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One of the challenges in many-body physics is determining the effects of phonons on strongly corre-
lated electrons. The difficulty arises from strong correlations at differing energy scales—for band metals,
Migdal-Eliashberg theory accurately determines electron-phonon coupling effects due to the absence of vertex
corrections, but strongly correlated electrons require a more complex description, and the standard Migdal-
Eliashberg approach does not necessarily apply. In this work, we solve for the atomic limit Green’s function
of the Holstein-Hubbard model with both time-dependent electron-electron and electron-phonon couplings. We
then examine the photoemission spectra of this model in and out of equilibrium. Next, we use similar methods
to exactly solve an extended version of the Hatsugai-Komoto model and examine its behavior in and out of
equilibrium. These calculations lead us to propose using the first moment of the photoemission spectra to signal
non-equilibrium changes in electron-electron and electron-phonon couplings.
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I. INTRODUCTION

Pump-probe spectroscopy is one of the most important
tools for studying complex materials with strongly correlated
degrees of freedom. The femtosecond time resolution allows
one to examine excitation and relaxation phenomena from
different degrees of freedom (electronic, spin, lattice) at their
natural timescales. The technique has been used to probe
many different materials in the time domain; it has been used
in the classification of charge-density-wave insulators [1,2]
and charge-stripe materials [3], examining the charge gap
of spin-density-wave materials [4], determining the electron-
phonon coupling in a metal [5], and studying the response
in high-Tc cuprates [6–9] and in iron-based superconductors
[10]. In a recent experimental study [10], evidence of bosonic
mode coupling was seen in LiFeAs. Other recent work [11]
indicated that complex superconducting behavior cannot be
understood in terms of electron-electron or electron-phonon
coupling alone, only by considering both effects.

Whether the pump pulse or the non-equilibrium state it
generates could modify either the electron-phonon coupling
or the electron-electron coupling in pump-probe experiments
is an open question. The Shen group demonstrated [12] that
the electron-phonon coupling in the high-Tc cuprates is re-
lated to a kink in the electronic dispersion near the Fermi
energy. More recent work concluded that the strength of the
kink is determined by a combination of electron-phonon cou-
pling and electron-electron coupling [13]. A softening of the
kink has been observed in pump-probe experiments [14], but
such a softening does not necessitate a dynamic change in
the electron-phonon coupling due to non-equilibrium effects
[15]. A recent experimental study of electron thermalization
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in laser-excited nickel [16] suggested a reduction of electron
repulsion may explain the observation of an increasing spec-
tral redshift with increasing electron temperature. In Ref. [17]
the authors claimed to manipulate electron temperatures and,
consequently, the electron-phonon coupling by varying the
pump fluence.

The ability to directly extract the electron-phonon coupling
from experiment is an area of active interest that has seen ex-
citing recent developments. Namely, a new analysis technique
called frequency-domain angle-resolved photoemission spec-
troscopy enables observation of the electron-phonon coupling
directly from experimental data [18] and has been used to
measure the electron-phonon coupling during a photoinduced
insulator to metal transition [19].

In this work, we examine the atomic limit of the Holstein-
Hubbard (HH) model and allow for arbitrary changes in both
the electron-electron and electron-phonon couplings (but do
not determine their time dependence from a self-consistent
reaction to the pump pulse). Similar studies were done pre-
viously [20,21] for the lattice model, but we are not aware
of work that solves the Green’s function exactly and allows
for arbitrary functional forms for the couplings and simultane-
ous variations of both electron-electron and electron-phonon
couplings as a function of time. We also propose a non-
equilibrium extension to the Hatsugai-Komoto (HK) model
[22] which includes coupling to a static, zero-momentum
phonon whose solution is identical to the model considered
here, save for a simple substitution. Then, by considering
phenomenological coupling changes in both models, we pro-
pose a measure, called the “first photoemission spectra (PES)
moment,” which allows us to track changes in subsystem
couplings in ultrafast experiments. We also note that the
single- and two-particle atomic Green’s functions presented
here are the required inputs to a systematic strong-coupling
expansion on the lattice, generalizing previous work [23],
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which applied only to the Hubbard model. Recently [24],
a strong-coupling expansion of the Holstein-Hubbard model
with constant coupling parameters found a rich landscape
of phases, including distinct pair-density waves, spin-density
waves, charge-density waves, and superconducting regions as
well as regions of phase separation.

