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Abstract
The Morse potential is an important problem to examine due to its applications
in describing vibrations and bond breaking in molecules. It also shares some
properties with the simpler harmonic oscillator, at the same time displaying
differences, allowing for an interesting contrast to its well-studied counterpart.
The solution of the Morse potential is not usually taught in a quantum
mechanics class, since using differential equations makes it very tedious. Here,
we illustrate how to solve the Morse potential using the Schrodinger factor-
ization method. This operator method is a powerful tool to find the energy
eigenvalues, eigenstates, and wavefunctions without using differential
equations in position space, allowing us to solve more problems without
requiring a discussion of hypergeometric or confluent hypergeometric
functions.

Keywords: morse oscillator, physics education, anharmonic oscillator, exactly
solvable model

1. Introduction

Quantum mechanics is usually taught using a position representation where energy eigen-
functions are found by solving the time-independent Schrédinger equation as a differential
equation. Students often find this work challenging because they need to learn the series
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solution method. Furthermore, it is not clear how useful it is to teach this technique, as
modern research rarely uses the Frobenius method.

Another way to teach quantum mechanics is to use ladder operators to elegantly find the
eigenvalues and eigenstates of the harmonic oscillator. This operator-based approach can be
extended to other exactly solvable problems. In 1940, Schrodinger developed the factoriza-
tion method [1-4] to solve these problems using operator-based methods. This approach was
re-energized in the 1980’s by Witten’s development of supersymmetric quantum mechanics
and the classification of shape-invariant potentials [5-9].

The Morse potential [10] plays an important role in molecular physics and chemistry
because it includes anharmonic effects on vibrations and provides a more realistic description
of diatomic molecules than the simpler harmonic oscillator. For example, bond breaking,
which is a fundamental process for describing chemical reactions, can be approximated by the
anharmonic oscillator model, while it cannot be described using the harmonic approximation.
The Morse potential is also key in finding the transition matrix elements for rovibrational
Spectra.

The solution of the Morse potential problem can be carried out using differential equations,
but the analysis is rather tedious, so it is not often taught. It has also been solved in super-
symmetric quantum mechanics using the Lie algebra of the ladder operators [11-13], but this
is also likely to be complicated for most students and it does not determine the wavefunctions.
However, the energy eigenvalues of the bound states of the Morse potential, in fact, can be
determined through a straightforward algebraic factorization of the Hamiltonian [14].

Here, we first review the standard Schrddinger factorization method for the energy
eigenvalues and eigenstates, and then we show how to generalize a recent operator-based
approach to determine the wavefunctions as well. We will find that these energy eigenstates
involve associated Laguerre polynomials, which are represented in the following way as a
Rodrigues formula:

—agy n

LiO(y) = 2= ——(y"ree). (1)
n! dy”

Interestingly, our work discovers a different form of the Rodrigues formula for the

wavefunction of the Morse potential, as we discuss further below.

The remainder of the paper is organized as follows: In section 2, we review the standard
Schrodinger factorization method, while section 3 and section 4 discuss the derivation of the
energy eigenvalues and energy eigenstates of the Morse potential problem. We also apply the
operator-form of a Rodrigues formula to derive the wavefunctions. Section 5, provides some
tips for how to include these ideas in a graduate-level quantum mechanics class. Finally, a
summary is given in section 6.

2. Review of Schrédinger factorization method

In the Schrddinger factorization method, which works for nearly all exactly solvable single-
particle quantum mechanics problems, we start a factorization chain by factorizing the
Hamiltonian A with potential V (%) into a positive-semidefinite form via

N P 2T ;
H=—+4+VE =—+ W& =A,A) + Ey = Hy, 2
M ®) M o(®) 0 Ao 0 o 2)

where potentials in the factorization chain are indexed by n and denoted V,,, with V;; = V the
initial potential in the factorization chain. Similarly, the energies E, in the factorization at

2



Eur. J. Phys. 46 (2025) 055801 J Lietal

each step of the chain, are the eigenenergies of the original Hamiltonian A = Hj. A(; and A,
are Hermitian conjugate ladder operators of the form

m:éﬁmammwm 3
with a real-valued superpotential W, (which is determined in the process of solving the
factorization chain) and wavenumbers k,, and k, which are also determined at each step of the
factorization method. The wavenumber k,, with dimensions of inverse length, is used to
ensure the term added to the momentum operator has the same dimensions as momentum in
the ladder operators, while the wavenumber k,i, also with dimensions of inverse length, is

