to the upper band. The

objective of the Landau–Zener calculation is to precisely
determine these probabilities as functions of v and d.

Zener2 solved the full time-dependent problem analyti-
cally by mapping the equation of motion of the system into
the form of the Weber equation, which allowed him to obtain
the exact solution Pþð1Þ ¼ exp ð�pd2=�hvÞ. Here, we pre-
sent a computational approach to find the same solution
numerically.

The first issue that arises when considering this problem
from a numerical perspective is how to deal with the infinite
times. Numerical simulations work with finite times, so how
does one effectively start with a state at t¼ –1 and obtain a
result at t¼þ1 on a computer? It is usually assumed that
starting in the state jwþi at some sufficiently large (but finite)
negative time is justified and will lead to an accurate numeri-
cal solution. However, the Landau–Zener problem is known
for its slowly decaying oscillations of the transition probabil-
ity PþðtÞ with time, which are illustrated on the right hand
side of Fig. 1(b) and in Fig. 1(c). Although the time evolu-
tion of a two-level system is a simple problem to solve
numerically and is not computationally demanding, the per-
sistence of these slowly decaying oscillations presents a

Fig. 1. (Color online) Landau–Zener system: (a) Time evolution of the two

instantaneous eigenenergy levels E6ðtÞ ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2t2 þ d2

p
(the upper blue and

the lower orange curve). At time t¼ 0, the two levels are separated by the

minimal energy gap of Eþð0Þ � E�ð0Þ ¼ 2d. The green lines show the

crossing of the (d¼ 0) energy levels 6vt at time t¼ 0 in a system that has no

coupling between the levels. The time evolution algorithm that we use is

divided into three parts. The initial state jwð�TmaxÞi is obtained either using

perturbation theory applied to jwþi at t¼ –1 (what we consider as the per-
turbed state) or is set to jwþi at �Tmax (what we consider as the unperturbed
initial state). This initial state is then propagated towards jwðTmaxÞi using an

evolution operator in the Trotterized form with a time step of Dt. An

additional perturbation is applied to jwðTmaxÞi to obtain the final state at

t¼þ1, or jwðTmaxÞi is considered to be the final state (for the two different

types of calculations). (b) Time evolution of the computed transition proba-

bility PþðtÞ ¼ jhwþjwðtÞij
2

compared to the expected probability Pþð1Þ
obtained from the analytical expression for the Landau–Zener transition.

The rate is v ¼ p and d¼ 1; we use these same parameters for all of the

numerical calculations in this paper. The inset in panel (c) shows the fast

oscillations of the transition probability PþðtÞ with time on a backdrop of

width vt2 ¼ 4Np (gray and white background), showing that these oscilla-

tions have a period proportional to �t2. The amplitude of these oscillations

for the interval ½�Tmax; Tmax� decays quite slowly with Tmax (as a power law)

unless corrected by the time-dependent perturbation theory.
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serious problem in accurately determining the transition
probability as t!1. This problem might seem trivial here,
since the analytical solution is known, but it becomes impor-
tant for generalizations of the Landau–Zener problem, where
the level separation is not linear in time and the exact solu-
tion is not known. In our numerical approach, we show how
the time evolution can be divided into three parts, where
propagation from �1 to some cutoff time and from another
cutoff time to þ1 can be resolved using time-dependent
perturbation theory (see the gray areas in Fig. 1(a)), whereas
the evolution on the finite time interval between the cutoffs
can be computed using the Trotter product formula, which
discretizes the time evolution operator. We discuss both
these approaches in more detail in Secs. III–VI.