Another class of materials for which this theory might be
relevant are those that have been observed to have polarons (or
possibly bipolarons) generated by non-equilibrium pumps. It
is difficult to experimentally differentiate between polarons
and bipolarons, so some of these systems may be creating
bipolarons, which naturally occur in the atomic limit and
often are strongly localized. In Ref. [25], the authors used
pump-probe spectroscopy to measure polaron lifetimes in a
mixed-valence perovskite material under high pressures. They
also argued that photoexcitation is analogous to applying a
high pressure to this system, evidenced by the response of
the phonons and the fact that they both lead to an interva-
lence charge transfer. More recently, experiments showed a
photoinduced transition to a long-lived polaronic state in lead
halide perovskite [26], and in Ref. [27] the authors demon-
strated a technique for qualitatively estimating the magnitude
and shape of a photoinduced polaronic distortion via fem-
tosecond diffuse x-ray scattering techniques. In Ref. [28]
the authors claimed to have observed dynamical formation
of small polarons in a MoTe2 Weyl semimetal via terahertz
spectroscopy.

In this work, we provide an exact (equilibrium and non-
equilibrium) solution to the atomic HH model for arbitrary
electron-electron and electron-phonon couplings. In addition
to serving as the starting point for strong-coupling-based per-
turbation theories, it also provides an important benchmark
for non-equilibrium calculations, for which exact results are
rare. The reason this problem can be solved exactly lies in the
fact that the electron number for each spin is conserved in the
atomic limit. But even with that, the dynamics is sufficiently
complex that one needs to use advanced techniques to fac-
torize the evolution operator in order to determine the exact
results presented here. For strongly coupled systems, partic-
ularly those above the renormalized Fermi temperature, we
believe this simple system will be representative of strongly
coupled materials in which charge fluctuations decrease as we
approach the atomic limit.

The outline of the paper is as follows. In Sec. II, we
define the time-dependent Hamiltonian and provide general
expressions for the spectral moments. In Sec. III we present
the single-particle Green’s function both before and after tak-
ing the fermionic trace and discuss its analytic agreement
with the spectral moments. In Sec. IV we consider the re-
sult of changing couplings for observable quantities in the
local Holstein-Hubbard model, and in Sec. V we do the same
for the modified HK model. Our conclusions are presented
in Sec. VI. Appendixes summarize some of the more cum-
bersome formulas and provide additional details about the
derivations and enumerate the expectation values which are
necessary to make a comparison with the spectral moments.
The two-particle Green’s function, the other piece needed to
calculate a strong-coupling-type expansion, is presented in
Appendix C, and the derivation verifying the agreement of the
single-particle Green’s function with the spectral moment sum

rules up to third order is given in the Supplemental Material
[29].

II. FORMALISM

The Holstein-Hubbard model is the simplest model Hamil-
tonian which describes both electron-electron and electron-
phonon interactions [30,31]. It includes electrons that hop
from one lattice site to another and Einstein phonons with
the same frequency on each site. The electrons interact with
the phonons via a direct coupling of the charge to the phonon
coordinate. The electrons also repel each other via an on-site
Coulomb repulsion. In the atomic limit, the electrons do not
hop. This means that we cannot represent electric-field effects
with vector potentials and these systems never have electric
current flow. The Holstein-Hubbard model for the atomic site
then becomes

Ĥ(t ) = h̄ω
(
â†â + 1

2

) + [g(t )x̂ − μ](n̂↑ + n̂↓) + U (t )n̂↑n̂↓,

(1)

where n̂σ = ĉ†
σ ĉσ is the fermionic number operator, ĉ†

σ (ĉσ )
creates (destroys) an electron with spin σ , μ is the chemical
potential, â† (â) are the bosonic creation (annihilation) oper-

ators, x̂ =
√

h̄
2mω

(â + â†) is the phonon coordinate operator
(with ω being the phonon frequency), g(t ) is the electron-
phonon coupling, and U (t ) is the electron-electron coupling.
We drop the zero-point energy from the Hamiltonian because
it just adds an overall constant shift to all energies, and we
set h̄ = 1 for the remainder of this work. Note that because
[Ĥ(t ), n̂σ ] = 0, the total electron number (and the electron
number for each spin) is conserved. This symmetry is what al-
lows us to derive an exact expression for the retarded Green’s
function; it is immediately broken once hopping between
lattice sites is introduced. Note that we start our system in
equilibrium in the limit as t → −∞ and all of the time de-
pendence in the coupling constants starts at some finite time
after tmin.