used to ensure the function W, has a dimensionless argument. While the A, and AJ operators
are called ladder operators, they do not raise or lower the energy eigenvalues for the general
case, but instead they are used to construct the energy eigenstates of the Hamiltonians in the
factorization chain. Explicit values for all of these objects will be given later, as we work to
concretely solve for the factorization chain of the Morse potential. The ladder operators take
this form, because the Hamiltonian is quadratic in p and has no linear terms in momentum.
The factorized form of the Hamiltonian in equation (2) is a positive-semidefinite form,
because (|Ho|1) = ||Ag|v)|* + Eo, for arbitrary normalized states |1). This implies that if a
physical state |@o) exists that satisfies the so-called subsidiary condition, given by
AO|¢0) = 0, then, it is the ground state and the ground-state energy is Ey. Note that this
behavior holds for the factorization of the simple harmonic oscillator as well, although it is
not often described in this way, and the conventional ladder operators there are rescaled from
the ones used here. For example, lkenberry [15] discusses the operator methods for the
harmonic oscillator similar to what we did here in his section 11.4.

To find the first excited state of H , we must form the next step in the factorization chain in
the following way. We define the first auxiliary Hamiltonian H; by reversing the order of the

ladder operators AJ and Ay, while using the same energy Ey:
pA2
oM
where V(X)) = (X) + [Ao, AJ ], which generally is a different function than the potential V,

in the original Hamltonian H, (concrete examples will be given later). Next, we factorize this
new Hamiltonian in the standard form, given by

A A At A pooat . pooat p? .
B = AjA, + Eo = Hy + [Ag, Ag] = +%m+mAu=ﬁ+wm, )

0 =AA + E, ®)
with a new superpotential W; included in A given by equation (3) with n=1. The first
auxiliary Hamiltonian ground state is determined by the subsidiary condition A, [¢;) = 0. We
then continue in the same fashion to determine additional steps in the chain. New auxiliary
Hamiltonians and their ground states are found by repeating this procedure. We have

N ~ ~ ﬁz AT oA
H, = AnflAnfl +E,_1= W + V(X)) = An A, + E, (6)

and

A,lg,) = 0. (7

In order to be able to carry out the factorizations analytically, we require that the
superpotentials all have the same functional form, with only the numerical parameters in them
varying from one Hamiltonian to another. This is the key requirement to have an analytically
solvable problem. When this occurs, the original Hamiltonian is said to have a shape-invariant
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potential. All exactly solvable potentials in quantum mechanics are shape-invariant potentials,
including the Morse potential.
The definitions of the factorization chain lead to the intertwining relation between the
auxiliary Hamiltonians and ladder operators, given by
Aat PR S PSP At oA
I_InAn = (An An + En)An - An (AnAn + En) - An Hn+1, (8)

that is when a Hamiltonian is moved past its raising operator, from left to right, its index
increases by one. From the intertwining relation, we can find the excited energy eigenstates of
Hy. We claim that the nth energy eigenstate of H is given by the state

AT AT AT AT
Wn) =G Ag A Ay -+ An71|¢n)» )

where C, is the normalization coefficient and |¢,,) is the ground state wavefunction of the nth
auxiliary Hamiltonian H, (satistying H,|¢,) = E,|$,)). This is shown by acting H, onto the
state |¢),,) and using the intertwining relation to move the Hamiltonian to the right. We find

A AoAT AT AT AT At oA AT AT AT
Holy,) = CuHoAg Ay Ay -+ A, _18,) = CA HiA Ay -+ A, 119,)
AT AT oA AT AF AT AT AT Af oA
= CnAO Al HZAZ Anfll(zsn) = CnAO Al A2 A;171Hn|¢n>
At oAt AT AT
= EnCnA() AI A2 A11—1|¢n> = Ean)' (10)

Hence, [1,) is an eigenstate with energy E, of the original Hamiltonian H. To find the

normalization constant, we calculate (1),,|1,,) by replacing AOAJ by H; — E, and then moving
the auxiliary Hamiltonian to the right as follows:

(Wl = ICP (G A -+ AAoAg AL - A)16)
— |G (GJAy - AHL — EpA, - A)16,)
=GP (GlAn - AA (Hh — Eo) - A,16,)
— |G (S A - AA - A (H, — Eo)ld,)
— |G E, — E)dylAn - AA] - A]16,). (1)

This has removed the two innermost operators and replaced them by the difference of two
energies. Repeating this procedure to remove each pair of lowering and raising operators, we
obtain

1
\/(En - EO)(En - El) (En - En—l)
In addition to the original Hamiltonian, the factorization chain creates a series of auxiliary
Hamiltonians. Each auxiliary Hamiltonian H,, shares all the eigenvalues with the previous one
H, | except for the ground state given by E,_;. So, the spectra of the factorization chain can

be represented as in figure 1. To verify this, we can follow the previous discussion to see that
the /th excited state of H,_; is given by