Before we explain how to implement these quantum-
mechanical concepts, we have to establish some mathemati-
cal prerequisites necessary to understand time evolution in
quantum mechanics and time-ordered products of
Hamiltonians based on Pauli matrices (two-level systems).
Pauli matrices satisfy the commutation relations,

ri; rj½ � ¼ rirj � rjri ¼ 2i
X

k

eijkrk; (4)

where the indices i, j and k represent the coordinates x, y,
and z, the factor 2i is twice the imaginary number i, and eijk

is the Levi-Civita (completely antisymmetric) tensor; this is
a tensor that is equal to 1 when ijk is an even permutation of
123, is equal to –1 when ijk is an odd permutation of 123,
and vanishes otherwise. Similarly, their anticommutator is
given by

fri; rjg ¼ rirj þ rjri ¼ 2dijI; (5)

where I is the unit matrix and dij is the Kronecker delta func-
tion. These two expressions can be combined to create the
product formula for any two Pauli matrices,

rirj ¼ dijIþ i
X

k

eijkrk: (6)

The product formula is useful for evaluating the exponentials
of weighted sums of Pauli matrices, which are needed to
construct the time evolution operators. The exponential of a
linear combination of Pauli matrices can be expanded into an
infinite series

ei~c�~r ¼
X1
n¼0

ði~c �~rÞn

n!
: (7)

Here,~c is a 3-component vector of real numbers and the dot
product is understood as ~c �~r ¼ cxrx þ cyry þ czrz (which

is a 2� 2 matrix). The quadratic term ði~c �~rÞ2 in the series is
computed by using the product formula for two Pauli matri-
ces. One obtains

ði~c �~rÞ2 ¼ �
X

i

X
j

cicjrirj ¼ �
X

i

ciciI ¼ �j~cj2I:

(8)

Here, the
P

ijeijkcicjrk term is zero because one can inter-
change the i and j indices in the summation and show that
eijkcicjrk ¼ �eijkcicjrk. The infinite sum can then be broken

into two sums—those involving even powers and those
involving odd powers. Each can be resummed to yield cosj~cj
or sinj~cj. This simplification yields the generalized Euler
identity for Pauli matrices,

ei~c�~r ¼ cos j~cj Iþ i sin j~cj~c �~rj~cj ; (9)

which transforms the symbolic expression for an exponential
of the Pauli matrices into a concrete 2� 2 matrix. This result
will be employed in computing the time-evolution operator.
We also use the product formula of two Pauli matrices to
compute the product of two exponentials of linear combina-
tions of Pauli matrices via

ei~c�~rei~c 0 �~r ¼ cos j~cj cos j~c 0j � sin j~cj sin j~c 0j~c �~c
0

j~cjj~c 0j

� �
I

þi cos j~cj sin j~c 0j ~c
0

j~c 0j þ sin j~cj cos j~c 0j ~cj~cj

�

�sin j~cj sin j~c 0j~c �~c
0

j~cjj~c 0j

�
�~r: (10)

It is important to emphasize that, unlike exponentials of real
numbers, the expression ei~c�~rei~c 0 �~r ¼ eið~cþ~c 0Þ�~r does not gener-
ally apply for exponentials of Pauli matrices. The reason for
this is the last term in Eq. (10) with the scalar triple product.
When this term is present, the product of the two exponen-
tials does not commute and they cannot be interchanged. In
the case when two vectors ~c and ~c 0 are colinear, then the
triple-product term vanishes, the two coefficients can be
summed, and the two exponentials do commute.

III. COMPUTATIONAL APPROACHES TO THE

TIME-ORDERED PRODUCT

Regardless of how we propagate from t¼ –1 to t ¼ �Tmax

(and t ¼ Tmax to t ¼ 1), we still must use the computer to
explicitly propagate from t ¼ �Tmax to t ¼ Tmax. To time
evolve the state jwð�TmaxÞi to the state jwðTmaxÞi, we must
apply the appropriate time-evolution operator. The time-
evolution operator satisfies

jwðtÞi ¼ Ûðt; t0Þjwðt0Þi (11)

and depends on the initial time t0 and the final time t. The
time-evolution operator can be found from the facts that it
must be unitary (so that it preserves the norm of the state at
any time jhwðtÞjwðtÞij2 ¼ 1) and that it must have the “semi-
group property,” which implies that time evolution is addi-
tive. In other words, evolving the state from t0 ! t0 and from
t0 ! t is the same as directly evolving the state from t0 ! t.
Since the Hamiltonian must govern the time evolution,
we are led to Ûðt; t0Þ ¼ e�ði=�hÞðt�t0ÞĤ for time-independent
Hamiltonians because the sign in the exponent is determined
by convention.

