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Abstract
We derive a general procedure for evaluating the nth derivative of a time-
dependent operator in the Heisenberg representation and employ this approach
to calculate the zeroth to third spectral moment sum rules of the retarded
electronic Green’s function and self-energy for a system described by the
Holstein–Hubbard model allowing for arbitrary spatial and time variation of
all parameters (including spatially homogeneous electric fields and parameter
quenches). For a translationally invariant (but time-dependent) Hamiltonian,
we also provide sum rules in momentum space. The sum rules can be applied
to various different phenomena like time-resolved angle-resolved photoemis-
sion spectroscopy and benchmarking the accuracy of numerical many-body
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calculations. This work also corrects some errors found in earlier work on
simpler models.

Supplementary material for this article is available online
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1. Introduction

Recent developments in pump-probe spectroscopy have elucidated some nonequilibrium prop-
erties of a large variety of strongly correlated systems with coupled electrons, phonons, and
spin degrees of freedom to femtosecond time scales, [1–7]. For example, pump-probe tech-
niques have been applied to study high Tc cuprates, which exhibit archetypal strong electron-
electron and electron-phonon couplings, [8–11]. Despite these inroads, understanding the
nonequilibrium dynamics of electron-phonon interactions and their interplay with electron-
electron interactions remains elusive and is among the most intriguing problems in condensed
matter physics.

First, we briefly review the ‘pump-probe’ technique. The ‘pump’ part refers to an ultrastrong
and ultrashort electric field pulse, which can be used to selectively excite either electrons or
phonons. The resulting nonequilibrium state can subsequently be explored by a ‘probe,’ which
is a weaker pulse that measures the response of the system after a delay. Among the different
materials that have been studied by pump-probe spectroscopy, high temperature supercon-
ductors have been central, in part because the role played by electron-phonon interactions in
these materials is still not well-understood. For example, Zhang et al (see [12]) investigated
the ultrafast response of the self-energy of a high-temperature superconductor in both the nor-
mal and superconducting states. Such studies are valuable as the most direct evidence of an
electron–phonon coupling in the cuprates (or, more generally, an electron–boson coupling)
is the universal electron self-energy renormalization, which manifests itself as a kink in the
photoemission spectrum that occurs below the Fermi energy precisely at the coupled phonon
energy, [13].

In equilibrium, the strength of the kink is directly related to the strength of the electron-
phonon coupling. Whether this phenomenon is related to high-temperature superconductivity
still remains unclear. One intriguing result from pump-probe experiments, such as [12], is
that the kink softens when in the superconducting state, even with a relatively weak pump.
Is the pump dynamically reducing the electron–phonon coupling in superconducting states?
Sum rules are one way to answer this question. A numerical study, Kemper et al [14], shows
that the kink softens when the system is pumped, even if there is no dynamic reduction of the
electron–phonon coupling as determined by the zeroth moment of the retarded self-energy as
a function of time. Hence, kink softening alone is insufficient to determine whether there is
any dynamic reduction of the electron–phonon coupling, even though it is routinely used to
determine the strength of electron-phonon coupling in equilibrium photoemission studies.

Here, we explain how to use exact sum rules to investigate the effect of a pump on a sys-
tem with both electron–electron and electron-phonon interactions using a Holstein–Hubbard
model. A particularly advantageous feature of this model is its relative simplicity while still
capturing the essential physics of electron–electron couplings and electron-phonon couplings
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[15–19]. The sum rules can also be purposed to benchmark the accuracy of numerical
approaches. Indeed, the approach was developed to calculate the first two moments of the
spectral function in order to estimate the accuracy of Monte-Carlo solutions of the Hubbard
model in two-dimensions [20]. Since then, the applications of sum rules have extended to a
variety of strongly correlated systems in equilibrium and nonequibrium both for homogeneous
and inhomogeneous cases, as in [21–24]. Sum rules for the retarded Green’s function through
second order for the Holstein model as in [25] and the zeroth-order self-energy sum rule for
the Holstein–Hubbard model as in [26] have also appeared in equilibrium. Preliminary work
has already found the lowest-order sum rules in the nonequilibrium Holstein model [27]. Here,
we focus on the full Holstein–Hubbard model and derive the nonequilibrium spectral moment
sum rules through third order.

The remainder of the paper is organized as follows: In section 2, we derive an identity
for calculating the nth derivative of a generic time dependent operator in the Heisenberg rep-
resentation, which can be used to derive a general formula for the nth moment of a spectral
function in the case when the Hamiltonian is time-dependent. In section 3, we introduce the
Holstein–Hubbard model and we derive the exact sum rules for the spectral function of the
retarded Green’s function up to the third moment. Translational invariance of the system is
not needed for these calculations, and we allow the parameters of the model to be spatially
inhomogenous. In section 4, we derive the corresponding spectral moment sum rules for the
retarded self-energy. For translationally invariant systems, we transform all the moments to
momentum space in section 5. To ensure that the position space results are well founded, we
compare them to relevant analytic and numerical results in the atomic limit and against previ-
ous results in section 6. A summary, with comments and conclusions, is provided in section 7.

2. Formalism for the nth spectral moment of the electronic Green’s function

In this section, we derive a general formula for the nth moment of the non-equilibrium retarded
Green’s function, defined as follows:

GR
ijσ(t, t

′) =−iθ(t− t ′)
〈{

ciσ(t),c
†
jσ(t

′)
}〉

, (1)

where θ(t) is the unit step (or ‘Heaviside’) function, ⟨O⟩= Tr [exp(−βHeq)O]/Z , Z =
Trexp(−βHeq) and the curly bracket denotes the anticommutator ({A,B}= AB+BA)
between operators. The operator c†iσ (ciσ) creates (destroys) a fermion at lattice site i with
spin σ. These operators satisfy the canonical anticommutation relations: {ciσ,cjσ ′}= 0,
{c†iσ,c

†
jσ ′}= 0 and {ciσ,c†jσ ′}= δijδσσ ′ . The fermionic operators are written in the Heis-

enberg representation ciσ(t) = U†(t, tmin)ciσU(t, tmin), where the evolution operator satisfies
the Schrödinger equation, idU(t, tmin)/dt=HS(t)U(t, tmin), and the S subscript denotes the
Schrödinger representation for the Hamiltonian. The time evolution operator is:

U(t, tmin) = Tt exp
[
−i
ˆ t

tmin

d t̄HS(̄t)

]
, (2)

where Tt is the time-ordering operator which moves later times to the left and tmin is the earliest
time considered in the calculation. Next, we express the retarded Green’s function as:

GR
ijσ(t, t

′) =−iθ(t− t ′)×⟨U†(tmax, tmin)U(tmax, t)ciσU(t, t
′)c†jσU(t

′, tmin)⟩

− iθ(t− t ′)×⟨U†(t ′, tmin)c
†
jσU

†(tmax, t
′)U(tmax, t)ciσU(t, tmin)⟩. (3)
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Figure 1. Kadanoff–Baym–Keldysh contour with an initial thermal state at t= tmin that
has a temperature T= 1/β.