AT AT ~AF
|¢§1Z)_[> = CrglzlAnflAnflJrl An71|¢n>’ (13)

where we use the (/) superscript to denote the /th excited state. By acting H,_, onto |¢ff)7 ;) and

IC,l = (12)

using intertwining, we can immediately show it is an eigenstate of ﬁ,,, ; with eigenvalue E,,.
Similarly, finding the norm of the state and using the same approach as we did above, shows
us that
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o) = ALALALAN o) ALALAIQ)  ALALIGS) Al ldw)
W) = AYATAS|bs) ‘AI“EW?} Ablbs) b9 !‘ =
2) = AAllbs)  Alldy) 192) — Ald, +E

= AT A 1 J

W) =Alley 1oy,

o)

Figure 1. Factorization chain spectra, energy eigenstates, and auxiliary Hamiltonians.
The initial Hamiltonian A is denoted as Hy to clarify that it is the initial Hamiltonian in
the factorization chain and its excited states, with energies {E, E, --- } are depicted in
the first column and labeled with |¢;) to distinguish them from the auxiliary ground
states labeled by |¢;). The eigenstates (unnormalized) are formed by acting a string of
raising operators from 0 to n — 1 to the nth auxiliary ground state. Moving to the right,
each subsequent column corresponds to an auxiliary Hamiltonian with a different
potential. They share the same energies with the previous Hamiltonian to the left,
except for the lowest energy, which is not shared. When developing the Rodrigues
formula, we use a recurrence relation that moves us from right to left along a horizontal
row of the chain.

e, = : (14)

\/(En - Enfl)(En - En,[+1) (En - Enfl) '

In this way, we can immediately see that the spectra of the factorization chain show
degeneracy across all Hamiltonians in a given row. The number of these Hamiltonians that
have degenerate energy eigenvalues increases as n increases.

This approach appears quite different from the standard ladder operator approach of the
harmonic oscillator, but it is actually the same. The key point to notice is that for the
conventional harmonic oscillator all of the ladder operators are the same A; = A and are
independent of the index, as are all auxiliary ground states. This allows the ladder operators to
be used to move up and down the spectrum. One can solve the Morse potential using
operators that raise or lower the energy eigenvalue [16, 17], but that approach is different
from how we proceed here and those operators are different from the ones used to form the
factorization chain.

The factorization process requires solving nonlinear equations, as we will see below.
When this occurs, there often is more than one solution. In order to determine the correct
factorization, we must have that k,,Wn(k,fx) is positive for x — +oo and is negative for
x — —oo to guarantee the auxiliary ground state is normalizable. Note that we are working
with a real-valued function here, rather than an operator, to enforce the required condition for
normalizability of the wavefunction. We will see how we use this fact later. The position-
space wavefunction is then given by

U, (x) = (x[1,), (15)

with |x) the position eigenstate, which satisfies £|x) = x|x), and can be expressed as
|x) = exp(—ixp /h)|0,), with £]0,) = O the position eigenstate at the origin of the position
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axis. Instead of using a differential equation approach, we will calculate the wavefunctions by
using a generalized operator form of the Rodrigues formula. The general procedure was
worked out in [18]. It involves five steps:

(i) Rewrite the raising operators as similarity transformations:

~F 1 -1
= ;

Al =——0,p 0 16

(i) Use the subsidiary condition and the nth auxiliary ground state |¢,) to construct a state
annihilated by p. This state allows us to add p acting on it to any expression without
changing it;

(iii) Employ this ‘add-zero’ strategy to convert the string of raising operators into a set of
nested commutators;

(iv) Find a recurrence relation for the nested commutators as a function of n; and

(v) Employ the operator-form of the Rodrigues formula to solve the recurrence relation of
the product of raising operators as a function of the position operators only.

This is a fully algebraic procedure that does not require solving any differential equations.

Note that there are other ways to proceed that employ the Rodrigues formula or related
methods. The most direct link is with the Laplace method solution [19, 20], which derives the
Rodrigues formula from evaluating a multiple pole in the process of determining the solution
via contour integration. This ends up being a bit different from approaches that employ the
Laplace transform to solve the problem [21, 22], which is a second alternative.

In the next section, we find the energy eigenvalues, ladder operators, and energy eigen-
states of the Morse potential, using the procedures outlined here.

