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Abstract: The variational quantum eigensolver is one of the most promising algorithms for near-term
quantum computers. It has the potential to solve quantum chemistry problems involving strongly
correlated electrons with relatively low-depth circuits, which are otherwise difficult to solve on
classical computers. The variational eigenstate is constructed from a number of factorized unitary
coupled-cluster terms applied onto an initial (single-reference) state. Current algorithms for applying
one of these operators to a quantum state require a number of operations that scale exponentially
with the rank of the operator. We exploit a hidden SU(2) symmetry to allow us to employ the linear
combination of unitaries approach, Our PREPARE subroutine uses n + 2 ancilla qubits for a rank-n
operator. Our SELECT(U) scheme uses O (1) CNOT gates. This results in a full algorithm that scales
like the cube of the rank of the operator n3, a significant reduction in complexity for rank five or
higher operators. This approach, when combined with other algorithms for lower-rank operators
(when compared to the standard implementation), will make the factorized form of the unitary
coupled-cluster approach much more efficient to implement on all types of quantum computers.

Keywords: factorized unitary coupled-cluster ansatz; quantum chemistry; linear combination of unitaries

1. Introduction

One of the important motivations for developing quantum computers is their poten-
tial to simulate strongly correlated many-body systems efficiently [1,2]. Algorithms that
exactly diagonalize the electronic Hamiltonian, known as the full configuration interaction
approach, scale exponentially with the size of the Hilbert space, making it applicable to
very few cases [3] on classical computers. The configuration interaction (CI) method offers
an approximate solution by truncating the Hilbert space to only include the most important
basis states. However, the energy calculated by the CI method does not scale properly
with the size of the system when used on molecules with varying sizes, nor does it predict
the dissociation energy correctly because it cannot produce factorized atomic states. The
coupled-cluster (CC) method addresses these issues by being both size consistent and size
extensive. Size consistency means that the method would yield the same energy of two
particles separated by an infinite distance as the sum of the energies calculated individually.
Size extensivity means the energy scales linearly with the number of particles for a homo-
geneous system [4]. The CC method is also memory efficient because it does not explicitly
construct the energy eigenstate. Instead, the set of amplitudes for the CC ansatz is calcu-
lated iteratively by the so-called amplitude equations [4-6], which correspond to zeroing
out the row (or column) of the similarity-transformed Hamiltonian matrix that corresponds
to the initial single-reference state. The CC method with single, double and (perturbative)
triple excitations is regarded as the “gold standard” for computational chemistry [7].

Symmetry 2023, 15, 1429. https:/ /doi.org/10.3390/sym15071429

https://www.mdpi.com/journal /symmetry


https://doi.org/10.3390/sym15071429
https://doi.org/10.3390/sym15071429
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0009-0004-6400-7479
https://orcid.org/0000-0002-6232-9165
https://doi.org/10.3390/sym15071429
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15071429?type=check_update&version=2

Symmetry 2023, 15, 1429

20f16

Quantum computers have been proposed as being capable of solving a set of quantum
chemistry problems that are otherwise difficult or very challenging on classical machines:
namely, molecules that contain both weakly and strongly correlated electrons. One of the
most promising algorithms for the noisy intermediate-scale quantum (NISQ) era is the
variational quantum eigensolver (VQE), where the trial wave function is prepared on the
quantum hardware and the expectation value of the Hamiltonian is measured there as well;
the parameters in the eigenstate are optimized variationally on classical machines [8,9].

— T lIJrgf>, where lpr€f> is
a trial wave function (often chosen to be the single-reference Hartree-Fock state), and
T =Y}, Ty is the cluster operator consisting of up to rank-n excitations (1 electrons are
removed from the Hartree—Fock state and replaced by 7 electrons in virtual orbitals). The
excitation operator is given as

The conventional coupled-cluster ansatz is given as |{cc)

occ vir
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and A?j’? = [z;rﬁg -+ +d;d;, where 4! is the creation operator acting on virtual orbital 2 and

4; is the annihilation operator acting on occupied orbital i. Traditionally, the CC method
employs a similarity-transformed Hamiltonian to obtain a set of equations to determine
the amplitudes ¢:
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Ay, and {(ipu|} is a set of states that covers the entire space generated

where (¢, | = <1/J,ef

by Teesp acting on the reference state [5,10]. In practice, this set of amplitude equations
is solved iteratively, which yields the energy without needing to construct the energy
eigenstate. The total number of amplitude equations is given by the number of amplitudes
in the expansion of the T operator, which is much smaller than the total number of Slater
determinants in the |ipcc) (which is typically exponentially larger). The properties of size

consistency and size extensivity for the CC ansatz stem from the facts that the similarity-
transformed Hamiltonian e~ 7 He is additively separable and the term e” is multiplicatively
separable. Notice that the electronic Hamiltonian for the molecule (in second quantization)
is given by
1
~ta Atats 4
H= Zhi]-ai aj + 5 Zgijklai ajaa, 4)
ij ikl

where h;; are the one-electron integrals and g;j; are the two-electron integrals:

_ ; 1o - Zi),
hij = /d71¢1~ (1) < - Evrl - 1:21 Rﬂ)‘l’](ﬁ) ()
Sijkl = /drldVZ(P;F(rl)‘P;(@)%‘Pk(”l)‘f’l(’?)- (6)

Here, M is the number of atoms in the system, Z; are their atomic numbers, Ry; = |r; — Ry|,
ri2 = |r1 —rz|, and ¢(r) are the single-particle optimized orbitals from the HF solu-
tion [11,12]. In order to solve the amplitude Equations (2) and (3), we need to explicitly
compute the similarity-transformed Hamiltonian. Using the Hadamard lemma (also called
the Baker—-Campbell-Hausdorff expansion or the Baker—Campbell formula), we can rewrite
the transformed Hamiltonian as

i 1 1 1

e T = A+ (A, 7]+ (14,1, T+ S8, 1,7, 1)+ LA 77,1, 1)+ @
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Conveniently, the series truncates at the fourth order due to the Hamiltonian having only
one- and two-body interaction terms [5,13] and the excitations always being from real to
virtual orbitals. Traditionally, this projective method to determine the CC amplitudes is
preferred over variational methods due to the non-unitarity of the el operator [5,7].
Despite its success, the lack of unitarity prevents the CC operators from being imple-
mented on quantum computers. This suggests using the unitary coupled-cluster ansatz
(UCC), whose cluster operator now includes the excitation minus the de-excitation operator
T — T* [14,15]. Similar to the CC approximation, only the low-rank cluster operators such
as singles and doubles are usually selected for the variational eigenstate ansatz, but for
more strongly correlated systems, one expects that higher-rank factors will also be needed.
In practice, a projective method like the one used in the CC calculation does not work with
the UCC ansatz because the similarity-transformed Hamiltonian no longer truncates after
the fourth term. Common strategies for carrying it out on classical computers include trun-
cating the Hadamard lemma series at a fixed order [14], expanding the exponential operator
in a power series and then truncating it when the higher-rank terms no longer change the
eigenfunction [16], and using an exact operator identity of the factorized form of the UCC to
allow the wavefunction to be constructed in a tree structure [17]. But, there exists no simple
method to work directly with the UCC ansatz in its original form. Since we are working
with non-commuting fermionic operators ﬁ;ﬁg e z?zjfz,- — fz:rt?z}' -+ - Apd, in the exponent, one
common way to decompose such a function is to adopt a Trotter product formula:

N—o0

N
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k

Another useful method is to express the ansatz in a factorized form, given by

Uliec = Heek(fk_ 0, O
k

which corresponds to the first-order approximation of the Trotter product formula in
Equation (8). The benefit of only using the N = 1 extreme case is two-fold: the quantum
resources required to prepare the factorized UCC ansatz are much smaller than higher-order
approximations and the Trotter errors of the first-order approximation can be ameliorated
by the fact that the calculation is variational [18,19]. Within the classical computational
chemistry framework, work by Chen et al. [17] created an algorithm using the factorized
form of the UCC that produces significantly better results for strongly correlated systems
and comparable results in terms of accuracy for weakly correlated systems. In this work,
we show how one can create efficient implementation of these UCC factors using the linear
combination of unitaries approach. For high-rank factors, this approach is preferable.

To implement the factorized UCC ansatz on quantum computers, one needs to trans-
form the cluster operators T — T expressed in the fermionic language into a spin language
(via the Jordan-Wigner transformation, or other fermionic encodings). A common realiza-
tion of this approach is to exactly simulate the individual exponentials of Pauli strings found
after the JW transformation of e~ [18,19]. For example, a Jordan-Wigner transformed
rank-2 UCC factor is given as

O;iki 0 "}

Tkl (st At A A ~tata A ij

exp ( 5 (a; o] Ay — 4 akajai)) =exp | ¢ ® Za
a=Il+1

i—1
® Zb X (XleYin =+ YleYjYi —+ XlYijYi =+ XleX]'Yi
b=j+1

*YleXin — XlYkX]'Xi — YlYijXi — YlYkX]‘Yl) ) . (10)
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Such a UCC factor can be rewritten as a product of exponentials of Pauli strings because
the Pauli strings in the exponentials all commute [18,20]. A common strategy for creating
circuits of the form exp{—i %Zl Zy ... Zy} is to use basis transformations where one starts
with the circuit for evaluating exp{ —i%Zl Zj...Zy} and then apply basis transformations
to evaluate the exponential of any Pauli string [21]. In order to evaluate a generic Pauli
string, a basis transformation can be applied before the CNOT cascades such that the
effective Pauli string is that of only Z’s. If the ith gate in the Pauli string is an X, a
Hadamard gate is sandwiched around the CNOT cascade on the ith qubit. This leads
to the effective exponential containing a Z since HXH = Z. Figure 1 shows an example
circuit to apply exp{—i %Zl ZyZ3X4}. Similarly, if an exponentiated Y gate is applied, a
Ry(—7%) gate is sandwiched around the CNOT cascade. Figure 2 shows an example circuit
to apply Equation (10). In applying the UCC ansatz, circuits such as Figure 2 must be re-run
221=1 times after applying all of the 22"~ different basis transformations [18]. A general
factorized doubles UCC operator can be rewritten as Equation (10) and implemented
exactly by the circuit shown in Figure 2.