The retarded Green’s function is defined as

gR
σ (t1, t2) = θ (t1 − t2)[g>

σ (t1, t2) − g<(t1, t2)]

= −iθ (t1 − t2)〈{ĉσ (t1), ĉ†
σ (t2)}+〉, (2)

where θ (t ) is the Heaviside function, 〈· · · 〉 indicates the
thermal average at the initial time 1

Z Tr{e−βĤ(tmin ) · · · }, and
g>

σ (t1, t2) and g<
σ (t1, t2) are the greater and lesser Green’s

functions, given by

g>
σ (t1, t2) = −i〈ĉσ (t1)ĉ†

σ (t2)〉 (3)

and

g<
σ (t1, t2) = i〈ĉ†

σ (t2)ĉσ (t1)〉. (4)

All time dependence of operators is in the Heisenberg repre-
sentation,

ÔH (t ) = Û †(t, tmin)ÔÛ (t, tmin), (5)

with Û (t, tmin) being the time evolution operator,

Û (t, tmin) = Tt exp

[
−i

∫ t

tmin

dt ′ Ĥ(t ′)
]
. (6)
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Here, Tt is the time-ordering operator, which places the latest
times to the left, and the Hamiltonian is in the Schrödinger
representation; tmin is a time at which the system is in thermal
equilibrium and is before any coupling constants start varying
with time. The spectral moments of the Green’s function are
defined via

μRn
σ (tave) = − 1

π

∫ ∞

−∞
dω ωnIm gR

σ (tave, ω), (7)

where

gR
σ (tave, ω) =

∫ ∞

0
dtrel eiωtrel gR

σ

(
tave + trel

2
, tave − trel

2

)
(8)

and we now use Wigner coordinates of average and relative
time, defined by tave = t1+t2

2 and trel = t1 − t2. The moments
can be rewritten as derivatives with respect to relative time
via

μRn
σ (tave)

= lim
trel→0

Re

〈
in dn

dtn
rel

{
ĉσ

(
tave + trel

2

)
, ĉ†

σ

(
tave − trel

2

)}
+

〉
.

(9)

Finally, the time-resolved photoemission spectrum is de-
termined via the lesser Green’s function (when we neglect
matrix-element effects) by [32]

P(tave, ω) = −i
∫ tave

tmin

dt1

∫ tave

tmin

dt2 s(t1)s(t2)eiω(t1−t2 )g<
σ (t1, t2),

(10)

where s(t ) is the probe-pulse envelope, given by

s(t ) = 1

�
√

π
e− (t−t0 )2

�2 . (11)

Here, � is the effective temporal probe width, and t0 is the
time delay with respect to the application of the driving field
pulse.

III. HOLSTEIN-HUBBARD GREEN’S FUNCTION

To evaluate the single-particle Green’s function in Eq. (2),
we must take a trace over the Hilbert space composed of a di-

rect product of the fermionic states with the simple harmonic
oscillator states. Newton’s generalized binomial theorem en-
ables us to sum the infinite degrees of freedom of the harmonic
oscillator to obtain a closed-form expression for the bosonic
trace. This follows the technique used in Ref. [33] to evaluate
the partition function. We outline this procedure briefly here,
as it is used repeatedly in our derivations. We have

gR
σ (t1, t2) = − iθ (t1 − t2)

Z
× Trb, f [e−βĤ(tmin ){ĉσ (t1), ĉ†

σ (t2)}+]. (12)

The bosonic trace is calculated in the following way. First,
we note that the single bosonic operators always appear as
summed pairs, which can be reexpressed by employing the
Weyl form of the Baker-Campbell-Hausdorff identity as

eαâ+βâ† = eαâeβâ†
e− 1

2 αβ[â,â†]. (13)
Using this expression, we can reduce the bosonic trace to
constants (with respect to the bosonic operators) multiplied
by the form

Trb{e−βωâ†âeAâeBâ†}, (14)

where A and B are constants with respect to the bosonic
operators. Note that the simple harmonic oscillator states |n〉
are eigenvectors of the bosonic number operator n̂ = â†â with
eigenvalue n, so we have

Trb{e−βωâ†âeAâeBâ†} =
∞∑

n=0

e−βωn〈n|eAâeBâ† |n〉. (15)

By expanding each exponential inside the expectation value in
a power series, using the properties of the simple harmonic os-
cillator states and summing the resulting series with Newton’s
generalized binomial theorem, we evaluate the trace with the
result