3. Energy eigenvalues of the Morse potential

The one-dimensional Morse potential describes the stretching of a diatomic molecule and is
given by

V() = D (e 200 —%) _ De-ali-x)y = P (] — e ¢F-%))2 _ D (17)

where D, is the depth of the potential and is related to the dissociation energy, X is the
distance between two atoms, x. is the equilibrium bond length, and a is an inverse-length
parameter that controls the curvature of the potential, see figure 2. Expressing the Morse
potential this way in terms of £ is a common practice in Chemistry. This potential represents
an approximation to the anharmonic potential of a molecule as it is stretched that is much
more accurate than the simple harmonic oscillator does. The potential rises rapidly as we
squeeze the molecule to a length less than the equilibrium separation given by x. due to the
strong repulsion between the ion cores. As we pull the molecule apart, the potential comes
back to zero more slowly, representing the long-range nature of the screened Coulomb force.
In Physics, it is more convenient to introduce the operator £ = ¥ — x. as we now do—the
oscillator then has its equilibrium position at the origin of the X variable.

With a little trial and error, we find the superpotential must take the form
W, (k,x) = —e~* + \,, with )\, > 0, for the Morse potential; the superpotential is positive as
x — 400 and negative as x — —oo as required for normalizability. One can see that we have
k, = a independent of n for the Morse potential and the explicit value for ), is yet to be

. . A . A
determined. The lowering operator A, and the raising operator A, can then be constructed as

6
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Figure 2. Morse potential (black) and best fit harmonic potential (gray) plotted with
respect to X, illustrating the energy levels with horizontal lines. The lowest-lying
energy levels line up well, but then as we approach E = 0, the Morse potential energies
pile-up near E = 0, while the harmonic oscillator ones remain evenly spaced. The depth
of the potential is D, and the parameter a controls the curvature near the minimum. The
plot shifts the potential out by the equilibrium separation x, to be more representative of
the application to a molecule. Note that while the Morse potential allows for negative X
values, which are physically forbidden, the probability of being in the negative X region
is exceedingly small for all bound-state energy eigenstates.

~ 1 N
A, = —(ﬁ - iVZMDe(_67M + )\n)) (18)
V24

where p is the reduced mass of the diatomic molecule, and A; is the Hermitian conjugate of

A,; the choice fik, = 2uD, follows because there is only one way to generate the e 2%
term, which fixes that term; note that k,, is also independent of n. Following the procedure for

constructing the factorization chain, we next compute An,IAJ,I, which gives us

A A H2 . ha\D, . -
An—lA T—l = p_ + Dee_2ax - (2De/\n—] - . ) em + De/\121—1 = Hn - Ln-1
M

2p V2
(19)
and then we must refactorize to find A,j A,, which gives us
At oA p2 . ha./D, N .
AfA, =2 1 pe2t _ 2D\, + ¢ leet + D2 = A, - E, (20)
2n N
The coefficients of the e~% term must be the same, so, we have
ha
A=A — —, (21)
2uDe
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which can be iterated to give us

ha
A= do = ——, (22)
2uDe
concretely determining its value. We finally find Ay by using equation (20) with the initial
Morse potential V;(x) expressed in terms of £. This gives us

)\Ozl_L (23)

2.2uD,’

and then we find that

(n + l)ﬁa
Ap=1 - ——2—. (24)
2uDe
The energy is given by E, = —D, )\i or
2
(n + l)fia 2522
E,= —D1 - ——2— :—De+(n+l)ﬁu &(n+l)ha. (25)
21D 2 I 2) 2u

This energy can be thought of as a displacement of the origin by —D, plus a harmonic

oscillator energy with an effective frequency of wey = a2D./p plus an anharmonic
2

correction given by (n + %) h2a?/2p.

Note that the coefficient of the e term must be negative, otherwise there cannot be a
bound state, because the auxiliary potential would have no minimum. This tells us that we
must have n < /2uD, /ha. But, we have another restriction, which is that we must have
E, < 0 for a bound state, because the Morse potential approaches 0 as x — 0, so the maximal
value for n occurs when the energy first vanishes. If we think of n as a continuous variable,
then the energy first vanishes when

2uD, 1
n=YHe 2 (26)
ha 2
as shown in the first equality in equation (25), which means the maximal n value allowed is
when n is the largest integer smaller than the right hand side of equation (26).

4. Energy eigenstates of the Morse potential

The energy eigenstates are given in equations (9) and (12). The wavefunction is, of course,
P, (x) = (xl,), 27

with |x) the position eigenstate at position x.
Our first step to finding the wavefunction is to rewrite the raising operator as a similarity
transformation of the momentum operator. Recall the Hadamard lemma, given by

i5. 4 B PN | PN A 1 ~ ~ ~ =
e’Be* =B+ [A, B] + E[A’ [A, B]] + ;[A, (A, [A, BlIl+---,  (28)

where each subsequent term is an increasingly nested commutator with A and divided by n!.
Note that when evaluating nested commutators, it is most efficient to evaluate them from the
inside first and then move outward with each step. There are two cases of the Hadamard
lemma that we need. The first is
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2
£ A £ ~ PN a” . A A .
ctpe ™ =p + alf, pl+ -8 1%, pll+=p + iha, (29)
because a constant commutes with everything. The second is