The two times in the argument of the Green’s function lie on the Kadanoff–Baym–Keldysh
contour, which starts from tmin and runs in the positive direction until tmax (because of the U
term) and then runs back to tmin in the opposite direction (because of the U† term) and finally
goes to tmin− iβ parallel to the imaginary axis whereβ = 1/T (because of the exp[−βHS(t→−
∞)] term in the thermal average), as illustrated in figure 1. In the first operator average, both t
and t′ are on the upper branch of the contour with t later than t′, while in the second average, t
is on the upper branch and t′ is on the lower branch. In these formulas, we used the semigroup
identity, U(t1, t2)U(t2, t3) = U(t1, t3), and unitarity, U†(t, t ′)U(t, t ′) = U(t ′, t)U(t, t ′) = 1.

It is then conventional and convenient to make use of so-called Wigner coordinates: the
average time is Tave = (t+ t ′)/2 and the relative time is trel = t− t ′. By performing the Fourier
transform with respect to the relative time, trel, we can find the frequency-dependent retarded
Green’s function for each average time,

GR
ijσ(Tave,ω) =

ˆ ∞

0
dtrel e

iωtrelGR
ijσ(Tave+

trel
2
, Tave−

trel
2
). (4)

The nth spectral moment in real space is then defined from the many-body density of states
as:

µRnijσ(Tave) =− 1
π

ˆ ∞

−∞
dωωnImGR

ijσ(Tave,ω), (5)

fromwhich onemay rewrite themoments as derivatives with respect to relative time as follows:

µRnijσ(Tave) = Im in+1 ×
〈
dn

dtnrel

{
ciσ
(
Tave+

trel
2

)
,c†jσ

(
Tave−

trel
2

)}〉
, (6)

evaluated in the limit as the relative time approaches zero from the positive side, trel → 0+.
Thus the problem of finding the nth moment of the spectral function reduces to calculating
the nth derivative of the time-dependent anticommutator {ciσ(Tave+ trel

2 ),c
†
jσ(Tave−

trel
2 )}with

respect to trel. Below,we show how to calculate this derivative in theHeisenberg representation.
Consider a physical system with an arbitrary time-dependent Hamiltonian denoted by HS(t)
in the Schrödinger representation. We know that in the Heisenberg representation, the time
dependence is encoded in the operator AH(t) = U†(t, tmin)AS(t)U(t, tmin), and the Heisenberg
equation of motion implies that:

i
dAH(t)
dt

= U†(t, tmin)[AS(t),HS(t)]U(t, tmin)+ iU†(t, tmin)
∂AS(t)
∂t

U(t, tmin). (7)
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Using the definition of the n-fold nested commutator LnAH(t) = [. . .[[AH(t),HH(t)],HH(t)]
. . .,HH(t)] and DnAH(t) = U†(t, tmin)∂nAS(t)/∂tnU(t, tmin), we can rewrite the equation (7) as,

i
dAH(t)
dt

= L1AH(t)+ iD1AH(t). (8)

Thus, one can calculate higher-order moments by taking additional derivatives. However,
this procedure is unwieldy for higher derivatives, so we must simplify. We start from the
schematic formula:

in
dnAH(t)
dtn

=
2n∑

sequence=1

(i)mTuple[{D1,L1},n]AH(t), (9)

where Tuple[list,n] is an n-tuple, which we define to be a sequence of products of elements
with length n (note the curly brackets are not used as anticommutators here, nor are the square
brackets commutators). The sum runs over all possible orderings of the sequences of the n-
tuple (one can think of the orderings as all possible partitions of Ln and Dn regarding LiDj

as distinct from DjLi). The index m indicates the order of the derivative for each sequence
and it can be obtained by summing over the number of times that operator D1 appears in the
sequence. Now, we can calculate higher derivatives as follows:

i2
d2AH(t)
dt2

= L1L1AH(t)+ iD1L1AH(t)+ iL1D1AH(t)+ i2D1D1AH(t)

= L2AH(t)+ iD1L1AH(t)+ iL1D1AH(t)+ i2D2AH(t), (10)

i3
d3AH(t)
dt3

= L3AH(t)+ iL1D1L1AH(t)+ iL2D1AH(t)+ i2L1D2AH(t)

+ iD1L2AH(t)+ i2D2L1AH(t)+ i2D1L1D1AH(t)+ i3D3AH(t). (11)

In deriving these formulae, we have used a contraction rule wherein one combines adjacent
operator pairs that are identical operators. For example, L1L1 is equal to L2 and D1D1 = D2.
Care must be taken when evaluating the mixed operator terms, because the derivatives will act
on both the A operator and the H operator in the commutator chains, implying we must use
the chain rule within the nested commutators. If the number of derivatives is smaller than the
number of nested commutators, the derivatives are distributed through all possible terms. For
example, if there are n derivatives, then we have 2n terms from the chain rule. In cases where
the operator AS has no explicit time dependence simplifications are apparent. Note, however,
that when the Hamiltonian has time dependence in the Schrödinger representation, the deriv-
ative terms have to be included because, generically, the time derivative of the Hamiltonian
does not commute with the Hamiltonian. We use a tilde notation to indicate an operator that
does not have explicit time dependence. Performing all of these simplifications leads to the
following results for the first three derivatives when AS has no explicit time dependence in the
Schrödinger representation:

i
dÃH
dt

= L1ÃH, (12)

i2
d2ÃH
dt2

= L2ÃH+ iD1L1ÃH, (13)

i3
d3ÃH
dt3

= L3ÃH+ iL1D1L1ÃH+ iD1L2ÃH+ i2D2L1ÃH. (14)

While one might think that there should be no explicit time-derivatives on the right hand
side when the operator ÃS has no explicit time dependence, the derivatives enter from the
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nested commutators because the Hamiltonian does not generally commute with its own time
derivatives when it is time-dependent.