Trb{e−βωâ†âeAâeBâ†}

= 1

1 − e−βω
exp

[
1

1 − e−βω
AB

]
. (16)

Using this result allows us to evaluate the bosonic trace in
the definition of the Green’s function, which becomes

gR
σ (t1, t2) = −iθ (t1 − t2)[n(ω) + 1]

Z eiμ(t1−t2 ) exp

[(
−1

2
− n(ω)

)
|C(t1) − C(t2)|2

]

× Tr f

{
exp

[
βg2(tmin)n̂2

f

2mω2
+ βμn̂ f − βU (tmin)n̂↑n̂↓

]
exp

[
−i

∫ t1

t2

dt U (t )n̂σ̄

]
exp{i(1 + 2n̂σ̄ )[I (t1) − I (t2)]}

× exp

[
2ig(tmin)√

2mω3
Re{C(t1) − C(t2)}n̂ f

]
(eiIm{C∗(t1 )C(t2 )}ĉσ ĉ†

σ + e−iIm{C∗(t1 )C(t2 )}ĉ†
σ ĉσ )

}
, (17)

where

C(t ) = 1√
2mω

∫ t

tmin

dt ′ g(t ′)eiω(t ′−tmin ) (18)
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and

I (t ) = 1

2mω

∫ t

tmin

dt ′
∫ t ′

tmin

dt ′′ g(t ′)g(t ′′) sin ω(t ′ − t ′′) (19)

are functions we define to make this result more readable, and the partition function is given by

Z = [n(ω) + 1]

{
1 + 2eβμ exp

[
βg2(tmin)

2mω2

]
+ exp{β[2μ − U (tmin)]} exp

[
2βg2(tmin)

mω2

]}
, (20)

with the Bose-Einstein distribution function given by

n(ω) = 1

eβω − 1
. (21)

We can now evaluate the fermionic trace over the four possible states, with the result

gR
σ (t1, t2) = − iθ (t1 − t2)(n(ω) + 1)

Z eiμ(t1−t2 ) exp

[(
−1

2
− n(ω)

)
|C(t1) − C(t2)|2

]{
eiIm{C∗(t1 )C(t2 )}

(
exp{i[I (t1) − I (t2)]}

+ exp

[
β

(
μ + g2(tmin)

2mω2

)]
exp

[
−i

∫ t1

t2

dt ′ U (t ′)
]

exp{3i[I (t1) − I (t2)]} exp

[
2ig(tmin)√

2mω3
Re{C(t1) − C(t2)}

])

+ e−iIm{C∗(t1 )C(t2 )}
(

exp

[
β

(
μ + g2(tmin)

2mω2

)]
exp{i[I (t1) − I (t2)]} exp

[
2ig(tmin)√

2mω3
Re{C(t1) − C(t2)}

]

+ exp

[
2βg2(tmin)

mω2
+ β[2μ − U (tmin)]

]
exp

[
−i

∫ t1

t2

dt U (t )

]
exp{3i[I (t1) − I (t2)]}

× exp

[
4ig(tmin)√

2mω3
Re{C(t1) − C(t2)}

])}
. (22)

This result is quite complicated. But note that it is an exact
expression, so it can be employed to describe the response
of Holstein-Hubbard systems with arbitrary time-dependent
interactions. It is remarkable that such a complex system
has such a compact exact expression for the non-equilibrium
Green’s function. We reiterate again that there are two keys
to allowing this to occur: first, the number operators for each
spin are conserved and do not depend on time, and second,
the commutator of the electron-phonon interaction with itself
at two different times (in the interaction representation) is
an operator that commutes with all remaining operators in
the system. Nevertheless, the final result is not simple. It
represents the complex dynamics of electron-phonon coupled
systems in the atomic limit. In contrast, the atomic limit
Green’s functions for the Hubbard model are quite simple.

While it would be nice to have an independent check to
verify that these results are correct, we are not aware of any
way to do so for the full functions. But we do demonstrate in
the Supplemental Material [29] that this Green’s function does
satisfy the first four spectral moment sum rules analytically,
via differentiation of the Green’s function in the form of
Eq. (17). The first three are evaluated analytically by taking
derivatives of Eq. (17) before we take the fermionic trace, as
in Eq. (9). We also numerically check the first three moments
to ensure we have taken the trace correctly in going from
Eq. (17) to Eq. (22) (for more information see Ref. [34]). This
represents a quite stringent test of accuracy of the final results.
Indeed, these exact results were employed to benchmark the
non-equilibrium Green’s function moments and uncovered
some errors in previous work on this topic [34].