Ba—df o _ Be—at o PN 2 ¢ ¢ A N . ¢
ehe peﬂ‘}e =p + ﬂ[efax’p] + %[efax’ [e=, pll+---=p — ihafBe “, (30)

because £ commutes with a function of X. So, we have that

AT . ai
A, = ﬁ(p + 1V2MD6(_6 T+ )
1 [2uDe Ay X \J21uDs e, _ [2uD, eat _ /2/1[’33/\,[)2

= (S h € ha pe ha (S

Nem

1 ( 2;:Ds —(n+%)a])?+' Z:Ds e —[ 21D —(n+l)a])€—' 21D e o
a A h 2 ha
=— pe . 31)

= e
Nem

Our goal is to find a recurrence relation to re-express the product of raising operators as a
polynomial of exponentials of position operators. This can always be done, because when the
momentum operator acts on an auxiliary ground state, it is replaced by an exponential plus a
constant, and commutators of momentum with exponentials yield exponentials. The
procedure to determine the polynomial can be quite tedious, so finding a recurrence relation
allows us to solve all problems at once in a simpler way.

The recurrence relation we need to work out moves horizontally along a constant energy
row of the factorization chain, as opposed to running along a vertical column. This is because
we want the innermost term in the commutator to be the same for all recurrences (which will
become clear soon). Hence, when we form the product of the raising operators, for a general
state in the nth row, we find that

160 Y= ( 1 )1 (/2;;& _(n—l+%>a)ae+ VZ};DC e*aﬁ(ﬁ ity
n—1) = Cni T ©
o
,[L;D ,W%)a}?,i@
X e [0, (32)

because the intermediate factors nearly cancel, leaving behind just e=%. Note that this
requires removing a factor of e~ and associating it with the p in the last factor on the right.

Our next step is to find the state annihilated by p. To do this, we start with the subsidiary
condition for the nth auxiliary Hamiltonian, which gives us

ﬁe(m( 1)d]£+@ o

Ay =0 = " ? e gy = 0. (33)

We define

n+ —
h 2

B, = (—VZ”D _ ( l)a])? N —VZIZDS ea (34)

to simplify the expressions that follow.
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We start by examining the first factor of pe~** in equation (32), which can be expressed as
pe e, = pe-fe2hiebig,)
— (ﬁefwzefzé,l _ e*“fe*mﬂﬁ)eénwn)
=[p, e e Brefilg,), (35)

because the second term in the second line vanishes due to the momentum operator
annihilating the state to the right of it. This allows us to convert the momentum operator
acting on a state into a commutator of the momentum operator acting on the state. We can
then repeat the procedure / — 1 more times to find that

!
1 5 . . s .
¢ ) = c,ﬁ’l,(—m)e&[ﬁ, e [P, e[ [p, e~ e 2] )] e g,), (36)

which has / multiple nested commutators. Because the commutator of p with a function of £
will be another function of £, we can move the rightmost e® operator to the left. Next,
because the Leibniz rule for commutators says that

e P, fFB)] + e, fF®)p = [e"“p, fR)], (37)
and because the second commutator on the left hand side is zero, we can move the e~* terms
to the right into each adjacent nested commutator, to lie next to the p operator on the left, or

1
o ) = C,ﬁ”l(%) ebitBieatle=atp, [e=9p, [, [e 4P, e~ e 2B 11| ),). (38)
v

We can then rearrange the quantum state to be

!
: 220D .
60y =, iha_| —@ntbat+ I @ree
V20
efa)f efaf efa)E . 2y2uDe ..
X —lhap’\’ —lﬁa pA’ ’[Eﬁ’ e2nax— Ta (aX+e ") |¢n> (39)

1

This equation resembles the Rodrigues formula in equation (1), if we recall that the
momentum operator is represented by —iﬁ% in position space. But, unlike the standard
Rodrigues formula, where the derivative is taken / times in a row, here, we have an extra
factor of e~ " to the left of each derivative, which makes it a different form (we will not
explicitly work out the full differential form, as we do not need it for our work).