In the time-dependent case, we determine the full evolu-
tion operator by considering the time evolution over a short
time interval from t to tþ Dt. We simply assume that the
time interval is short enough that we can take ĤðtÞ as being
piecewise constant (over the time interval of length Dt) and
use the constant Hamiltonian time evolution operator for this
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 23 July 2025 17:26:45



piecewise constant Hamiltonian over the short interval Dt.
Then,

Ûðtþ Dt; tÞ ¼ e�ði=�hÞĤ tð ÞDt: (12)

By applying a sequence of these operators one can construct
a discretized version of the evolution operator,

Ûðt; t0Þ ¼ Ûðt; t� DtÞÛðt� Dt; t� 2DtÞ � � �
� � � Ûðt0 þ 2Dt; t0 þ DtÞÛðt0 þ Dt; t0Þ; (13)

which approaches the exact evolution operator as Dt! 0. This
is called the Trotter product formula. In the limit of Dt! 0, the
time-ordered product is conventionally written as

Ûðt; t0Þ ¼ T exp � i

�h

ðt

t0

Ĥðt0Þdt0

 !" #
; (14)

where T is the time-ordering operator, which orders times
with the “latest times to the left.”

In our numerical approach to the Landau–Zener problem,
the time evolution over the finite interval �Tmax � t � Tmax

is performed via the Trotter product formula with the time
step Dt. We write the evolution operator ÛðTmax;�TmaxÞ as a
time-ordered sequence of exponentials of the Landau–Zener
Hamiltonian

Ûðtþ Dt; tÞ ¼ e�ði=�hÞ vtrzþdrxð ÞDt

¼ cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2t2 þ d2

p Dt

�h

� �
I

�i
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2t2 þ d2

p Dt

�h

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2t2 þ d2

p Dt

�h

vtrz þ drxð ÞDt

�h
;

(15)

after using the generalized Euler identity for the exponentials
of the Pauli matrices in Eq. (9). Each of the exponential
Trotter factors Uðtþ Dt; tÞ is now a concrete 2� 2 matrix
that acts on the state at a given time. Here, we use the expo-
nentiated linear superposition of Pauli matrices with the vec-
tor~c ¼ �ðDt=�hÞðvt; 0; dÞ (which is a time-dependent vector)
for each Trotter factor. Note that, in general, exp ½iðarz

þbrxÞ� 6¼ exp ðiarzÞ exp ðibrxÞ because the matrices rz and
rx do not commute, as explained in Sec. II. However, if the
coefficients a and b are very small, as in the case of Eq. (15)
for Dt! 0, then exp ½iðarz þ brxÞ� � exp ðiarzÞ exp ðibrxÞ
because the error corresponding to the commutator of the
two terms is on the order of �Dt2. Thus, if the evolution
operator is written in the Trotter product form, when Dt is
sufficiently small, one can approximate a Trotter factor via

Ûðtþ Dt; tÞ � eði=�hÞvtrzDte�ði=�hÞdrxDt; (16)

which we call the split-form of the evolution operator. We
contrast this to the evolution operator in Eq. (15), that we
call the exact form since there is no approximation (except
assuming the Hamiltonian is constant over the time interval
Dt). The evolution operator expressed in the split form is
accurate to the order of Dt2, so the two forms should
approach one another in the limit of Dt! 0.

The operator in the split form has an additional interesting
feature. The exponentials of the rx matrix exp ð�ði=�hÞdrxDtÞ
in the Trotter product sequence are constant for a fixed time
step Dt, whereas the rz terms exp ð�ði=�hÞvtrzDtÞ depend on
time t. At special times, Tn, the exponent will satisfy the con-
dition vTnDt=�h ¼ 2np. At these times, the given Trotter com-
ponent with rz (in the split form) is a unit matrix. The next
rz component in the Trotter product will have the exponent
vðTn þ DtÞDt=�h, which is the same as the earlier term
vðTn�1 þ DtÞDt=�h and the same as the even earlier time
vDtDt=�h, and so on. This means that in the split form, the
Trotter product repeats with period T ¼ 2p�h=ðvDtÞ.
However, we know that the exact time evolution operator is
not periodic. Thus, this periodicity is an artifact of using the
split form. It means that we must choose a Dt such that the
split form is not close to its periodic behavior over the inter-
val �Tmax � t � Tmax. If we do not, then the accumulation
of error in the split form leads to the transition probability
repeatedly switching between Pþð�T=2Þ and PþðT=2Þ as
time passes through different Tn points. To obtain precise results
using the split method, we should pick Dt so that T > Tmax, ide-
ally Tmax no larger than one fourth of the period T=4.