IV. RESULTS: SINGLE-PARTICLE
PHOTOEMISSION SPECTRA

Having obtained an exact result for an interacting, non-
equilibrium system, we ask what occurs as a consequence of
changing electron-electron and electron-phonon couplings. To
this end we calculate the photoemission spectrum in and out
of equilibrium.

Motivating the phenomenological coupling changes pre-
sented here are numerous works studying the temperature
dependence of the electron-phonon coupling in different ma-
terials [35–39] as well as possible coupling changes induced
by photoexcitation or the resulting non-equilibrium state
[5,40,41]. Reference [5] suggests that photoexcitation in a
metal suppresses the electron-phonon coupling, which then
gradually approaches its equilibrium value as a function of
time. With this in mind, we measure the non-equilibrium
photoemission spectra with varying couplings and compare
them to those at equilibrium.

In equilibrium, the photoemission spectra of the local HH
model has several possible sets of peaks centered at ω =
−n g2

2mω2
0
− μ and ω = −n g2

2mω2
0
− μ + U , with ω0 being the

phonon frequency and n ∈ {1, 2, 3, 4}. Each set of these peaks
is spaced by ω0, and in regions of parameter space two sets of
peaks can coexist, as in Fig. 1(a), giving an overall spacing
between the peaks of 1

2ω0. For example, in Fig. 1(a) the main

peak is centered at ω = − g2

2mω2
0
− μ, and the secondary peak is

centered at ω = − 3g2

2mω2 − μ + U . The envelope of the spectra
has an inverse relationship to the inverse temperature β.
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FIG. 1. Demonstration of the effect of coupling changes on PES
in the local HH model. Note that changes in e-ph coupling shift each
peak in (b), while changes in e-e coupling shift every other peak in
(c). (a) Equilibrium, (b) g(t ) decreasing 20%, (c) U (t ) decreasing
20%, and (d) g(t ) and U (t ) both decreasing 20%.

As seen in Fig. 1, a decrease in electron-phonon coupling
shifts the spectra to higher energies, while a decrease in
electron-electron coupling shifts the spectra towards lower
energies. This leads us to suggest a measure, called the first
moment of the photoemission (or first PES moment), given
by

∫
dω ωP(tave, ω), which shifts as a result of changes in

the couplings. Note in Fig. 1 that a changing electron-phonon
(e-ph) coupling shifts every peak, while a changing electron-
electron coupling shifts every other. This suggests that the
peaks which are shifted by a changing electron-electron cou-
pling are associated with double-electron occupancies, while
the other peaks are associated with single-electron occupancy.

Shifts of spectral weight during photoexcitation have been
observed experimentally [16,42]. In Ref. [16], the authors
suggested a reduction in electronic repulsion as a possible
explanation for the observed spectral redshift. Our proposed
measure of the first PES moment could provide evidence for
and quantify the degree of dynamical coupling changes in
correlated systems.

In Fig. 2, we plot the first PES moment as a function of
average time for couplings which fall continuously to 1%,
5%, 10%, 20%, and 50% of their equilibrium values and
exponentially recover, as plotted in the insets. In Fig. 2(a),
we see that the first PES moment increases when the e-ph
coupling decreases. We see the opposite behavior for the
e-e case in Fig. 2(b). When both change simultaneously, the
e-ph change dominates, as seen in Fig. 2(c). We feel that
the first PES moment provides a nice, simple experimental
measure that indicates changes in the system couplings for a
system with sufficiently separated bands. In the next section,
we demonstrate this behavior persists when extended to an
exactly solvable non-equilibrium lattice model.

V. APPLICATION: MODIFIED
HATSUGAI-KOMOTO MODEL

Recently, there has been growing interest [43–46] in a sim-
ple model Hamiltonian introduced by Hatsugai and Komoto in
Refs. [22,47], in part due to its potential as a solvable model
of unconventional superconductivity. Reference [43] demon-

FIG. 2. First PES moment for the local HH model. (a) First PES
moment for various e-ph coupling changes (given in the inset) for
the local HH model. (b) First PES moment for various e-e coupling
changes (given in the inset) for the local HH model. (c) First PES
moment for various combined e-ph and e-e coupling changes (given
in the inset) for the local HH model.

strated that the HK model possesses a Mott insulating phase
and a “strange metallic” phase which violates Luttinger’s
theorem and possesses a superconducting instability [43]. It
also demonstrated that this model possesses a “spectral weight
transfer” similar to behavior observed in the cuprates [48] in
the superconducting state and that this superconducting state
is distinct from the typical BCS-type superconducting state.