- r

Figure 1. Example of a circuit implementing exp{—i %Zg ®Zy ® Z ® Xz} for four qubits. To apply

the X on a different qubit, Hadamard gates can be sandwiched around the respective qubits.
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Figure 2. Doubles UCC circuit as discussed in Refs. [18,19]. For a general doubles operator, the circuit
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must be applied eight times, with different combinations of U gates each time. The U-gate choices
are summarized in Table 1. The dashed CNOT gates are part of a CNOT cascade.

Table 1. Eight different subcircuits run sequentially to apply a UCC doubles factor to a wavefunction.
Since the relevant operators all commute, the subcircuits can be run in any order, but all eight need to
appear exactly once to complete the full circuit.

Subcircuit Uy U, U; Uy
1 H H Re(—%) H
2 Rx(=7%) H Re(=7) Rx(—7)
3 H Re(=7%) Ry(=7) Ry(=%)
4 H H H Re(—7%)
5 Re(=7%) H H H
6 Re(—7%) H H
7 R(~ %) Re(~5) Re(~3) H
8 Re(~3) Re(~5) H Re(~)

This is possible because the different 22”2 Pauli strings (for a rank-n UCC factor)
commute with each other. In our previous work, we found a way of reducing the num-
ber of control-NOT (CNOT) gates in quantum circuits for the factorized UCC ansatz by
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introducing extra ancilla qubits [20], with the largest reductions for the higher-rank factors.
Alternatively, a factorization method introduced in Ref. [22] uses a two-step low-rank
factorization to approximate the UCC operator. Circuits that implement the SELECT(U)
subroutine for more general Jordan-Wigner strings with linear scaling have also been
developed [23]. Another framework developed in Ref. [24] optimizes the two-qubit gates
by bootstrapping the VQE iterations towards the convergence of the systems ground state
energy. A quantum software developed in Ref. [25] optimizes the number of two-qubit
gates systematically by compressing adjacent CNOT and Pauli operators using a set of
rules from the ZX-calculus. Other works have proposed different efficient methods to
simulate the UCC factors[26], whose main idea is to directly implement the SU(2) identity
of the UCC factors presented in Equation (22) by exchanging coefficients between the two
active states. In this work, we introduce a method to directly simulate the sum of terms
obtained from a hidden SU(2) symmetry of the first-order Trotter product that greatly
reduces the number of multi-qubit entanglement gates of factorized UCC circuits.

2. Background
2.1. SU(2) Identity for Individual UCC Factors

Recall the rank-n cluster operator is defined as

occ vir

A 1 b [ 2ab--- Alj-
= G Yo Yo (Aghr — AL ). (11)
ij---ab---
The first two ranks are
Ty =Y 0% (afa; — afas) = Y 0f (A? — AL) (12)
ia ia
N 1 F ot a n ot a
= ) ijb (azapa;o; — ajalayd,)
ijab
1 b R b N7
-3 ;}9;1]. (A - 43,), (13)
ija

where 4! is the fermionic creation operator on the virtual orbital a and &; is the fermionic
annihilation operator on the occupied orbital i, and they obey the standard anticommutation
relations given by
AoA fat Aty . 1A AT

{ai,a;} = 0;{aj, a5} = 0;{a;,a;} = & (14)
where {A,B} = AB+ BA and J;; is the Kronecker delta function. First, we note that
because {i,j,k,--- } and {a,b,c, - - - } are disjoint sets, A2 =0 = A", so the squared term
becomes

(A— A" = —AA" — AYA = —fig gy -+ - g, (1 — 11;)) (1 — 123) -+ - (1 — 713,
7(177?1”1)(17771”2)“‘(171”1””)7”\11'11’”\11‘2"'7711'”, (15)
where fi, = @14, is the number operator for spin-orbital a. The cubed term then becomes

(A—ATY = AATA — ATAAY = A - AT, (16)

because the projection operators 71 and 1 — 71 evaluate to one when they act on the corre-
sponding fermionic operators. For any UCC factor, the power series expansion is given as

NQ:
>
S
=
1
agk
| 2

! (A— ANy, (17)

=

n=0

Combining with Equations (15) and (16), we can then exactly write the sum as
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PAAYD — T4 sinf(A — AT) + (cos0 — 1) (ayfiay - - fray (1 — A7, ) (1 — i) -+ - (1 — ;)
+ (1= 1g,) (1 = Agy) -+ (1 — g, )Py, Ay, - - - 15,), (18)

for any given set of occupied orbitals {i; - - -i,} and virtual orbitals {a; - - -a,} of rank
n [17,27,28]. This identity gives a clear picture of what is happening after a UCC factor
is applied to a state. If the state is neither excited by A nor de-excited by A‘L, the state is
unchanged by the UCC factor. Otherwise, the UCC factor acting on the state is equivalent to
a cosine multiplied by the original state plus a sine multiplied by the excited (or de-excited)
state, just as we would expect from a rotation in the many-body configuration space.