Our next step is to employ these derivative identities to calculate the spectral moment sum
rules. First, we must determine what derivatives are needed for these sum rules, so, as shown
in equation (6), we start by evaluating the derivatives of the anticommutator between the cre-
ation and annihilation operators, which have no explicit time dependence in the Schrödinger
representation. The chain rule immediately yields:

in
dn

dtnrel

{
ciσ
(
Tave+

trel
2

)
,c†jσ

(
Tave−

trel
2

)}
=

(
i
2

)n n∑
k=0

(−1)k
(
n
k

){[
d
dtrel

]n−k

ciσ
(
Tave+

trel
2

)
,

[
d
dtrel

]k
c†jσ

(
Tave−

trel
2

)}
, (15)

with
(n
k

)
= n!/[(n− k)!k!] the binomial coefficient. We will take the limit trel → 0+ in all of

the derivatives. Next, we employ the results from equation (9) to determine the first four spec-
tral moments (with all operators in the Heisenberg representation—the subscript H has been
suppressed for brevity):

µR0ijσ(Tave) = Re
〈{

ciσ(Tave),c
†
jσ(Tave)

}〉
, (16)

µR1ijσ(Tave) =
1
2
Re

(〈{
[ciσ(Tave),H(Tave)] ,c

†
jσ (Tave)

}〉
−
〈{

ciσ(Tave), [c
†
jσ(Tave),H(Tave)]

}〉)
, (17)

µR2ijσ(Tave) =
1
4
Re

(〈{
[[ciσ(Tave),H(Tave)] ,H(Tave)] ,c

†
jσ(Tave)

}〉

− 2

〈{
[ciσ(Tave),H(Tave)] ,

[
c†jσ(Tave),H(Tave)

]}〉

+

〈{
ciσ(Tave),

[[
c†jσ(Tave),H(Tave)

]
,H(Tave)

]}〉)

+
1
4
Im

(〈{[
ciσ(Tave),

∂H(Tave)
∂Tave

,c†jσ(Tave)

]}〉

+

〈{
ciσ(Tave),

[
c†jσ(Tave),

∂H(Tave)
∂Tave

]}〉)
, (18)

µR3ijσ(Tave) = Re
1
8

(〈{
[[[ciσ(Tave),H(Tave)] ,H(Tave)] ,H(Tave)] ,c

†
jσ(Tave)

}〉

− 3

〈{
[[ciσ(Tave),H(Tave)] ,H(Tave)] ,

[
c†jσ(Tave),H(Tave)

]}〉

+ 3

〈{
[ciσ(Tave),H(Tave)] ,

[
c†jσ(Tave),H(Tave)

]
,H(Tave)

]}〉
6
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−

〈{
ciσ(Tave),

[[[
c†jσ(Tave),H(Tave)

]
,H(Tave)

]
,H(Tave)

]}〉)

+Re
i
8

(〈{[
[ciσ(Tave),H(Tave)] ,

∂H(Tave)
∂Tave

]
,c†jσ(Tave)

}〉

+ 2

〈{[[
ciσ(Tave),

∂H(Tave)
∂Tave

]
,H(Tave)

]
,c†jσ(Tave)

}〉

− 3

〈{
[ciσ(Tave)] ,

∂H(Tave)
∂Tave

,
[
c†jσ(Tave),H(Tave)

]}〉

+ 3

〈{
[ciσ(Tave),H(Tave)] ,

[
c†jσ(Tave),

∂H(Tave)
∂Tave

]}〉

− 2

〈{
ciσ(Tave),

[[
c†jσ(Tave),

∂H(Tave)
∂Tave

]
,H(Tave)

]}〉

−

〈{
ciσ(Tave),

[[
c†jσ(Tave),H(Tave)

]
,
∂H(Tave)
∂Tave

]}〉)

−Re
1
8

(〈{[
ciσ(Tave),

∂2H(Tave)

∂Tave
2

]
,c†jσ(Tave)

}〉

−

〈{
ciσ(Tave),

[
c†jσ(Tave),

∂2H(Tave)

∂Tave
2

]}〉)
. (19)

Clearly, the expressions become increasingly complex for larger n. There is, however, a
simple solution to this problem. Start with {L0ci,Lnc

†
j }:{

L0ciσ(Tave),Lnc
†
jσ(Tave)

}
=
{
L0ciσ(Tave),L1Ln−1c

†
jσ(Tave)

}
. (20)

We now make use of a graded Jacobi identity, with which we move the commutators to the
right:

{X, [Y,Z]}=−{[X,Z] ,Y}+ [{X,Y} ,Z] . (21)

This implies that we can rearrange equation (20) to become:{
L0ciσ(Tave),Lnc

†
jσ(Tave)

}
= −

{
L1ciσ(Tave),Ln−1c

†
jσ(Tave)

}
+L1

{
ciσ,Ln−1c

†
jσ

}
. (22)

This can then be rearranged to yield:{
Lkciσ,Lnc

†
jσ

}
=

n∑
i=0

(−1)n
(
n
i

)
Ln−i

{
Lk+iciσ,c

†
jσ

}
. (23)

This identity allows us to relate all of the multiple commutator terms to a small set of
similar terms; the structure of these terms makes manifest that contributions will not cancel
as we proceed from large to small n (or k as in equation (15)), but will contribute to fewer
and fewer distinct terms. Note that here we used the symbol L0, which denotes the identity
(meaning no commutation). Derivative terms in higher moments can also be simplified in
this fashion, but one must be careful because the Hamiltonian and its derivative do not, in

7
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general, commute. Though these results are somewhat challenging to interpret without detailed
calculation, schematically one can always plug equation (23) directly into equation (15) to get
an uglier, but easier to calculate, result.

After simplifying, we find:

µR0ijσ(Tave) = Re
〈{

ciσ(Tave),c
†
jσ(Tave)

}〉
, (24)

µR1ijσ(Tave) = Re
〈{

[ciσ(Tave),H(Tave)],c
†
jσ(Tave)

}〉
, (25)

µR2ijσ(Tave) = Re
〈{

[[ciσ(Tave),H(Tave)],H(Tave)],c
†
jσ(Tave)

}〉
−Re

3
4

〈[{
[ciσ (Tave) ,H(Tave)] ,c

†
jσ (Tave)

}
,H(Tave)

]〉
, (26)

µR3ijσ(Tave) = Re

〈{
[[[ciσ(Tave),H(Tave)] ,H(Tave)] ,H(Tave)] ,c

†
jσ(Tave)

}〉

−Re
3
2

〈[{
[[ciσ (Tave) ,H(Tave)] ,H(Tave)] ,c

†
jσ (Tave)

}
,H(Tave)

]〉
+Re

3
4

〈[[{
[ciσ (Tave) ,H(Tave)] ,c

†
jσ (Tave)

}
,H(Tave)

]
,H(Tave)

]〉
+Re

i
2

(〈{[[
ciσ(Tave),

∂H(Tave)
∂Tave

]
,H(Tave)

]
,c†jσ(Tave)

}〉

−

〈{[
[ciσ(Tave),H(Tave)] ,

∂H(Tave)
∂Tave

]
,c†jσ(Tave)

}〉)

+Re
3
4

(〈[{
[ciσ,H] ,c

†
jσ

}
,
∂H
∂Tave

]〉)
−Re

1
4

(〈{[
ciσ(Tave),

∂2H(Tave)

∂Tave
2

]
,c†jσ(Tave)

}〉)
. (27)

Equations (24)–(27) are the starting points for an explicit determination of the zeroth-third
spectral moments of the retarded Green’s function as presented next.