We propose a non-equilibrium extension of this model,
denoted ĤHK+, in which the original HK model is given a
time dependence U (t ) and is coupled to a zero-momentum
phonon via electron-phonon coupling g(t ),

ĤHK+(t ) =
∑

k

Ĥk(t ) =
∑

k

[
[εk − μ + g(t )x̂0]n̂ f

k

+ U (t )n̂kσ n̂kσ̄ + δk,0ω

(
â†

kâk + 1

2

)]
, (23)
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where the sum is taken over the first Brillouin zone; k ∈
[−π, π )d , where d is the dimensionality; εk is the band struc-
ture; and x̂0 = 1√

2mω
(â†

0 + â0) is the zero-momentum phonon
coordinate. By making a comparison to Eq. (1), we see this
model is solved by Eq. (22) with the substitution μ → −εk +
μ, giving the exact solution for each momentum point. Sum-
ming over the first Brillouin zone gives the exact solution
of the full model. The dimensionality of the model enters
via the kinetic energy term. For simplicity, we consider the
one-dimensional case.

For small e-ph couplings this model behaves much like
the original HK model, with a Mott insulating phase and a
non-Fermi liquid phase. The presence of a non-zero electron-
phonon coupling gives rise to peaks in the density of states
and photoemission spectra spaced by the phonon frequency.
These peaks tend to metallize the Mott phase for large enough
couplings, giving rise to a pseudo-Mott insulator with non-
Fermi liquid behavior. As the e-ph coupling increases, the
phonon peaks grow and completely destroy the psuedo-Mott
phase.

In Fig. 3, we examine the first PES moment, as in the
local HH model, in the non-Fermi liquid metallic phase of
the extended HK+ model. Here, we again see that decreases
in the e-ph coupling cause an increase in the first PES mo-
ment, which outweighs the decrease caused by a reduction
of e-e coupling. This demonstrates that shifts in the first PES
moment as a result of coupling changes are a feature that
appear in models more diverse than the local HH model. This
suggests that these spectral moment shifts may be a general
feature that can be used to indicate a change in couplings
between various subsystems and can be directly observed in
ultrafast experiments.

VI. CONCLUSION

In this work we have found an exact result for the
single-particle correlation function of the non-equilibrium
Holstein-Hubbard model (with time-dependent interactions)
in the atomic limit. This includes all of the complex dy-
namical effects associated with the coupling of electrons
to quantum phonons and the possible change in time of
the electron-electron and electron-phonon interactions. Such
dynamics are, of course, quite complex, so the results are
cumbersome. We verified these results by comparing them
to the exact results of the first four non-equilibrium spec-
tral moments of the single-particle causal Green’s function,
finding exact analytic agreement. In Appendix C we calcu-
late the two-particle Green’s function for this model. Both
of these Green’s functions are needed to calculate the lattice
Green’s functions within a strong-coupling-expansion frame-
work. We believe such future work will eventually provide
insight into the behavior of complex materials in pump-
probe spectroscopy experiments, especially those which host
bipolarons.

We then addressed the question, If the couplings change
as a function of time, what would be a possible experimental
signature of these changes? To do this we picked a phe-
nomenological function for the coupling changes and found
that the first PES moment, given by an integral of the fre-

FIG. 3. First PES moment for the HK+ model. (a) First PES
moment for various e-ph coupling changes (given in the inset) for the
HK+ model. (b) First PES moment for various e-e coupling changes
(given in the inset) for the HK+ model. (c) First PES moment for
various combined e-ph and e-e coupling changes (given in the inset)
for the HK+ model.