We now discuss how to perform the numerical calculation.
The time evolution can be implemented in two different
ways. One can write a function that computes the time-
evolution operator Ûðtþ Dt; tÞ at every time step and applies
it to the state jwðtÞi to obtain jwðtþ DtÞi (propagating the
state), or one can multiply this time-evolution operator with
the accumulated time-evolution operator for all previous
times Ûðtþ Dt;�TmaxÞ ¼ Ûðtþ Dt; tÞÛðt;�TmaxÞ (propa-
gating the operator). In the latter case, the state is obtained
from jwðtþ DtÞi ¼ Ûðtþ Dt;�TmaxÞjwð�TmaxÞi.

Using the Trotter product formula combined with the gen-
eralized Euler identity for each Trotter factor enables the
numerical solution of the Landau–Zener problem on the
finite time interval ½�Tmax; Tmax�. Since we are working with
2� 2 matrices that have an explicit form for each time step,
this time evolution is relatively straightforward to program.
However, we still need to determine the initial state
jwð�TmaxÞi. In Sec. IV, we explain how to include the time
evolution operator over the two semi-infinite intervals by
using the interaction picture and the time-dependent pertur-
bation theory.

IV. EXTRAPOLATION TO INFINITE TIME WITH

TIME-DEPENDENT PERTURBATION THEORY

The roadblock to analytically determining the evolution
operator for the Landau–Zener problem in Eq. (1) is the lin-
ear time dependence of the rz term and the fact that the two
Pauli matrices (rz and rx) do not commute. This makes the
time-ordered product in Eq. (14) virtually impossible to
solve analytically.

For large positive and negative times, we must use time-
dependent perturbation theory. However, while in conven-
tional quantum instruction, the unperturbed Hamiltonian is
always chosen to be the time independent piece and the per-
turbation is time dependent, here, the unperturbed part of the
Hamiltonian is the large piece (the rz piece for large jtj), and
the perturbation is the constant piece (the rx piece). So, we
split the Landau–Zener Hamiltonian into two parts: The
main time-dependent Hamiltonian Ĥ0ðtÞ ¼ vtrz and the
time-independent perturbation V̂ ¼ drx. The evolution oper-
ator is then constructed in the interaction picture via
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Ûðt; t0Þ ¼ Û0ðt; t0ÞÛIðt; t0Þ

¼ Û0ðt; t0ÞT e
� i

�h

Ð t

t0
V̂ Iðt0Þdt0

h i
; (17)

where Û0ðt; t0Þ is the evolution operator for the unperturbed

Hamiltonian Ĥ0ðtÞ, and ÛIðt; t0Þ is the evolution operator for
the perturbation. In the interaction picture, we have

V̂ IðtÞ ¼ Û
†

0ðt; t0Þ V̂ Û0ðt; t0Þ. The time ordered product T in
Eq. (17) is to be understood in the same sense as in Eq. (14),
meaning that we write it as an ordered sequence of exponen-

tials of each term in the integrand V̂ IðtÞ. Note that Eq. (17) is
typically not the exponential of the integral of the operator

V̂ IðtÞ; this only occurs if the integrand commutes with itself
for different times. Note further that the notion of time-
dependent perturbation theory here arises because as t goes

to 61, the unperturbed piece Ĥ0ðtÞ is much larger than V̂ .
We also emphasize that Eq. (17) is exact and does not con-
tain any approximation (the perturbative approximation

arises from Taylor expanding the evolution operator ÛIðt; t0Þ
as we show below).