2.2. Jordan—Wigner Transformation of the SU(2) Identity

Hamiltonians written in fermionic terms need to be re-expressed in terms of spin
operators in order to be implemented by quantum computers. In this work, we choose
to work with the JW transformation for the fermionic encoding. This transformation is

given by
A = %(Xk+iYk)®Zk+1 RZpy2 @ RZN (19)
8 = 2 (X 1Y) © Zioa © Zipa © -~ © Zy 0)
e = o = 5(1- 74), e

where X, Y, and Z are the standard Pauli matrices, and 0 < k < N — 1, for the N qubits that
describe the molecule. The qubit state |0) has no electrons and |1) has one electron. The
SU(2) identity for a UCC factor, as shown in Equation (18), can be re-expressed in terms
of the Pauli operators using Equations (19)—(21). For a factorized UCC double (UCCD)
operator, the transformation is as follows:

(XleYin + Y XYY + X Vi Y5Yi + Xi Xe XY
Y X X; X — XV X; X; — V1YY X — YlYkaYi>

1 -
+§(C059 — 1)(I + ZiZ]- + lek - Z]‘Zl - ZjZk

—2;Z; — ZiZy + ZiZjZkZl)~ (22)

Note that the JW strings simplify because Z7 = 1 for all cases where two strings overlap.
This expression is a unitary operator, but it is also here expressed as a sum over unitary
operators because Pauli strings are both Hermitian and unitary.

2.3. Linear Combination of Unitaries

To simulate the sum in Equation (22) on a quantum computer, we use the linear
combination of unitaries (LCU) query model [29,30]. Given an input operator U represented
by a sum of unitaries U= Y, an U, with coefficients a,, > 0 for each unitary operator a,,
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the LCU technique will create a circuit to evaluate this operator acting on a state. It first
prepares an ancilla bank with coefficients based on the coefficients in the linear combination:

BI0) = 7= T Vauln). 23)

1
Vs
the product state that will later encode the unitaries in the LCU procedure. The operator
SELECT(U) is then used to create entanglement between the ancilla bank and system states

Here, —- is a normalization factor, |0) is the initial state of the ancilla bank, and |n) is

SELECT(U)|n) © [p) = [n) @ Un|1p). (24)

One of the hallmarks of the LCU approach is that if the original operator U is unitary and
s < /2, then a single step of oblivious amplitude amplification is able to exactly apply
the U to the state [29]. Note that in our case the UCC factor, given in Equation (22) is
unitary and s = cos 6 +sinf < 2 for all §, so it always satisfies this criteria. Hence, the
LCU treatment of the sum is exact. The oblivious amplitude amplification is given by

~WRWTRW|0) @ |¢) = |0) @ U|y), (25)
where the W and R operators are defined as

W :=(B"®1)SeLecT(U)(B® 1),
R:=1—2(|0)(0| ®1). (26)

The main source of circuit complexity of the LCU query model comes from the unitary
transformation W because it involves applying SELECT(UI), which itself can contain a
substantial number of multi-qubit gates and quickly outgrows the capability of near-term
hardware. One efficient circuit implementation of the SELECT(U) subroutine for a generic
fermionic Hamiltonian uses O(y) Clifford and T gates, with Clifford gates running in
O(log? 17) layers and T gates in O(y) layers. Here,  is the number of spin orbitals [23]. The
ancilla preparation operator B is often implemented by rotations and controlled rotations
on the target qubits, followed by Hadamard®” gates that create the required entanglement
state for the ancilla bank.

3. Circuit Construction

We begin by illustrating the circuit implementation of the PREPARE and SELECT(U)
subroutines present in the LCU adaptation of the UCC factors for doubles. The doubles
are the most ubiquitous terms in the low-rank representation of a UCC ansatz. Later in
this section, we will show that UCC factors of arbitrary rank-n can be implemented via
a similar algorithm. High-rank factors are necessary to generate an accurate correlation
energy in strongly correlated systems.

3.1. PREPARE Subroutine

The unitary transformation B is used to generate the required entangled state in the
ancilla bank, shown in Equation (23). The operator in Equation (22) lends itself to a binary
encoding, where we create the linear combination of states multiplied by amplitudes, that
is, the sum of a1|0000) + a3]|0001) + - - - 4+ ag|1111). Because there are only three distinct
coefficients present in the UCC factor regardless of the rank, the binary encoding allows us
to reduce the size of the ancilla bank logarithmically so that it grows with the rank not with
the exponential of the rank.