quency times the photoemission spectra, shifts with changes
in the coupling. Further, we found the sign and magnitude of
this shift differ for changes in electron-electron and electron-
phonon couplings. This behavior should continue to hold in
strongly correlated materials with narrow bandwidths. Finally,
we considered an extension of the Hatsugai-Komoto model,
which has been proposed as a toy model of cuprate supercon-
ductivity. By coupling this model to a zero-momentum static
phonon, we found that the solution of this non-equilibrium
lattice model is identical in form to the solution of the local
Holstein-Hubbard model presented here. We then explored
the behavior of the first PES moment in this model in one
spatial dimension and found behavior consistent with that
of the local HH model. This suggests that the first PES
moment represents an experimental signature of changing
subsystem couplings. In the future it may be interesting to
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look at simulating electric field effects in the modified HK
model via a Peierls substitution and, from this, to determine
a self-consistent electron-phonon coupling change. In addi-
tion it could be valuable to examine the modified HK model
in the superconducting state as well as the normal state. In
conclusion, the results presented here represent exact ana-
lytic solutions of two simple non-equilibrium electron-phonon
and electron-electron coupled systems. These results have
the potential to be extended to near-atomic limit calculations
and strong-coupling-type calculations, but on their own they
already encode interesting physical information, leading us

to suggest the first PES moment as a signature of dynamic
changes in subsystem couplings.
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APPENDIX A: DERIVATION DETAILS

In this Appendix we provide some details of the derivation of the exact Green’s functions by deriving the exact time evolution
operator for the non-equilibrium system.

1. Time evolution operator

To obtain the Green’s functions of Eqs. (2) and (C1), we must first determine the time evolution operator. To do this, we start
by switching to the interaction representation with respect to the phonon part of the Hamiltonian and following the technique of
Ref. [33]. In the interaction representation, we factorize the time evolution operator into two pieces via

Û (t, tmin) = e−iâ†âω(t−tmin )Tt exp

[
−i

∫ t

tmin

dt ′ĤI (t ′)
]
, (A1)

where the interaction Hamiltonian has two pieces, ĤI = Ĥel−ph
I + Ĥcoul

I . The electron-phonon coupled piece acquires an
additional time dependence through the time dependence of the phonon raising and lowering operators

Ĥel−ph
I (t ) = g(t )√

2mω
(eiω(t−tmin )â† + e−iω(t−tmin )â)(n̂σ + n̂σ̄ ), (A2)

while the Coulomb piece is unaltered [Ĥcoul
I (t ) = U (t )n̂↑n̂↓]. These two pieces commute with each other, so the time evolution

can be further factorized into a piece from the Coulomb part of the Hamiltonian and a piece from the electron-phonon part.
The Coulomb piece is also simple because it requires no time ordering and is given by exp[−in̂↑n̂↓

∫ t
tmin

dt ′U (t ′)]. The electron-
phonon piece is more complicated because the electron-phonon interaction Hamiltonian at two different times does not commute
with itself:

[
Ĥel−ph

I (t ), Ĥel−ph
I (t ′)

] = g(t )g(t ′)
mω

i sin ω(t − t ′)(n̂↑ + n̂↓)2, (A3)

but the commutator does commute with Ĥel−ph
I (t ′′). This allows us to solve for the time evolution operator following the strategy

used by Landau and Lifshitz [49] and by Gottfried [50] in solving the driven simple harmonic oscillator. We first form the
function

ŵI (t, tmin) =
∫ t

tmin

dt ′ Ĥel−ph
I (t ′), (A4)

which satisfies the following equal-time commutator:

[
Ĥel−ph

I (t ), ŵI (t, tmin)
] = i

g(t )

mω

∫ t

tmin

dt ′g(t ′) sin ω(t − t ′)(n̂↑ + n̂↓)2. (A5)

This commutator commutes with all other operators in the different terms in the Hamiltonian. When these two conditions hold,
we have the following operator identity:

eiŵI (t,tmin )

(
i
∂

∂t
− Ĥel−ph

I (t )

)
e−iŵI (t,tmin ) = i

∂

∂t
− i

2

[
ŵI (t, tmin), Ĥel−ph

I (t )
]
. (A6)

This allows us to evaluate the following time-ordered product directly:

Tt exp

[
−i

∫ t

tmin

dt ′ Ĥel−ph
I (t ′)

]
= exp [−iŵI (t, tmin)] exp

(
1

2

∫ t

tmin

dt ′ [
ŵI (t ′, tmin), Ĥel−ph

I (t ′)
])

. (A7)
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Applying this result to our specific Hamiltonian yields the full time evolution operator

Û (t, tmin) = exp

[
−i

∫ t

tmin

dt ′[−μn̂ f + ωâ†â + n̂σ n̂σ̄U (t ′)]
]

exp

[
−i

∫ t

tmin

dt ′ g(t ′)√
2mω

(eiω(t ′−tmin )â† + e−iω(t ′−tmin )â)n̂ f

]

× exp

[
i

2mω

∫ t

tmin

dt ′
∫ t ′

tmin

dt ′′ g(t ′)g(t ′′) sin ω(t ′ − t ′′)n̂2
f

]
, (A8)

where n̂ f = n̂↑ + n̂↓ is the total electron number operator. Note that because n̂2
σ = n̂σ , as required by the Pauli exclusion

principle, we also have that n̂2
f = (n̂↑ + n̂↓)2 = n̂↑ + n̂↓ + 2n̂↑n̂↓.