3. Formalism for the sum rules of the spectral function for the
Holstein–Hubbard model

The Holstein–Hubbard model is widely and effectively used to describe systems with
both electron–phonon and electron–electron interactions, [15–19]. The Hamiltonian for the
(inhomogeneous) Holstein–Hubbard model in the Schrödinger representation is given by:

HHH(t) = −
∑
ijσ

tij(t)c
†
iσcjσ +

∑
i

Ui(t)ni↓ni↑ +
∑
i

[gi(t)xi−µi(t)](ni↑ + ni↓)

+
∑
i

1
2mi

p2i +
∑
i

1
2
κix

2
i . (28)

In the above Hamiltonian, the phonon coordinate and momentum are defined as follows:

x̂=

√
ℏ

2mω
(a† + a), p̂= i

√
mω
2ℏ

(a† − a), (29)

8
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where a† and a are bosonic creation and annihilation operators, while c† and c are the creation
and annihilation operators for the fermionic degrees of freedom (with the lattice site and spin
indices suppressed). Consequently, niσ = c†iσciσ is the occupation number of electrons of spinσ
at site i. The electron hopping matrix tij(t) is a (possibly time-dependent) Hermitian matrix and
Ui(t) is the (possibly time-dependent) on-site Hubbard repulsion. The electrons are coupled
to phonons by coupling strength gi(t) which is parameterized by an energy per unit length
(and may also be time-dependent). A local site energy µi is also included (it is the chemical
potential if it is independent of i, the lattice site).

Note that the mass, spring constant, and frequency of the phonon are not allowed to change
with time.

This model captures the features of a variety of interesting phenomena such as the Mott
transition and polaron and bipolaron formation. It also has ordered phases to describe super-
conductivity, charge-density-wave order, and spin-density-wave order. Dynamical mean-field
theory (DMFT) has been applied to investigate the model exactly in the limit of infinite spatial
dimensions [15, 28–31].

Now we apply equations (16)–(19) to determine the explicit moments for the nonequilib-
rium and inhomogeneous Holstein–Hubbard model. To simplify the formulas, we introduce
the notation, Ō= O(Tave), to indicate the operator is evaluated at the average time Tave, after
taking the limit trel → 0. The overbar is also used to indicate a simple function of time is evalu-
ated at Tave. In addition, we define ν̄iσ = µi(Tave)−Ui(Tave)⟨niσ̄(Tave)⟩− gi(Tave)⟨xi(Tave)⟩ to
make the expressions more readable (we also use the notation σ̄ =−σ); be careful not to con-
flate the meaning of the overbar on the σ label with the meaning of the overbar on an operator
or a time-dependent function.

After some significant algebra, we find the following results. The zeroth moment is trivial,

µR0ijσ(Tave) = δij, (30)

and higher moments are shown below, where we employed the fermionic operator identity
n2iσ = niσ to simplify the final results:

µR1ijσ(Tave) =−t̄ij− ν̄iσδij, (31)

µR2ijσ(Tave) =
∑
k

t̄ik̄tkj+ t̄ijν̄iσ + t̄ijν̄jσ + ν̄2
iσδij

+ Ū2
i [⟨n̄iσ̄⟩− ⟨n̄iσ̄⟩2]δij+ ḡ2i [⟨x̄2i ⟩− ⟨x̄i⟩2]δij

+ 2Ūiḡi[⟨n̄iσ̄ x̄i⟩− ⟨n̄iσ̄⟩⟨x̄i⟩]δij. (32)

The third moment is obviously of considerably greater complexity than the previous two.
Evaluating, we find:

µR3ijσ(Tave) =−Re

(∑
ls

t̄il̄tls̄tsj

)
−Re

(∑
k

t̄ik̄tkj (ν̄iσ + ν̄jσ + ν̄kσ)

)
− δijν̄

3
iσ + δijḡ

3
i

[⟨
x̄3i
⟩
−⟨x̄i⟩3

]
− 3δijµ̄iḡ

2
i

[⟨
x̄2i
⟩
−⟨x̄i⟩2

]
+ δijŪ

3
i

[
⟨n̄iσ̄⟩− ⟨n̄iσ̄⟩3

]
+ 3δijḡ

2
i Ūi

[⟨
n̄iσ̄ x̄

2
⟩
−⟨n̄iσ̄⟩⟨x̄i⟩2

]
− 6δijµ̄iḡiŪi [⟨n̄iσ̄ x̄i⟩− ⟨n̄iσ̄⟩⟨x̄i⟩] + 3δijḡiŪ

2
i

[
⟨n̄iσ̄ x̄i⟩− ⟨n̄iσ̄⟩2 ⟨x̄i⟩

]
− 3δijµ̄iŪ

2
i

[
⟨n̄iσ̄⟩− ⟨n̄iσ̄⟩2

]
−Re

(
tij
(
ν̄2
iσ + ḡ2i

[⟨
x̄2i
⟩
−⟨x̄i⟩2

]
+2ḡiŪi [⟨x̄in̄iσ̄⟩− ⟨x̄i⟩⟨n̄iσ̄⟩] + Ū2

i

[
⟨n̄iσ̄⟩− ⟨n̄iσ̄⟩2

]))
−Re

(
tij
(
ν̄2
jσ + ḡ2j

[⟨
x̄2j
⟩
−⟨x̄j⟩2

]
+ 2ḡjŪj [⟨x̄jn̄jσ̄⟩− ⟨x̄j⟩⟨n̄jσ̄⟩] + Ū2

j

[
⟨n̄jσ̄⟩− ⟨n̄jσ̄⟩2

]))
9
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−Re
(
tij
(
ν̄iσ ν̄jσ + ḡiḡj [⟨x̄ix̄j⟩− ⟨x̄i⟩⟨x̄j⟩] + ŪiŪj [⟨n̄iσ̄ n̄jσ̄⟩− ⟨n̄iσ̄⟩⟨n̄jσ̄⟩]

))
−Re

(
tij
(
ḡiŪj [⟨x̄in̄jσ̄⟩− ⟨x̄i⟩⟨n̄jσ̄⟩] + ḡjŪi [⟨x̄jn̄iσ̄⟩− ⟨x̄j⟩⟨n̄iσ̄⟩]

))
+ δij

ḡ2i
2m

[
1− 1

2
(⟨n̄iσ⟩+ ⟨n̄iσ̄⟩)

]
+

1
4
δij

κiḡi
mi

⟨xi⟩

+Re

(
ītij
∑
l

Im
(
Ūītil

⟨
c̄†iσ̄ c̄lσ̄

⟩
− Ūj̄tjl

⟨
c̄†jσ̄ c̄lσ̄

⟩))