A PREPARE circuit for the doubles factor is shown in the Figure 3. The H gates are
Hadamard operators, and the Rx, and Ry, gates are rotations by an angle ©; along the X
and Y axis, respectively. For a UCC doubles operator, n = 2, and there are three distinct
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coefficients: eight terms with %, seven terms with %, and one term with %. The
four angles used in the circuit shown in Figure 3 can be found analytically:

®; = arcsin ( — g sin 9) (27)
—1

®, = arcsin (COSG> (28)

V14 +2cos? 6
2 0—1

®3 = arcsin (f €0 ) (29)
2 /13 + cos2 6 +2cos

©®4 = arcsin <ﬁ cos6 —1 ) (30)
2 /25 + cos2 6 + 6.cos f

And the magnitudes of these four angles are shown in Figure 4. The PREPARE subroutine is
implemented by encoding the amplitudes 1 4 <551 and Cg;f’jll in 2271 states that always

22n—1 o
have one different binary digit than those encoding the amplitude 53 ¢ For example, in

the doubles circuit, we encode the amplitudes 1 + C°5293—1 and C0522—1 in states |0000) and

|0001) - - - |0111) and encode the amplitude "Szig" in states [1000) - - - |1111).

Figure 3. Quantum circuit for preparing the ancilla bank of the LCU query for a rank-2 UCC factor
(so-called doubles).

0.4
’.’.. ‘A“'i"_ @1
0 . 2 = -‘A' .l\.
s '.,
0.0— %
U gy \.
" N, T
A‘A::"‘ LY L ff“‘AA ..‘
- O 2 O3— S 5, ©4 'l. ft"‘ o f.l‘
ey, 4 “"x* o
e °
s, 2 '-n-u"".
—0.4- ., "
| | | |
2 2
2]
Figure 4. The four angles used in the PREPARE subroutine for a UCC doubles factor with an amplitude
given by 6.

The PREPARE circuit for a doubles UCC factor can be straightforwardly generalized
to one for a rank-n operator. In this case, we require 2n ancilla qubits, where there are

22"=1 subterms with coefficients ’22,,“1?, 2211 _ 1 subterms with coefficients Cgiffll,

and
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one term with coefficient 1 + Cg;ffll. The hierarchical structure of the circuit is a simple

generalization of the doubles circuit to higher rank, where the first element, which sets the
sin terms is the same, while the remaining factors are created by extending the hierarchy
with multiple controlled Hadamards followed by multiply controlled rotations. The angles
for each rotation in the algorithm are

1
®; = arcsin < — NorE sin 9> (31)
®; = arcsin ( cosf 1 ) (32)
\/221-2+k 2k 4+ 2 4 2cos2 6 + (2F —4) cos O

for2 <k <2n.

Most of the quantum computing costs on near-term quantum computers come from
the CNOT circuit elements; thus, we focus on counting the number of these gates to estimate
the total cost of the circuits. The controlled-H gate, CH, is implemented by one CNOT
sandwiched by one Ry (71/4) gate and one Ry (—7t/4) gate. The controlled-Ry (6) operator
is employed by two CNOT gates and two half rotations. We use the linear-depth method
proposed in Ref. [31] to decompose the multi-qubit control operators into standard CNOT
and one-qubit gates. The CNOT cost of an n-qubit controlled operator is 8n — 12 for all
n > 2. The circuit needs 2(2n — k 4+ 1)(8k — 12) CNOT gates for each k-qubit controlled
operation. For k = 1, the CNOT cost is 2n. To implement the circuit for an arbitrary rank-n,
we need to employ the modular sub-circuit shown in Figures 5 and 6 on 2n — 1 ancilla
qubits. The upper bound for the number of control qubits used in any module is 2n — 1.
The total cost of running the PREPARE subroutine is then 21 + 2 Zigl (8k—12)(2n+1—k),
which can be further simplified to %(8113 —6n% — 4}T” +9). Hence, the cost scales like the
cube of the rank.

M(l9),)

Figure 5. Quantum circuit for the modules of qubit-|q), used in the PREPARE subroutine. The
Hadamard operator is anticontrolled by the qubits between |g); and |g),, and controlled by the qubit
|9),,,- The Ry (®) operator acting on the n-th input is anticontrolled by qubits |g); to |g),,. The circuit
on the right defines the circuit block M on the left.