The claim is that the operators multiplying the auxiliary Hamiltonian ground state are
equal to a Laguerre polynomial of exponentials multiplied by exponentials and exponentials
of exponentials. To verify this, we examine the first few cases concretely, and then prove the
general result via induction. So, when [/ = 1, we have that the nested commutators satisfy

efai . 2J2uD, "
ﬁ eZnax g (ax+e %)
, ]

iha
2. 12uD . . 2J2uD. Cat
_ (—2]’1 + %(1 _ eax))e(an)ax (@t (40)
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The first associated Laguerre polynomial is given by Ll(“)(y) = —y + «a + 1, which tells us
that

2./2uD .
N o ma 1)

y= ha

and

2./2uDe
a, =—C2n+ 1) + - (d=1. (42)

Next, we compute the second nested commutator, with / =2, to find that

—at —at 2./21D, )
e[ eT M s dnai- TV (prea)
A P> A p, € ha
iha iha

[ 2./2uD . NN
= eﬁu ﬁ, (—21’! —+ %(1 _ eax)]e(an)ax a (at+e )]
1

=|2n2n - 1) + 22#(—(471 — 1)+ 2@2n — 1)e )

81D, . . . 22uD;
- ﬁ‘jaz (1 —Ze‘“"+e‘2“"))e(2n_2)“x_ ha e (43)

Now, we have Lz(“)(y) = %(y2 — 2(a + 2)y + (o + ) (a + 2)). Comparing to equation (43),
we find that we have the same y as in equation (41), and the same « as in equation (42), so they
appear to be independent of L

This is now sufficient for us to come up with the induction hypothesis, which is that

e—afﬁ e—a,ip\ o e—aiﬁ ezl’ldf— 2 i/:ﬂe (af_'_e,ag) .
ihat | iha "’ ’ ika
I

2.J2uDe

N 22uD. -\ |2n—Das— £ eaf
:11L,<an>(TZe ‘”)e(” Jarm T (et ) (44)

We verify this general result by assuming it holds for all values up to /, and then prove it holds
for [+ 1. We have already established that it does hold for / = 1 and / = 2. Writing it down for
I+ 1 and using the result for / then gives us

Laxﬁ’ ﬂﬁ, . eiaxﬁ,eha)?—wi?e(afﬁ—e’”i)
iha iha iha "
+

—ax 2./2uD, N n— aifizm af+e
:[eﬁa ﬁ,zzL,(“")(ihj eewf]e(2 Pt (e )] 5)

1

We will use the Leibniz rule to evaluate the commutator. The commutator of the exponential
is easy to work out, as we have done this before. The commutator of the associated Laguerre
polynomial is more complicated. We have
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2./2uD, . 2./2uD, . | 242D .
'L P, L[(u’n) HEe e—af _ HEe efaxLl(an) HEPe e~ |, (46)
iha ha ha ha

where the prime indicates the derivative of the associated Laguerre polynomial. Now, the
associated Laguerre polynomials satisfy a simple derivative rule, given by

L' (y) = =LV (). 47)

Next, we use the associated Laguerre polynomial recurrence relations to re-express our results
as follows:

“LETPO) = LY0) = LR G)

l « l + Oé «
= ;L,( () — L) (48)

This now allows us to compute the commutator. We find

e—aiﬁ e—a)fﬁ e—afﬁ eZna)?f 2 izl)c (@ite) |
iha®’ iha®’ | ihat’
I+1

= zz((zl 1+, — Zfﬂe—af)q%) (—2 2D e—af)

ha ha

e aiizﬂ/ll)c af 4+e—at
_(l+an)L,<aﬁ)(“Meaf))e(2n 1= bar= 2 e 49)

ha
Now, we need to use our final recurrence relation for the associated Laguerre polynomials,
which is
Q@+ 1+ a-YL@0) -+ )L =+ DL (50)

This shows that the term in the parenthesis on the right hand side of equation (49) is equal to
I+ l)Ll(f'i)( ¥), which is what is needed to complete the proof by induction. Hence, we have
shown that equation (44) holds. The associated Laguerre polynomial recurrence relations used
here can be found in [23].

The state we are interested in is the one with [ = n. Noting thar |¢8’)) is the same as |¢,)
and that Cé”) = C,, we now find that the wavefunction can be written as

iha ) 2.2uD. .
P,(x) = (x|y,) = Cn(\l/fzi%) n! e—2naer(lan)(T'ile—ax)<x|¢n>

P(2 [2uD, . 2}’1)

ha 2.2 De N

=@l | = ez””L,E“")(i" ﬁi‘ e”"]qS”(x), 51)
F( 'z: "= ")

after working out the constant C, using the fact that

2.2

E, — E,—=(n—m)" % 3D + (n — m)(m + n + 1)2—“
7 u

2.2
:ﬁa(n—m)(iz ZMDe—n—m—l]. (52)

21 ha
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Here, I'(z) is the gamma function. Note that the nth auxiliary Hamiltonian ground state ¢,,(x)
must be normalized in this expression. )
To calculate ¢,(x) we use the fact that p annihilates e5|¢,), as follows: First, we introduce

B

a factor of 1 = e~Breb to the left of |¢,,) and evaluate e 5+ against the position bra (x| to find

that

- m7”7L ax e ~
¢n<x>=<x|¢n>=<x|e—éneén|¢n>=e( ha 2] e-@e’"%ﬂem» (53)