− 1
2
Ūiδij

∑
ls

Re
(̄
tlītis

⟨
c̄†lσ̄ c̄sσ̄

⟩
− t̄lītsl

⟨
c̄†sσ̄ c̄iσ̄

⟩)
+

1
2
δijŪi

∑
l

(
ḡi
⟨
x̄iRe

(̄
tlic̄

†
lσ̄ c̄iσ̄

)⟩
− ḡl

⟨
x̄lRe

(̄
tlic̄

†
lσ̄ c̄iσ̄

)⟩)
− 1

2
Ūiδij

∑
l

(µ̄i− µ̄l)Re
(̄
tli
⟨
c̄†lσ̄ c̄iσ̄

⟩)
− 1

2
Ūiδij

∑
l

Ūl

⟨
n̄lσRe

(̄
tlic̄

†
lσ̄ c̄iσ̄

)⟩
+ 2ŪiŪj

⟨
Re (̄tijc̄

†
iσ̄ c̄jσ̄)c̄

†
jσ c̄iσ

⟩
− 3

2
δijŪ

2
i

∑
l

⟨
n̄iσRe

(̄
tlic̄

†
lσ̄ c̄iσ̄

)⟩

+
1
2
Re

(
i
∑
k

[
d̄tik
dTave

t̄kj− t̄ik
d̄tkj
dTave

])
− 1

2
Re

(
i
d̄tij
dTave

[µ̄i− µ̄j]

)

+
1
2
Re

(
ītij

[
dµ̄i
dTave

−
dµ̄j
dTave

])
+

1
2
Re

(
i
d̄tij
dTave

[ḡi ⟨x̄i⟩− ḡj ⟨x̄j⟩]
)

− 1
2
Re

(
ītij

[
dḡi
dTave

⟨x̄i⟩−
dḡj
dTave

⟨x̄j⟩
])

+
1
2
Re

(
i
d̄tij
dTave

[Ūi ⟨n̄iσ̄⟩− Ūj ⟨n̄jσ̄⟩]
)

− 1
2
Re

(
ītij

[
dŪi

dTave
⟨n̄iσ̄⟩−

dŪj

dTave
⟨n̄jσ̄⟩

])
− 1

2
δij

dḡi
dTave

d⟨x̄i⟩
dTave

+ δij
dŪi

dTave

∑
k

Im
(̄
tik
⟨
c̄†iσ̄ c̄kσ̄

⟩)
− δijŪi

∑
k

Im

(
d̄tik
dTave

⟨
c̄†iσ̄ c̄kσ̄

⟩)

+
1
4
Re

(
d2̄tij
dT2

ave

)
+

1
4
δijRe

(
d2µ̄i
dT2

ave
− d2Ūi

dT2
ave

⟨n̄iσ̄⟩−
d2ḡi
dT2

ave
⟨x̄i⟩
)
. (33)

These are the main results of this work.

4. Formalism for the sum rules for the retarded electronic self-energy

Next, we derive the retarded self-energy moments. The self-energy does not vanish at high
frequency, but approaches a constant value, which we denote ΣR

ijσ(Tave,ω =∞) and which is
real. The moments are defined from integrals over the imaginary part of the self-energy via:

CRnijσ =− 1
π

ˆ
dωωnImΣijσ(ω). (34)

The zeroth moment gives the overall strength of the self-energy. These moments can be
obtained from the Dyson equation, which connects the self-energy with the Green’s function.
For the nonequilibrium case, it is useful to work in the Larkin–Ovchinkov representationwhere
the Green’s function and the self-energy each become 2× 2matrices [32]. The complete deriv-
ation of this Dyson equation for the nonequilibrium self-energy is presented in [22], which we

10
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will quote and subsequently rearrange to extract the moments of the self-energy. Throughout
this section we will employ a notation in which µ̃Rnijσ = µRnijσ

∣∣
U=g=0

. Otherwise stated, the tilde

will denote the ‘non-interacting’ case in which bothUi(t) and gi(t) are zero. The identities are:

µR0ijσ(Tave) = µ̃R0ijσ(Tave), (35)

µR1ijσ(Tave) = µ̃R1ijσ(Tave)+
∑
kl

µ̃R0ikσ(Tave)Σ
R
klσ(Tave,ω =∞)µR0ljσ(Tave), (36)

µR2ijσ(Tave) = µ̃R2ijσ(Tave)+
∑
kl

µ̃R0ikσ(Tave)Σ
R
klσ(Tave,ω =∞)µR1ljσ(Tave)

+
∑
kl

µ̃R0ikσ(Tave)C
R0
klσ(Tave)µ

R0
ljσ(Tave)

+
∑
kl

µ̃R1ikσ(Tave)Σ
R
klσ(Tave,ω =∞)µR0ljσ(Tave), (37)

µR3ijσ(Tave) = µ̃R3ijσ(Tave)+
∑
kl

µ̃R0ikσ(Tave)Σ
R
klσ(Tave,ω =∞)µR2ljσ(Tave)

+
∑
kl

µ̃R0ikσ(Tave)C
R0
klσ(Tave)µ

R1
ljσ(Tave)

+
∑
kl

µ̃R0ikσ(Tave)C
R1
klσ(Tave)µ

R0
ljσ(Tave)

+
∑
kl

µ̃R1ikσ(Tave)Σ
R
klσ(Tave,ω =∞)µR1ljσ(Tave)

+
∑
kl

µ̃R1ikσ(Tave)C
R0
klσ(Tave)µ

R0
ljσ(Tave)

+
∑
kl

µ̃R2ikσ(Tave)Σ
R
kl(Tave,ω =∞)µR0ljσ(Tave), (38)

where ΣR
ij(ω =∞) is the high-frequency limit of the self-energy, the real constant term of the

self-energy. Using the fact that:

µR0ijσ(Tave) = µ̃R0ijσ(Tave) = δij, (39)

the self-energy moment sum rules can be explicitly determined after some algebra. We find:

ΣR
ijσ(Tave,ω =∞) = [Ūi⟨n̄iσ̄⟩+ ḡi⟨x̄i⟩]δij, (40)