0, —{Rx, = — =

0y, —— - IR -

M([0)y) | [ M(0)) | M0 |
100

0y, —— L o -

Figure 6. Quantum circuit for the PREPARE subroutine of arbitrary rank with modules introduced in
Figure 5.
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3.2. SELECT(U) Subroutine for Rank-2 Factors

In this section, we introduce a quantum circuit for implementing the SELECT(UI)
operation, illustrated in Equation (24), for the UCCD factors, where the unitary U is the
operator given in Equation (22). The first step of the SELECT(U) circuit is to create one
of the Pauli strings from the pool of the excitation operators (XY strings) and one of the
Pauli strings from the projection pool (IZ strings). In this example, we opt to create the
Y1 Xy X;X; and I, Z; Z;1; strings as shown in Figure 7; however, any arbitrary Pauli string can
be the candidate for this step. It is important to note that we use control operations for
the Y) X; X;X; terms, whereas we use anticontrol operations for the I;Z;Z;I; terms. This is
because we are partitioning the ancilla bank into two sectors, one part for the XY strings,
and one part for the IZ strings. In this case, ancilla-bank states [1000) to [1111) are used
to create the XY strings, and ancilla-bank states |0000) to |0111) are used to create the IZ
strings. The resulting state, omitting the corresponding coefficients, which are prepared in
the previous step, becomes

(10000) + - - - + 10111)) | Z, Z;)

k-1 i—1
+(]1000) 4 -+ -+ [1111)) @ Za Q) Zp|YVi X X;X;) (33)
a=Il+1 b=j+1
B al \
I — Y]
I+1
Za
_ ] x|
k X 1Z]
X I
j x] 1Z}—
j+1
Zifl
i ]

Figure 7. Circuit to create Y X; X;X; and [;Z;Z;1;. |0); denotes the first qubit of the ancilla bank. The
first two circuit components are the controlled Pauli Z gates applied on qubits between (exclusively)
indices [ and k, and between indices j and i.

The construction of the controlled Pauli Z gates shown in Figure 7 is described next.
With the starting reference states prepared, we can then create the entire state exactly. The
first step is to apply a single-qubit controlled Pauli Z operator on qubits I and k, where the
control is to be conditioned on the last qubit of the ancilla bank. The second step is similar,
in that a single-qubit controlled Pauli Z operator is applied on qubits j and i. The control
qubit of the second step is the second to last qubit of the ancilla bank. The final step is to
apply the single-qubit controlled Pauli Z on qubits k and j, with the control qubit being
the second qubit of the ancilla bank. The circuit diagram is illustrated in Figure 8. The
Pauli strings and their corresponding states in the ancilla bank are shown in Table 2. The
qubits on which the control operations are conditioned are chosen specifically for this table.
In practice, when applying this algorithm, one needs to predetermine a table similar to
Table 2 for all the binary encodings and their corresponding Pauli substrings, and choose
accordingly the starting reference states and the control qubits to be used in the approach
illustrated shown in Figures 7-9.
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Figure 8. Circuit to create the state shown in Equation (22). |0); denotes the ith qubit of the an-

cilla bank.
.
Z p— I
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i—1
_ | - ‘@7
k N |

Figure 9. The circuit for implementing the boxed controlled Pauli Z operators shown in Figure 7. The
Pauli Z operators are being applied to the qubits I 4+ 1 to k — 1.

Table 2. The 16 Pauli strings created by scheme shown in Figure 7 and then by the circuit shown in
Figure 8 and their associated binary encodings in the ancilla bank.

1000) 5 5 4 [0); =1 |0} =0
|000> YXXX 1771
1001) XYXX 7171
1010) YXYY 1212
l011) XYYY z11Z
1100 YYYX 1111
1101) XXYX 7711
1110) YYXY 1177
11) XXXY 7777

3.3. SELECT(U) for Arbitrary Rank-n

In this section, we demonstrate the algorithm for the rank-n UCC factor buy generaliz-
ing the algorithms shown in Sections 3.1 and 3.2. First, let us re-examine the case for rank-2;
that is, the doubles. Define groups G1 = {G11, G12} and Gz = {Gy1, G }, with elements
G = 0; ® 0j, where 0; and ¢; are two different Pauli operators acting on different qubits.
Additionally, the group elements have the following identities

Gi1- (02 ®0z) = Gz, G2 - (02 ® 02) = Gy (34)
G- (I1®0z) =Gn, G- (z®1) =Gy (35)
Go1 - (02 ®0%) = Gop, G - (0, ® 02) = Gy (36)
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G- (1®0z) = Gip,Go1 - (0 ® 1) = Gyy, (37)

where 0 is the Pauli Z operator being applied on qubit a;. It should be clear that the
expression in Equation (22) is of the schematic form } ., ., 3, Gpr ® Gyr + G' ® Géq, omitting
the coefficients, where the G groups contain XY subterms and the G’ contam IZ subterms.
In the example shown in the Sections 3.1 and 3.2, the corresponding groups are G1 =
{Gi11 = YX, G2 = XY}, Go = {Gy1 = XX,Gp =YY}, G} = {G}, = 1Z,G}, = ZI},
and G, = {G}; = II,G), = ZZ}. There are in total three steps needed to create the
eigenfunction; hence, we opted to use three digits for the binary encoding in the ancilla bank.

The SELECT(U) subroutines are summarized in Tables 3 and 4.

Table 3. Matrix that shows the scheme for the XY subterms presented in Section 3.2. The entry
colored in blue, G11Gyj, is the initial reference state. After the first step, the yellow entry G1,Goy is
created. The pink entries are created after the second step. The first two steps use the identities in
Equations (34) and (36). The final step is to use the identities in Equations (35) and (37) to create the
green block.