Next, we use the fact that the position bra can be re-expressed as the translation of the position
state at the origin to the position x via (x|=(0|ex*?. Then, because the p operator annihilates
e ¢,), the translation operator can be replaced by 1 after acting on the state to its right. Then,

the e?+ operator can act to the left against the position state at the origin, replacing £ by 0. We
finally find that

- m —n—1 ax 1De
6,(x) = e ( ha 2] e*@@’“*“(oxm). (54)

The factor (0,]¢,) is the value of the wavefunction at the origin, which is our normalization
constant. To determine it, we need to evaluate the following integral:

2/2uD,

1= 1o [ dr A

2n— l)ax 2/2uD,
e

fa 0D

2/2uD,
23D, a2 (2 2uD
— (0 Pe e~ _ha i el P | (55)
a\ 2./2uD, ha

and solve for (0,]¢,).
Putting everything together, we obtain the final formula for the nth excited state of the
Morse potential is given by

2./2uD, J24D, 1
an!(# —2n — 1) 2 /21D, e "7
%)= 2./2uD, ha e
F(—” - — n)
ha

224D,
(75“ 721171) 2 2/J/De R 21D, Cax
X Ly Tefax e ha (56)

where we removed a factor of i”, because it is a global phase factor. This is the standard result
for the wavefunction of the Morse potential. Recall that when working with it for a molecule,
we replace x — X — X, with x, the equilibrium separation of the molecule.

In figure 3, we plot the first four probability distributions for a harmonic oscillator that fits
the Morse potential and the first six for the Morse potential. While the ground state is nearly
identical (both in energy and in the probability distribution) for the two potentials, they
rapidly differ for higher levels. This is the reason why the Morse potential is a much better
approximation to the molecular potential for fitting vibrations than the harmonic oscillator,

13
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Figure 3. (a) Harmonic oscillator probability distributions for the first four eigenstates
and (b) Morse probability distributions for the first six eigenstates a potential that has 7
vibrational states. The harmonic oscillator is set to fit the curvature of the Morse
potential at its minimum and displaced downward in energy to coincide with the
minimum. The gray region is the forbidden region. Note how the higher-n Morse
probability distributions become more and more asymmetric, with long tails stretching
to the right and how the harmonic oscillator energy levels differ significantly for
larger n.

5. Pedagogical ideas for working with students

In this section, we present some ideas of activities that students can do who are working with
this material. The first one is that we can approximate the Morse potential near its minimum
by a quadratic potential by simply performing a Taylor series expansion about x = 0. Have the
students determine the frequency of the harmonic oscillator and compare the energies of the
harmonic oscillator with the corresponding harmonic oscillator energy. How different are
these energies at the last allowed bound state of the Morse potential?

A second example, is to have the students look at real experimental data for vibrational
energy levels of diatomic molecules. One can have them fit the spectra, which correspond to
energy-level differences, to determine the parameters of the Morse potential that fits the
molecule best. They can then count the number of bound states and see how that compares to
the total number of bound states for the molecule.

The parameter D, is called the dissociation energy in the Morse potential, as it is supposed
to represent the energy needed to dissociate the molecule from its ground state. But this
estimate is too high. The true dissociation energy is the |Ey|. Have students write an essay
about how they can use the experimental dissociation energy and molecular spectroscopy to
fit all of the parameters of the Morse potential.

Finally, one can also ask students to work through different parts of the derivation, such as
determining C,, or finding the normalization constant for ¢,(x). Once the wavefunctions are
found, have students plot them out and discuss their behavior, as compared to those of the
simple harmonic oscillator.

6. Summary

Quantum mechanics has many exactly solvable problems, but we only show the students a
small subset of them. One of the reasons why is that the conventional Frobenius method for
solving differential equations becomes very tedious for these other exactly solvable problems,
so they are often not covered. This is a pity, because there are lots of interesting results about

14
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these systems that should be discussed with students to help them connect the formal ideas of
quantum mechanics to experiment.

In this work, we showed an alternative way to solve the Morse potential problem, avoiding
the use of differential equations completely and instead working with operators in a repre-
sentation-independent fashion. This approach illustrates how we can solve exactly solvable
problems using the factorization method and the hidden structure of the factorization chain,
which is not known to many students. It also allows us to find the wavefunctions in a
straightforward way, which is more concrete than differential equation based approaches.

We hope that instructors will consider using these ideas in graduate-level quantum
mechanics classes to show how theory is connected to experiment and to add more exactly
solvable solutions into the classroom than just the particle in a box, delta function potentials,
the harmonic oscillator and the Coulomb problem. Additionally, teaching the operator method
prepares students for the language of second quantization. Consequently, exposing students
early on to the operator-based language helps them to develop mastery of both operator
algebras and differential equations, which allows them to advance faster in future more
advanced topics.