CR0ijσ(Tave) = Ū2
i

[
⟨n̄iσ̄⟩− ⟨n̄iσ̄⟩2

]
δij+ ḡ2i

[
⟨x̄2i ⟩− ⟨x̄i⟩2

]
δij+ 2ḡiŪi[⟨x̄in̄iσ̄⟩− ⟨x̄i⟩⟨n̄iσ̄⟩]δij, (41)

and

CR1ijσ(Tave) = δijŪ
3
i

[
3⟨n̄iσ̄⟩3 − 2⟨n̄iσ̄⟩2 + ⟨n̄iσ̄⟩

]
+ δijḡ

3
i

[⟨
x̄3i
⟩
− 2
⟨
x̄2i
⟩
⟨x̄i⟩+ ⟨x̄i⟩3

]
+ δij

[
ḡiŪ

2
i + ḡ2i Ūi

][
3
⟨
n̄iσ̄ x̄

2
i

⟩
− 2⟨n̄iσ̄⟩

⟨
x̄2i
⟩
− 4⟨n̄iσ̄ x̄i⟩⟨x̄i⟩+ 3⟨n̄iσ̄⟩⟨x̄i⟩2

]
− 2δijµ̄iḡiŪi [⟨n̄iσ̄ x̄i⟩− ⟨n̄iσ̄⟩⟨x̄i⟩]− δijµ̄iŪ

2
i

[
⟨n̄iσ̄⟩− ⟨n̄iσ̄⟩2

]
− δijµ̄iḡ

2
i

[⟨
x̄2i
⟩
−⟨x̄i⟩2

]
− t̄ijḡiḡj [⟨x̄ix̄j⟩− ⟨x̄i⟩⟨x̄j⟩]− t̄ijŪiŪj [⟨n̄iσ̄ n̄jσ̄⟩− ⟨n̄iσ̄⟩⟨n̄jσ̄⟩]
− t̄ijḡiŪj [⟨n̄jσ̄ x̄i⟩− ⟨n̄jσ̄⟩⟨x̄i⟩]− t̄ijḡjŪi [⟨n̄iσ̄ x̄j⟩− ⟨n̄iσ̄⟩⟨x̄j⟩]− t̄ijµ̄

2
i − t̄ijµ̄

2
j

11
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+ δij
ḡ2i
2m

[
1− 1

2
(⟨n̄iσ⟩+ ⟨n̄iσ̄⟩)

]
+

1
4
δij

κiḡi
mi

⟨x̄i⟩

+Re

(
ītij
∑
l

Im
(
Ūītil

⟨
c̄†iσ̄ c̄lσ̄

⟩
− Ūj̄tjl

⟨
c̄†jσ̄ c̄lσ̄

⟩))

− 1
2
Ūiδij

∑
ls

Re
(̄
tlītis

⟨
c̄†lσ̄ c̄sσ̄

⟩
− t̄lītsl

⟨
c̄†sσ̄ c̄iσ̄

⟩)
+

1
2
δijŪi

∑
l

(
ḡi
⟨
x̄iRe

(̄
tlic̄

†
lσ̄ c̄iσ̄

)⟩
− ḡl

⟨
x̄lRe

(̄
tlic̄

†
lσ̄ c̄iσ̄

)⟩)
− 1

2
Ūiδij

∑
l

(µ̄i− µ̄l)Re
(̄
tli
⟨
c̄†lσ̄ c̄iσ̄

⟩)
− 1

2
Ūiδij

∑
l

Ūl

⟨
n̄lσRe

(̄
tlic̄

†
lσ̄ c̄iσ̄

)⟩
+ 2ŪiŪj

⟨
Re
(̄
tijc̄

†
iσ̄ c̄jσ̄

)
c̄†jσ c̄iσ

⟩
− 3

2
δijŪ

2
i

∑
l

⟨
n̄iσRe

(̄
tlic̄

†
lσ̄ c̄iσ̄

)⟩
+

1
2
Re

(
i
d̄tij
dTave

[ḡi ⟨x̄i⟩− ḡj ⟨x̄j⟩]
)
− 1

2
Re

(
ītij

[
dḡi
dTave

⟨x̄i⟩−
dḡj
dTave

⟨x̄j⟩
])

+
1
2
Re

(
i
d̄tij
dTave

[Ūi ⟨n̄iσ̄⟩− Ūj ⟨n̄jσ̄⟩]
)
− 1

2
Re

(
ītij

[
dŪi

dTave
⟨n̄iσ̄⟩−

dŪj

dTave
⟨n̄jσ̄⟩

])
− 1

2
δij

dḡi
dTave

d⟨x̄i⟩
dTave

+ δij
dŪi

dTave

∑
k

Im
(̄
tik
⟨
c̄†iσ̄ c̄kσ̄

⟩)
− δijŪi

∑
k

Im

(
d̄tik
dTave

⟨
c̄†iσ̄ c̄kσ̄

⟩)

− 1
4
δijRe

(
dŪ2

i

dT2
ave

⟨n̄iσ̄⟩+
dḡ2i
dT2

ave
⟨x̄i⟩
)
. (42)

Note that the zeroth moment is local (diagonal) even if the self-energy has momentum depend-
ence, while the first moment can be nonzero only for local terms (i= j) and for terms where the
hopping is nonvanishing (tij(Tave) ̸= 0). In particular, if we use the zeroth moment to determ-
ine the strength of the effective electron-phonon interaction, then for a pure Holstein model,
the only way the electron-phonon interaction is dynamically changed is if the correlation func-
tion of the phonon coordinates changes as a function of time. This can happen, for example, if
energy flows into the phonon bath, but is likely to be delayed due to the bottleneck for energy
flow from electrons to phonons. Screening effects, which can also change the net electron-
phonon coupling, are not in the Holstein–Hubbard model, and require a more complex model
to be properly described.

5. Spectral sum rules in momentum space

When the system is translationally invariant, it is convenient to work in momentum space.
Thus, we examine the case where tij is a periodic hopping matrix and the local chemical
potential, electron-phonon coupling, and Hubbard interaction are all spatially uniform. Note,
the previous results hold for any type of lattice, including those with a basis or those that are
spatially inhomogenous. Now, by assuming a periodic hopping matrix, the subsequent results
apply only to lattices with one atom per unit cell, and would need to be generalized for lattices
with a basis of two or more atoms. This calculation requires us to make an appropriate Fourier
transformation. We start with the definition of the retarded Green’s function in momentum
space,

GR
kσ(t, t

′) =−iθ(t−t ′)⟨{ckσ(t),ckσ(t ′)}⟩, (43)

12
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where k denotes the momentum. The corresponding creation and annihilation operators in
momentum space can be obtained by performing a Fourier transform, ckσ =

∑
i e
ik·Riciσ/N,

and c†kσ =
∑

i e
−ik·Ric†iσ/N. Here, N is the number of lattice sites. Substituting the inverse

Fourier transformation into the formula for the real-space moments yields:

µRnkσ(Tave) =
1
N

∑
ij

e−ik·(Ri−Rj)µRnijσ(Tave). (44)

Now, all that is left is a tedious calculation. One simplification is particularly important,
however: due to translational invariance, all strictly local expectation values are independent
of the lattice site and can be replaced by site-independent numbers. Thus, terms like ⟨x̄in̄iσ̄⟩
will be denoted ⟨x̄n̄σ̄⟩, without spatial indices. At first this may seem a bit confusing, since
local expectation values, such as the double occupancy, are typically written in terms of a
sum over three independent momenta of an expectation value involving four fermion operat-
ors at different momenta. Rather than expressing the expectation values in this form, when
they are constants, independent of the lattice site, we keep them in the local representation in
the formulas summarized below. This greatly simplifies both the formulas and using them to
numerically determine the moments.