® G G2 G2y G2
Gn 0 0 G116 G11Gx2
G2 0 0 G126 G12G22
Gy Go1G1y G21G12 0 0
Gop GGy G2G1o 0 0

Table 4. Matrix that shows the scheme for the IZ subterms presented in Section 3.2. The entry colored
in blue, G}, G},, is chosen to be the starting reference state. After the first step, the yellow entry
G},Gi, is created. The pink entries result after the second step. The first two steps use the identities
in Equations (34) and (36). The final step is to use the identities in Equations (35) and (37) to create
the entire green block.

® G{I G12 Gél GéZ
Gil Gilcil GhGiZ 0 0
GiZ GiZGil G12G12 0 0
Gy 0 0 G Gy Gy Gy
G 0 0 GGy GGz

Similar to the way we define for the rank-2 factors, for rank-3, we define groups G =
{G11, G12, G13, G154} and Ga = {Gy1, G, Gas, Gog }; therefore, the wavefunction for the UCC
triples factors after the JW transformation take the form Yoptq L Gpr @ Ggr + G;p ® Gﬁq.
The set of identities for rank-3 is

Gz @0, ®1) =Gy, Guu(0: @0, ® 1) = Gy (38)

G(0:®0; ®1) = Gi3,G3(0; ® 0z ® 1) = G2 39)
Gri(l®o, ®0;) =G, Gp(l®0; ®0;) = Gy (40)
Cu(1®o;®0;) =Gy, Gu(l ®oz ®0z) = Gz (41)
G0z ®0; ®1) = Gog, G0z @0, ® 1) = Gy (42)
Gp(0; @0, ®1) = Goz,Go3(0, 0, @ 1) = Goy (43)
Gn(1®eo, ®0;) =Gp,Gn(l®e,®o;) =Gy (44)
Cu(l®0o®0;) = Gy, Gu(l®o, ®0;) = Gn (45)
Cru(l®1l®oz) =G, Gp(l®l®o;) =Gxn (46)
Gi(l®1l®oz) =G, Gu(l®l®o;) = Gy (47)
Gn(rz:@1®1) =G13,G0(0:1®1) = Gy (48)
Go3(0: @1 ®1) = G11,Gu(0: @1 ® 1) = Gpa. (49)
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As shown in the Tables 5 and 6, there are in total five steps needed to create the exact
JW-transformed unitary, and thus we use five out of six digits for the binary encoding in
the ancilla bank. Table 7 shows that the total number of steps needed to fully create the
unitary is seven.

Table 5. Matrix illustrating the scheme for constructing XY substrings in the JW-transformed unitary
of the UCCT factors. The blue entry is chosen to be the starting reference state. After the first step
using identity (38), grey entry G14G»1 is created. Using the identities in Equations (39) and (40), the
yellow entries are created after the second step. The orange and pink columns are created after the
next two steps via the identities in Equations (41) through (44). The final step is to apply the identities
in Equations (46) through (49) to create the entire green block.

® Gn1 G2 G13 Gy G2 G2 Go3 G2y
Gn 0 0 0 0 G11Ga1  GuGn  G11Gz | G116y
G2 0 0 0 0 G12Go1 | G126y G12Gp3 | GioGog
Gz 0 0 0 0 G13Go1 G136 G136z | Gi3Gny
Gia 0 0 0 0 G14Goy  GuuGp  G1aGrz | GiuGoy
G G21G11 G216z GGz GGy 0 0 0 0
G GG GnGip GGz GnGiy 0 0 0 0
Go3 G3Gn  GGrp  Ga3Giz GGy 0 0 0 0
Gog Go4G11 GuGrn GoyGiz GuGyy 0 0 0 0

Table 6. Matrix illustrating the scheme for constructing IZ substrings in the JW-transformed unitary
of the UCCT factors. The blue entry is the starting reference state. After the first step using the identity
in Equation (38), the grey entry G14G4 is created. Using the identities in Equations (39) and (40), the
yellow entries are created after the second step. The orange and pink columns are created after the
next two steps via the identities in Equations (41) through (44). The final step is to apply the identities
in Equations (46) through (49) to create the entire green block.

® Gy G, G Gy Gy Gy Gy Gy
G GnSp [Gu6p GhGl GGy 0 0 0 0
G, GGy [Gplp GpGi GGy 0 0 0 0
Gy Gl | GRGa GGl GiGly 0 0 0 0
2}4 G140G11 G140(;12 G140G13 G140G14 c OG/ c OG/ c OG/ o OG/
21 21721 2122 2123 21724
Chy 0 0 0 0 GGy GpGh  GnGp  ChGh
G23 0 0 0 0 G23 G21 G23 G22 G23 G23 G23 G24
Gy 0 0 0 0 GuGp  GuGp  GuGn GG

Table 7. Off-diagonal block of a matrix illustrating the scheme for constructing XY substrings in the
JW-transformed unitary of the UCCQ factors. The blue entry of the first column is chosen to be the
starting reference state. The grey entry is created after the first step, followed by the green entries
in the second step and the yellow entries in the third step. The pink entries of the last column are
created after the fourth step, followed by the orange columns in the fifth step and purple columns in
the sixth step.