Acknowledgments

This work was supported by the National Science Foundation under Grant Nos. CHE-
2154152 and CHE-2154671. JKF also acknowledges support from the McDevitt bequest at
Georgetown University.

Data availability statement

No new data were created or analysed in this study.

ORCID iDs

Jianhao Li © https: //orcid.org/0000-0003-4569-3448
Dominika Zgid © https: //orcid.org/0000-0003-4363-8285

References

[1] Schrodinger E 1940 Proc. R. Ir. Acad., Sect. A 46 9 https://www jstor.org/stable /20490744
[2] Schrodinger E 1940 Proc. R. Ir. Acad., Sect. A 46 183 https://www.jstor.org/stable/20490756
[3] Schrédinger E 1941 Proc. R. Ir. Acad., Sect. A 47 53 https: / /www.jstor.org/stable /20488434
[4] Infeld L and Hull T E 1951 Rev. Mod. Phys. 23 21
[5]1 Witten E 1981 Nucl. Phys. B 188 513
[6] Gendenshtein L E 1983 JETP Lett. 38 356
[7] Dutt R, Khare A and Sukhatme U P 1988 Am. J. Phys. 56 163
[8] Lévai G 1989 J. Phys. A: Math. Gen. 22 689
[9] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267

[10] Morse P M 1929 Phys. Rev. 34 57

[11] Berrondo M and Palma A 1980 J. Phys. A: Math. Gen. 13 773

[12] Benedict M G and Molnar B 1999 Phys. Rev. A 60 R1737

[13] Molnar B, Benedict M G and Bertrand J 2001 J. Phys. A: Math. Gen. 34 3139

[14] Cooper I L 1992 J. Phys. A: Math. Gen. 25 1671

[15] Ikenberry E 1962 Quantum Mechanics for Mathematicians and Physicists (Oxford University

Press)


https://orcid.org/0000-0003-4569-3448
https://orcid.org/0000-0003-4569-3448
https://orcid.org/0000-0003-4569-3448
https://orcid.org/0000-0003-4569-3448
https://orcid.org/0000-0003-4363-8285
https://orcid.org/0000-0003-4363-8285
https://orcid.org/0000-0003-4363-8285
https://orcid.org/0000-0003-4363-8285
https://www.jstor.org/stable/20490744
https://www.jstor.org/stable/20490756
https://www.jstor.org/stable/20488434
https://doi.org/10.1103/RevModPhys.23.21
https://doi.org/10.1016/0550-3213(81)90006-7
https://doi.org/10.1119/1.15697
https://doi.org/10.1088/0305-4470/22/6/020
https://doi.org/10.1016/0370-1573(94)00080-M
https://doi.org/10.1103/PhysRev.34.57
https://doi.org/10.1088/0305-4470/13/3/010
https://doi.org/10.1103/PhysRevA.60.R1737
https://doi.org/10.1088/0305-4470/34/14/318
https://doi.org/10.1088/0305-4470/25/6/022

Eur. J. Phys. 46 (2025) 055801 J Lietal

[16] Dong S H, Lemus R and Frank A 2002 Int. J. Quantum Chem. 86 433

[17] Dong S H 2007 Factorization Method in Quantum MechanicsNetherlands (Springer)

[18] Noonan J R, Rehman Shah M, Xu L and Freericks J K 2024 Am. J. Phys. 92 270

[19] Galler A, Canfield J and Freericks J K 2021 Eur. J. Phys. 42 035405

[20] Canfield J, Galler A and Freericks J K 2023 Quantum Rep. 5 370

[21] Chen G 2004 Phys. Lett. A 326 55

[22] Tsaur G Y and Wang J 2013 Eur. J. Phys. 35 015006

[23] Olver F W ], Olde Daalhuis A B, Lozier D W, Schneider B I, Boisvert R F, Clark C W,
Miller B R, Saunders B V, Cohl H S and McClain M A https://dlmf.nist.gov/ Release 1.2.3 of
2024-12-15 NIST Digital Library of Mathematical Functions


https://doi.org/10.1002/qua.10038
https://doi.org/10.1119/5.0177925
https://doi.org/10.1088/1361-6404/abb9ff
https://doi.org/10.3390/quantum5020024
https://doi.org/10.1016/j.physleta.2004.04.029
https://doi.org/10.1088/0143-0807/35/1/015006
https://dlmf.nist.gov/

	1. Introduction
	2. Review of Schrödinger factorization method
	3. Energy eigenvalues of the Morse potential
	4. Energy eigenstates of the Morse potential
	5. Pedagogical ideas for working with students
	6. Summary
	Acknowledgments
	Data availability statement
	References