While it is true that spatial indices can be suppressed for local expectation values without
a loss of generality, this is not true for non-local expectation values because these terms will
have explicit momentum dependence after Fourier transformation.

The momentum-based sum rules then become:

µR0kσ(Tave) = 1, (45)

µR1kσ(Tave) = ϵ̄k − ν̄σ, (46)

where ϵ̄k =−
∑

{δ} ti i+δ (Tave)eik·δ , {δ} is the set of all of the translation vectors for which
the hopping matrix is nonzero (the index i+ δ schematically denotes the lattice site corres-
ponding to site Ri+ δ), and ν̄σ = µ(Tave)−U(Tave)⟨nσ̄(Tave)⟩− g(Tave)⟨x(Tave)⟩. Note, that
in a paramagnetic solution, the filling will be independent of the spin σ. We also must define
the momentum space phonon position operator, xk, which is defined as simply the Fourier
transform of the position space operator: xk = 1

N

∑
i e

−ik·Rixi. The higher moments become
the following:

µR2kσ(Tave) = ϵ̄2k − 2ϵ̄kν̄σ + ν̄2
σ + Ū2

[
⟨n̄σ̄⟩− ⟨n̄σ̄⟩2

]
+ ḡ2

[
⟨x̄2⟩− ⟨x̄⟩2

]
+ 2Ūḡ[⟨n̄σ̄ x̄⟩− ⟨n̄σ̄⟩⟨x̄⟩], (47)

µR3kσ(Tave) = ϵ̄3k − 3ϵ̄2kν̄σ − ν̄3
σ + ḡ3

[⟨
x̄3
⟩
−⟨x̄⟩3

]
− 3µ̄ḡ2

[⟨
x̄2
⟩
−⟨x̄⟩2

]
+ Ū3

[
⟨n̄σ̄⟩− ⟨n̄σ̄⟩3

]
+ 3ḡ2Ū

[⟨
n̄σ̄ x̄

2
⟩
−⟨n̄σ̄⟩⟨x̄⟩2

]
− 6µ̄ḡŪ [⟨n̄σ̄ x̄⟩− ⟨n̄σ̄⟩⟨x̄⟩] + 3ḡŪ2

[
⟨n̄σ̄ x̄⟩− ⟨n̄σ̄⟩2 ⟨x̄⟩

]
− 3µ̄Ū2

[
⟨n̄σ̄⟩− ⟨n̄σ̄⟩2

]
− 2ϵ̄k

(
ḡ2
[⟨
x̄2
⟩
−⟨x̄⟩2

]
+ 2ḡŪ [⟨x̄n̄σ̄⟩− ⟨x̄⟩⟨n̄σ̄⟩] + Ū2

[
⟨n̄σ̄⟩− ⟨n̄σ̄⟩2

])
+ 3ϵ̄kν̄

2
σ

−Re

(
ḡ2
[∑

p

ϵ̄k+p ⟨x̄px̄−p⟩− ϵ̄k ⟨x̄⟩2
]

+ Ū2

∑
p1−3

ϵ̄p1

⟨
c̄†p2σ̄

c̄p1+p2−k σ̄ c̄
†
p3σ̄

c̄k+p3−p1σ̄

⟩
− ϵ̄k ⟨n̄σ̄⟩2


13
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−Re

ḡŪ
∑
p1−2

(ϵ̄k+p1 + ϵ̄k−p1)
⟨
xp1 c̄

†
p2σ̄

c̄p2−p1σ̄

⟩
− 2ϵ̄k ⟨x⟩⟨nσ̄⟩


− 1

2
Ū2
∑
p1−3

ϵ̄p2−p3−p1

⟨
c̄†p1σ c̄p2σRe

(
c̄†p3σ̄

c̄p3+p1−p2σ̄

)⟩
− 3

2
Ū2
∑
p1−3

ϵ̄p3

⟨
c̄†p1σ c̄p2σRe

(
c̄†p2+p3−p1σ̄

c̄p3σ̄

)⟩

+ 2Ū2
∑
p1−3

ϵ̄p1

⟨
Re
(
c̄†p2σ̄

c̄p3σ̄

))
c̄†p3−p1σ

c̄p2−p1σ

⟩
+
ḡ2

2m

[
1− 1

2
(⟨n̄σ⟩+ ⟨n̄σ̄⟩)

]

+
κḡ
4m

⟨x̄⟩− 1
2

dḡ
dTave

d⟨x̄⟩
dTave

+
1
4
Re

(
d2ϵ̄k
dT2

ave

)
+

1
4
Re

(
dµ̄2

dT2
ave

− d2Ū
dT2

ave
⟨n̄σ̄⟩−

dḡ2

dT2
ave

⟨x̄⟩
)
.

(48)

These results are readily compared against the relevant body of work, and we have verified
agreement in section 6 with [20–24, 27, 33–35]. In the supplemental material we summarize
these results in equilibrium. Similarly, we can obtain the sum rules for the retarded self-energy
in momentum space,

ΣR
kσ(Tave,ω =∞) = Ū⟨n̄σ̄⟩+ ḡ⟨x̄⟩, (49)

CR0kσ(Tave) = Ū2
[
⟨n̄σ̄⟩− ⟨n̄σ̄⟩2

]
+ ḡ2

[
⟨x̄2⟩− ⟨x̄⟩2

]
+ 2ḡŪ[⟨x̄n̄σ̄⟩− ⟨x̄⟩⟨n̄σ̄⟩], (50)

CR1kσ(Tave) = Ū3
[
3⟨n̄σ̄⟩3 − 2⟨n̄σ̄⟩2 + ⟨n̄σ̄⟩

]
+ ḡ3

[〈
x̄3
〉
− 2
〈
x̄2
〉
⟨x̄⟩+ ⟨x̄⟩3

]
+
[
ḡŪ2 + ḡ2Ū

][
3
〈
n̄σ̄ x̄

2
〉
− 2⟨n̄σ̄⟩

〈
x̄2
〉
− 4⟨n̄σ̄ x̄⟩⟨x̄⟩+ 3⟨n̄σ̄⟩⟨x̄⟩2

]
− 2µ̄ḡŪ [⟨n̄σ̄ x̄⟩− ⟨n̄σ̄⟩⟨x̄⟩]− µ̄Ū2

[
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]
− µ̄ḡ2
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]
−Re
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]

+ Ū2

∑
p1−3
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†
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〉
− ϵ̄k ⟨n̄σ̄⟩2
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Ū2
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+

ḡ2
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. (51)
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These forms of the sum rules are more useful for calculations that work with translationally
invariant systems. Note that, as expected, the moments either have no momentum dependence,
or inherit a momentum dependence from the band structure, because the off-diagonal moments
always had a dependence on the hopping matrix element. As noted before, the higher moments
require many different expectation values to be known in order to properly employ them. If
one is using methods like quantum Monte Carlo simulation, where one can measure such
expectation values in addition to determining the Green’s function and self-energy, then one
can employ these results as a check on the accuracy of the calculations. Similarly, if one has
an approximation method that is employed for the Holstein–Hubbard model, then by calcu-
lating these different expectation values within the approximation, one can test the overall
self-consistency of the approximation to see if it satisfies these exact relations. Of course, if
everything is evaluated with an approximate solution, there is no guarantee that the approxim-
ation is accurate even if it self-consistently satisfies these sum rules. But if the result does not
satisfy the sum rules, it can be immediately falsified.