® G G2 Go3 Gy Gas Gae Gay Gag

Gn GG = GGy G11Gxs G116y GGy GiiGos | GGz | GiiGog
G2 G12Go1 | GG G12G3 G1oGpy G1pGas  GiaGog | G1aGaz | GioGog
Gz G13Go1 | G136y G13Gyz  Gi3Goy  Gi3Gys  Gi3Gos | G13Gyz | Gi3Gog
Gia G14Go1 | GG G1uGrs GiuGoy GuaGas  GiuGog | GuaGyz | GiuGog
Gis G15Go1 | G156 Gi5G3 Gi5Gos Gi5Gos GisGoe | Gi5Gaz | GisGog
Gie G16Go1 | G16Ga  Gi16Gos  Gi6Gos GieGas GiGos | G16Goz | GieGog
Gy G17Ga1 | GizGn G17Gas Gi7Goy GiyGas  GizGog | GizGoz | GizGog
Gig G18Go1 | GigGm  GigGoz  GigGpy  Gi1gGas  GigGos | GigGaz | GigGog

For a UCC factor with arbitrary rank 7, a total number of n — 1 transformations are
required to complete the first column of the matrix. An additional n — 1 transformations
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are then required to complete the rest of the diagonal or off-diagonal block, depending on
whether the subterms are XY strings or IZ strings. The final step is to perform the "flip’
transformation to make the entire matrix. Therefore, for any UCC factor of rank , a total
number of 21 — 1 steps are needed to construct the JW-transformed unitary operator.

3.4. Gate Counts

The LCU framework for rank-n UCC factors is given by a simple circuit implementa-
tion of the JW-transformed unitary in the form of

; Y Gpr ©Gyr + G, ® Gy (50)
p#q T

where each group Gy contains 2! elements that commute with every other element in
the same group but anticommute with elements in the other group. The total number of
steps in the SELECT(UI) subroutine is 2n — 1 for rank-n factors. Within each step of the
SELECT(U) subroutine, two single-qubit controlled Pauli Z operators are needed, making
the total number of CNOT gates 4n — 2. In addition, 4n + lenfz pi; CNOT gates are needed
for initializing the reference Jordan-Wigner strings. Here, p; is the number of qubits
between the ith pair of the active orbitals. In the case of a UCCD factor discussed in
Sections 3.1 and 3.2, p; is the number of qubits between qubits k and ! and p; is the number
of qubits between qubits j and i. The circuit for preparing the ancilla bank hosts the majority
of the complexity, where the total CNOT cost is %(8713 —6n% — 4 1 9). The total number
of CNOT gates used in the LCU circuit for preparing the JW-transformed unitary is then
6-(5(8n% —6n? — 42 +9))+3- (81 —2+ L7 %p;), which can be further simplified to
12813 — 9612 — 1401 + 138 + 3 Ziz”_z pi- Note that this has a large prefactor in the scaling
with the rank. The total number of ancilla qubits required for this framework is 2n. For a
UCC factor with an arbitrary set of active orbitals, the CNOT cost of the circuits proposed in
our work eventually becomes favorable compared with other existing methods when the
rank becomes large (n > 9), including the one proposed in the authors’ previous work [20],
although for low-rank factors, the fermionic-excitation-based (FEB) algorithm proposed by
Ref. [26] is more efficient, which is shown in Figure 10.

B standard
[ FEB
s CU

CNOT Gate Count

Rank

Figure 10. CNOT gate counts for three different algorithms, the standard CNOT cascading circuits,
the FEB circuits [26], and the linear-combination-of-unitary query circuits introduced in this work.

4. Discussion

In summary, we have introduced an application of the LCU query model that efficiently
simulates the factorized UCC ansatze with a scaling that goes like the cube of the rank. We
have demonstrated the quantum circuits for the PREPARE and the SELECT(U) subroutines,
whose CNOT counts scale linearly with the rank of the UCC ansatze and the number
of active spin-orbitals. The PREPARE operator employs a quantum circuit that scales as
the cube of the rank of the UCC factor and requires a linear number of ancilla. The
proposed LCU framework greatly reduces the number of two-qubit gates for high-rank
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UCC factors, which are needed for simulating strongly correlated systems on NISQ devices
and future fault-tolerant quantum computers [28]. Although the UCC ansatzes that contain
only singles and doubles with some triples treated perturbatively are considered the
golden standard in quantum chemistry calculations, Refs. [32,33] demonstrated that rank-
17 excitations are needed to obtain accurate results for systems such as the chromium dimer.
Further, it is expected that strongly correlated systems will require higher rank terms and
these are precisely the problems proposed for quantum computers.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/sym15071429/s1.
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