The evolution operator for the unperturbed Hamiltonian

Ĥ0ðtÞ can be computed analytically because it commutes with
itself for all times. Hence, we can just integrate the unperturbed

piece to find Û0ðt; t0Þ ¼ e�ði=�hÞ ð1=2Þvðt2�t2
0
Þrz . We next use this

exact result to determine the perturbation in the interaction pic-
ture (which is a rotation of the rx matrix about the z-axis). It
becomes

V̂ IðtÞ ¼ e
i
�h

1
2
vðt2�t2

0
Þrzdrxe�

i
�h

1
2
vðt2�t2

0
Þrz

¼ d rx cos
vðt2 � t2

0Þ
�h

� ry sin
vðt2 � t20Þ

�h

� �
; (18)

which can be found by using the generalized Euler identity
to determine each exponential factor and then multiplying
the three matrices together. The strategy of perturbation the-
ory is to approximate the time-ordered product for ÛIðt; t0Þ
in the evolution operator by

Ûðt; t0Þ � Û0ðt; t0Þ I� i

�h

ðt

t0

V̂ Iðt0Þdt0

 !
; (19)

which is accurate for t close to t0, or when V̂ I is “small.”
Directly computing the V̂ IðtÞ operator from Eq. (18) and
then factoring the result in terms of Pauli matrices gives

V̂ Iðt0Þ ¼
0 eði=�hÞvðt

02�t2
0
Þ

e�ði=�hÞvðt
02�t2

0
Þ 0

0
@

1
A;

¼ e�
i
�h

1
2
vt2

0
rz

0 eði=�hÞvt02

e�ði=�hÞvt02 0

0
@

1
A

� e
i
�h

1
2
vt2

0
rz ;

¼ Ẑðt0Þ V̂ 0Iðt0Þ Ẑ
�1ðt0Þ; (20)

where ẐðtÞ ¼ e�ði=�hÞð1=2Þvt2rz . The unit matrix can also be
written as I ¼ Ẑðt0Þ I Ẑ

�1ðt0Þ and Û0ðt; t0Þ ¼ ẐðtÞẐ�1ðt0Þ,
so the evolution operator becomes

Ûðt; t0Þ � ẐðtÞẐ�1ðt0Þ Ẑðt0ÞIẐ
�1ðt0Þ�

i

�h
Ẑðt0Þ

�

�
ðt

t0

V̂ 0Iðt0Þdt0Z�1ðt0Þ
�

¼ ẐðtÞ I� i

�h

ðt

t0

V̂ 0Iðt0Þdt0

" #
Z�1ðt0Þ: (21)

Equation (21) yields an approximate formula for the evolu-
tion operator in the interaction picture for any two times. We

now apply it to compute Ûð�Tmax;�1Þ and Ûðþ1; TmaxÞ.
In the first case, the operator Ẑ

�1ðt0 ¼ �1Þ on the right side
of Eq. (21) can be neglected because we start from an eigen-

state of the rz operator (the jwþi state) and acting with Ẑ
�1

will just produce a global complex phase, which does not
affect the probabilities. In the second case, when computing

Ûðþ1; TmaxÞ the operator on the left side of Eq. (21) (i.e.,

Ẑðt ¼ 1Þ) can be neglected because we are interested only
in the probability Pþð1Þ and that term also just contributes
a complex phase, which cancels out. The matrix integral in
Eq. (21) can be analytically computed in both cases. For

Ûð�Tmax;�1Þ it equals

I� i

�h

ð�Tmax

�1
V̂ 0Iðt0Þdt0 ¼

1 � i

�h
n Tmaxð Þ

� i

�h
g Tmaxð Þ 1

0
BB@

1
CCA;
(22)

where

gðtÞ ¼
ffiffiffiffiffi
p
2v

r
ði� 1Þ

2
1� erf

ffiffiffi
v

2

r
ðiþ 1Þt

 !" #
; (23)

and

nðtÞ ¼
ffiffiffiffiffi
p
2v

r
ðiþ 1Þ

2
1þ erf

ffiffiffi
v

2

r
ði� 1Þt

 !" #
: (24)