We also want to emphasize that these results hold in a wide range of different nonequi-
librium situations and are quite general. For example, the momentum-space results derived
above hold for the case of spontaneous symmetry-breaking for finite systems such as antifer-
romagnetic ordering on a square lattice, where the symmetry breaking is only manifested in
the correlation functions. Since there are only a few exact results known about nonequilibrium
solutions, we hope the community will regularly use these sum rules to check the accuracy of
different calculations, especially those in nonequilibrium.

6. Verification of the moments

We have not been able to find sufficiently accurate numerical calculations on the full (spatially
inhomogeneous and time-dependent) Holstein–Hubbard model, along with the calculation of
the required expectation values, to compare the results of these sum rules against state-of-the-
art numerical calculations. Instead, in our first check, we examine the so-called atomic limit,
which allows us to check the pieces of the sum rule that do not depend on the hopping. The
atomic limit, defined by tij → 0, of the Holstein–Hubbard model represents a highly non-trivial
interacting non-equilibrium system which admits an exact solution as discussed in [36]. This
makes it an ideal candidate to verify the moments presented in equations (30)–(33) when the
hopping vanishes.

Using this exact solution of the non-equilibrium retarded Green’s function for the model
allows us to evaluate all the expectation values which appear in equations (30)–(33), when the
hopping is set to zero. Then, there are two independent checks to verify the first four moment
sum rules. The first uses a numerical differentiation of the Green’s function, as prescribed
in equation (6), and then plots these numerical derivative based moments against the exact
calculation of the moments given by equations (30)–(33) determined by exactly evaluating the
different expectation values. We do this as a function of Tave, when both the electron-electron
and electron-phonon couplings vary as a function of time, and find excellent agreement, which
we show in figure 2. The second is by taking derivatives of the exact expressions for the Green’s
function by hand, again as described in equation (6), and comparing against the expressions
for the expectation values which appear in the moments, an exact analytic verification of the
first four spectral moments is found (for details see [36]).

While not a complete verification of the spectral moments presented here (for example,
there is no such check available for the moments of the self-energy or momentum space
results), the evidence from the atomic limit of the model represents the best check of our
results currently available, and in this case we find perfect agreement.
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Figure 2. Numeric third derivative of the atomic limit Green’s function compared to the
exact results for the third moment (equation (33), trs → 0), with time-dependent coup-
lings g(t) = 1+ 0.1sin(0.1t)e−0.01t and U(t) = 1+ 0.01sin(0.1t) chosen as example
time-dependent functions.

It is, of course, also necessary to examine the extent of agreement with the literature.
Consistency of the zeroth–second order results is apparent throughout the relevant body of
work, [21–25, 27, 33–35]. For the 3rd order results, verification is more complicated as
equations (26)–(27) differ from previous results, through modifications of the coefficients of
a few terms.

This is because the older results have some errors, as we now elaborate. Note that the older
results were checked against numerical calculations as well, but they could not be checked for
all possible cases and, indeed, the errors appear in terms that could not be checked against
numerical data.

Our results agree with the earlier position space results for the third moment of the inhomo-
genous Hubbard model, namely [23, 35], with the following changes; first, coefficients on
the third moment’s 6th–8th lines in [35] need a factor of 1

4 to agree with their corresponding
terms in our result, equation (33). Next, for terms involving a single derivative of a para-
meter, equation (33) requires a factor of 2 compared to [35], and a factor of 1

2 for the two
terms involving two derivatives of a parameter. We find an additional term in the derivatives
which appears in our result but is omitted in prior work, namely δij

dŪi
dTave

∑
k Im (̄tik⟨c̄†iσ̄ c̄kσ̄⟩)−

δijŪi
∑

k Im( d̄tik
dTave

⟨c̄†iσ̄ c̄kσ̄⟩). Finally, there is one explicit term that was omitted in the earlier
work, namely a term that is the complex conjugate of an existing term, which cancels the
last term on the seventh line of the erratum result in [35]. This summarizes the exact extent
and nature of the disagreement with former results, which we believe stems from an incorrect
assumption that some terms in equation (27) vanish in general.

7. Discussion and conclusion

We have derived a general formula that enables us to evaluate the nth derivative of a time
dependent operator in the Heisenberg representation. We note that this identity can be applied
to the full counting statistics problem, [37], or to calculating the dynamical algebra of bosons,
[38], where one needs to evaluate the derivatives of many operators.
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Next, we used these results to evaluate a sequence of spectral moment sum rules for the
retarded Green’s function and the self-energy in the normal state. These sum rules hold for
both nonequilbrium and inhomogeneous cases. The sum rules provide an exact formalism that
can benchmark both experimental and computational results.

For example, use of these sum rules could help decide whether pumping of electrons or
phonons can dynamically change the electron–phonon coupling strength. This question is com-
plex. Experimental results clearly show that the kink softens in time-resolved angle-resolved
photoemission spectroscopy, [7], and simulations in a model where the phonon bath has infin-
ite heat capacity and remains fixed in temperature, [14], also illustrate a kink softening. Yet the
zeroth-order moment of the self-energy does not change in the simulation because it is fixed
by the parameters in the Hamiltonian. For a bath with finite heat capacity, the net electron-
phonon coupling strength will change as the phonon bath is heated since the phonon fluctu-
ations change, which must then change the zeroth moment sum rule for the self-energy.

An interesting future study is the possible extension of these results to the superconducting
state. Here, one has both anomalous Greens functions and self-energies, and the structure of the
sum rules can change—the retarded Green’s function sum rules remain the same, but the self-
energies are modified via the modified Dyson equation. It is possible that sum rules may also
help shed light onto nonequilibrium superconductivity, [39], and whether different theories,
like the one presented in [40] could explain this phenomena. One promising explanation for
this phenomenon is non-linearities in the electron–phonon couplings, or ‘nonlinear phononics.’
We hope that we will be able to address these issues and expand the sum rules to both the
superconducting state and to the case of nonlinear electron-phonon couplings in the future.
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