Both off-diagonal components of the perturbation matrix,
gðtÞ and nðtÞ, are expressed in terms of the error function

erfðzÞ ¼ 2ffiffiffi
p
p
ðz

0

e�t2 dt; (25)

with a complex argument. The evolution operator obtained
through perturbation theory is approximate and not necessarily
unitary. This means the quantum state must be normalized “by
hand” after applying the approximate evolution operator. In
other words, we renormalize both at time t ¼ �Tmax and at
t ¼ 1. Note that the central integral in Eq. (21) does not
change for Ûðþ1; TmaxÞ, which follows from V̂ 0Ið�tÞ ¼ V̂ 0IðtÞ
and from the change of variables t0 ! �t0, but the ẐðtÞ and
Ẑ
�1ðt0Þ operators do change.
The improvement in accuracy for the calculation that

includes the time-dependent perturbation theory arises from
its use of a more accurate initial state at �Tmax. This
improvement is shown in Fig. 2. In Fig. 2(a), we compare
the phase of the state jwðtÞi obtained by propagating jwþi
from a distant time �Tmax ¼ �1000 (blue curve) with the
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one obtained by perturbation theory as functions of time
(t ¼ Tmax, the orange curve). In general, the amplitude
jhw�jwðtÞij in Fig. 2(b) matches the perturbed and unper-
turbed state, but as shown in Fig. 2(a) they differ by a phase.
This initial phase difference introduces an error for later
times that propagates through the Trotter product. The
advantage of the perturbation theory is that it reduces the
computational demand by reducing the time range
½�Tmax; Tmax� needed for the numerical calculation. Instead
of propagating the state from a very distant past, one can
obtain a precise result for a much smaller Tmax. The perturba-
tion that brings the state to t¼þ 1 is even more important,
because it removes the small but persistent oscillations of the
transition probability, as we show in Sec. VI. Note that dis-
cussing time-dependent perturbation theory provides a num-
ber of benefits to the students: (i) it shows them how to
extrapolate solutions from finite to infinite time; (ii) it illus-
trates how to employ time-dependent perturbation theory in
a nonstandard fashion; and (iii) it shows how small errors in
the initial conditions can propagate in a calculation and
affect results at later times if they are not properly addressed.

V. COMPRESSION ALGORITHMS

In Sec. III, we explained how to compute the time evolu-
tion operator with the Trotter product and time discretization.
Using the generalized Euler identity, the exponents at each
time step can be converted into 2� 2 matrices and the evolu-
tion operator can be computed by matrix multiplication.
Replacing a sequence of exponentiated operators (as in the
Trotter product) with a single exponential operator is called
compression. Sophisticated compression algorithms based on
the Cartan decomposition of Lie groups are employed in
quantum computing to greatly reduce the depth of circuits.3,4

In this section, we show how a simpler application using the
two equivalent ways to represent rotations can be used to

compress the time-evolution operator that we use in the
Landau–Zener problem, which provides a nice opportunity to
show how compression algorithms work in a quantum class.

Instead of computing the evolution operator by matrix
multiplication for each time step, compression relies on com-
bining the exponential parameters (the vectors~c used in each
exponential ei~c�~r factor) into a single vector, for the evolution
operator over the finite time interval. The basic idea for com-
pression comes from the fact that each exponent of a Pauli
matrix represents a rotation on the Bloch sphere. A sequence
of rotations about different axes can be replaced by a single
rotation around a single axis. We focus on two compression
algorithms that could be used to compute the evolution oper-
ator ÛðTmax;�TmaxÞ.

The first algorithm is called XZX compression and it is
based on a mathematical relationship between the Pauli
matrices

e�iarx e�ibrz e�icrx ¼ e�iarz e�ibrx e�icrz ; (26)

where one can compute a, b, and c from the known coeffi-
cients a, b, and c. With the help of the generalized Euler
identity, we convert the left and the right side of Eq. (26)
into 2� 2 matrices and compute the relationships between
the coefficients by equating the four matrix elements of the
final products on each side of the equation. This gives exact
inverse trigonometric relations,

a ¼ 1

2
arctan tan ðbÞ cos ða� cÞ

cos ðaþ cÞ

� �

� 1

2
arctan tan ðbÞ sin ða� cÞ

sin ðaþ cÞ

� �
; (27)

b ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðaþ cÞ þ tan2ðbÞ sin2ða� cÞ
cos2ðaþ cÞ þ tan2ðbÞ cos2ða� cÞ

s24
3
5;

(28)

c ¼ 1

2
arctan tan ðbÞ cos ða� cÞ

cos ðaþ cÞ

� �

þ 1

2
arctan tan ðbÞ sin ða� cÞ

sin ðaþ cÞ

� �
: (29)

As shown in Fig. 3(a), the identity in Eq. (26) can be applied
to the time evolution operator for the Landau–Zener problem
written as a Trotter product in the split-form in Eq. (16).
Here, the Trotter product is a sequence of alternating con-
stant rx and time-dependent rz exponentials (the first row of
Fig. 3(a)). Taking the three exponentials lying inside the red
box in the first row of Fig. 3(a), we apply Eq. (26) and switch
the ordering of the operators to the one in the second row of
Fig. 3(a); that is, we change a product of exponentials in the
form XZX into the form ZXZ. This re-expression of factors
allows the now adjacent rz exponentials on the edges of the
red box on the second line to merge into a single exponential
as emphasized by the red boxes in the third row of Fig. 3(a).
The initial five exponential components are then compressed
into three. This procedure is repeated until the Trotter prod-
uct is reduced to just three exponential factors, which can
each be computed using the generalized Euler formula.

The second compression algorithm is computationally far
more efficient than the XZX compression since it does not

Fig. 2. (Color online) State evolution for different starting conditions: (a) the

real part of the projected wave function Re½hw�jwðtÞi� for the initial state com-

puted as a function of time using perturbation theory jwðtÞi ¼ jwð�TmaxÞi
(orange curve) vs the unperturbed state jwðtÞi computed by the time evolution

from jwþi starting at �Tmax ¼ �1000 (blue curve). (b) Time evolution of the

modulus of the state projection jhw�jwðtÞij computed for the same two starting

conditions as in panel (a).
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require any inverse trigonometric functions. We call this
algorithm the nearest-neighbor algorithm because it involves
merging the neighboring exponentials in the Trotter product
as shown in Fig. 3(b). In contrast to the XZX compression,
which requires the split form of the Trotter product, the
nearest-neighbor compression uses an exact form for each
Trotter factor. This compression algorithm is based on Eq.
(10) for the product of two exponentials ei~c�~rei~c 0�~r ¼ ei~c 00 �~r .
We simply need to construct the vector~c 00 from the known~c
and~c 0. Comparing the generalized Euler formula in Eq. (9)
and its extension to a product of two exponentials in Eq.
(10), we immediately find that

cos j~c 00j ¼ cos j~cj cos j~c 0j � sin j~cj sin j~c 0j ~c �~c
0

j~cjj~c 0j ; (30)

and

sin j~c 00j ~c
00

j~c 00j ¼ cos j~cj sin j~c 0j ~c
0

j~c 0j þ sin j~cj cos j~c 0j ~cj~cj

�

�sin j~cj sin j~c 0j~c �~c
0

j~cjj~c 0j

�
: (31)

The previous two equations connects both the four-
component vector ðcos j~cj; sin j~cj ð~c=j~cjÞÞ for ~c and the one
for ~c 0 with the one for ~c 00. Nearest-neighbor compression
consists in computing these four-component vectors for
every step in the Trotter product and combining them using
Eqs. (30) and (31). If the time interval ½�Tmax; Tmax� is
divided into 2Nc time steps, then the compression can reduce
the Trotter product to a single exponential in Nc iterations
(a logarithmic number of steps). Computationally, this
method is much faster than XZX compression and even the
direct matrix multiplication, but it requires a large amount of
RAM memory for a small time step Dt because the four-
component vectors are kept in memory for every time step,

whereas in the direct multiplication, the evolution operator is
computed “on the fly,” which requires storing only its current
value. The memory requirement can be reduced if the inte-
gration interval ½�Tmax; Tmax� is divided into smaller inter-
vals and compression is applied to each one of them
sequentially.

There are two benefits of this work for the students. First,
they learn about the idea of compression, which is becoming
increasingly important in quantum computing and second,
they learn how one can revise initial algorithms to make
them computationally more efficient, an important skill of
the computational physicist.

VI. IMPLEMENTATION STRATEGIES AND

CONCLUSION

With these technical details completed, we now discuss
how to implement this problem as a class project. Figure 4
shows the numerical accuracy achieved using different
approaches (perturbation vs. no perturbation and exact vs.
split form of the evolution operator), expressed as an error
DP in determining the transition probability at infinity on the
logarithmic scale. The logarithmic scale tells how many dig-
its of accuracy one can achieve using different approaches.
The advantage of the time-dependent perturbation theory is
obvious since the unperturbed result converges very slowly
to the expected probability. The figure also shows how the
accuracy of the split-form of the Trotter product approaches
the accuracy of the exact Hamiltonian for sufficiently small
Dt. The accuracy, in this case, is limited by our choice of
Tmax ¼ 30 so the computed results converge with decreasing
Dt. Similarly, Fig. 5 shows how the integration range
½�Tmax; Tmax� influences the computed transition probability.
The persistent oscillations in the unperturbed system prevent
determining the transition probability beyond two or three
digits of accuracy even for Tmax ¼ 1000. The slow decay of
the unperturbed error suggests that achieving higher accu-
racy in this case is essentially impossible, even with increas-
ing Tmax. The perturbed results show a high accuracy even

Fig. 4. (Color online) The accuracy of the computed transition probability as

a function of the time step Dt. In the case of perturbed results, we compute

the difference as DP ¼ Pþð1Þ �Pþð1Þ, whereas in the case of unper-

turbed results we compute DP ¼ PþðTmaxÞ �Pþð1Þ. Here, Pþð1Þ is the

probability obtained by the exact Landau–Zener formula exp ð�pd2=�hvÞ,
while Pþð1Þ and PþðTmaxÞ are the probabilities computed using the

Trotterized evolution, with or without the perturbation, respectively. We

also compare the accuracy when the Trotter step exponential is evaluated

exactly, or when the Hamiltonian is split between rz and rx terms in each

Trotter step. In all cases, Tmax ¼ 30. High accuracy can only be attained for

this value of Tmax when the infinite tails are included perturbatively.

Fig. 3. (Color online) Schematics of the two possible compression algo-

rithms of the Trotterized evolution operator. The boxes represent exponen-

tial coefficients at every Trotter step. (a) XZX compression, where a rxrzrx

sequence of the evolution operator exponentials in the Trotter-split form is

replaced with rzrxrz sequence, so that neighboring rz components can be

merged together. (b) The nearest neighbor compression method, where two

neighboring Trotter components of the evolution operator (based on the

exact Hamiltonian) are merged together at every compression step.
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for small Tmax. One way to increase the accuracy in the
unperturbed case is to do time-averaging once PþðtÞ starts to
oscillate around the expected Pþð1Þ as done previously,10

but it is difficult to systematically do this when the amplitude
is also decreasing with time, especially to high accuracy. We
also can infer how the split approximation is more sensitive
to Dt errors, since we used a fixed time step, rather than
reducing it as the cutoff time increases; here we see that the
accumulated errors due to the finite size of the time step
worsen the accuracy for large cutoff times. This advanced
computational concept is beautifully illustrated in this pro-
ject. Note that one need not worry about round-off error
associated with matrix multiplications in this work. Those
errors appear to always be much smaller than the other
intrinsic errors of the computational algorithm.

The Landau–Zener problem is a challenging computa-
tional project for quantum-mechanics students, without
requiring any knowledge of the higher level differential
equations that are usually used to solve this problem.
Students really get a taste of how computational physics
works—they need to work through some nontrivial formal-
ism to determine precisely what needs to be calculated and
then they need to carefully program the results and run them.
Finally, they need to examine the accuracy of the results. In
the supplementary material, we provide a well-documented
Python package that includes the codes used to produce the
results presented in this paper. Teams can be formed to work
on implementing different approaches and collaborating to
compare the different outcomes (e.g., perturbation vs. no
perturbation or split Trotter evolution vs. exact Trotter evo-
lution) and discussing the computational efficiency and the
numerical accuracy of each of these approaches. The work-
load necessary to solve this problem goes beyond a simple
homework assignment, but it offers the opportunity for

students to gain deep knowledge of quantum mechanics in a
practical example that will allow them to acquire skills that
are important for computational research.
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