2. Partition function

Calculating thermal averages requires us to also determine the atomic partition function, which is defined to be

Z = Trb, f {Û (t = −iβ + tmin, tmin)}
= Trb, f {e−βĤ(tmin )}, (A9)

where the trace is over product states composed of the tensor product of the fermionic states |0〉 , |↑〉 , |↓〉 , |↑↓〉 with the bosonic
simple harmonic oscillator number states |n〉 = 1√

n!
(â†)n|0〉. Evaluating the trace by using standard methods, we arrive at Eq. (20)

with the Bose-Einstein distribution function given by Eq. (21).

3. Time dependence of field operators

Next, we need the time dependence of the fermionic field operators in the Heisenberg representation,

ĉσ (t ) = Û †(t, tmin)ĉσÛ (t, tmin), (A10)

and similarly, for the conjugate,

ĉ†
σ (t ) = Û †(t, tmin)ĉ†

σ (t )Û (t, tmin). (A11)

To evaluate these operator expressions, we note that the only operator in Û (t, tmin) that does not commute with ĉσ is n̂σ . Hence,
we need to compute

f (α) = eiαn̂σ ĉσ e−iαn̂σ . (A12)

Differentiating gives us

df (α)

dα
= eiαn̂σ [n̂σ , ĉσ ]e−iαn̂σ = −i f (α), (A13)

which then can be integrated to yield

f (α) = e−iα ĉσ . (A14)

Hence, we find that

ĉσ (t ) = exp

[
−i

∫ t

tmin

dt ′[−μ + n̂σ̄U (t ′)] − i√
2mω

∫ t

tmin

dt ′ g(t ′)(eiω(t ′−tmin )â† + e−iω(t ′−tmin )â)

]

× exp

[
i

2mω

∫ t

tmin

dt ′
∫ t ′

tmin

dt ′′ g(t ′)g(t ′′) sin ω(t ′ − t ′′)(1 + 2n̂σ̄ )

]
ĉσ (A15)

and, for the conjugate,

ĉ†
σ (t ) = exp

[
i
∫ t

tmin

dt ′ [−μ + n̂σ̄U (t ′)] + i√
2mω

∫ t

tmin

dt ′ g(t ′)(eiω(t ′−tmin )â† + e−iω(t ′−tmin )â)

]

× exp

[
− i

2mω

∫ t

tmin

dt ′
∫ t ′

tmin

dt ′′ g(t ′)g(t ′′) sin ω(t ′ − t ′′)(1 + 2n̂σ̄ )

]
ĉ†
σ . (A16)

With these time-dependent operators we are able to exactly evaluate the single- and two-particle Green’s functions.
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APPENDIX B: EXPECTATION VALUES

In this Appendix, we summarize the calculation of the trace needed for different time-dependent expectation values. This
includes the terms 〈x̂(t )〉, 〈n̂ f 〉, 〈n̂σ̄ 〉, 〈n̂σ n̂σ̄ 〉, [〈x̂2(t )〉 − 〈x̂(t )〉2], [〈x̂3(t )〉 − 〈x̂(t )〉3], 〈n̂σ̄ x̂(t )〉, and 〈n̂σ̄ x̂2(t )〉. They are evaluated
by using Newton’s generalized binomial theorem and properties of the simple harmonic oscillator states, as outlined in the main
text. To begin (following Ref. [33]), we have

〈x̂(t )〉 = −〈n̂ f 〉
(

g(tmin)

mω2
cos[ω(t − tmin)] + Re

{
ie−iωt

∫ t

tmin

dt ′ g(t ′)
mω

eiωt ′
})

, (B1)

with

〈n̂ f 〉 = 2eβμ exp
[

βg2(tmin )
2mω2

] + 2eβ[2μ−U (tmin )] exp
[ 2βg2(tmin )

mω2

]
1 + 2eβμ exp

[
βg2(tmin )

2mω2

] + exp{β[2μ − U (tmin)]} exp
[ 2βg2(tmin )

mω2

] . (B2)

Next, we have

〈n̂σ̄ 〉 = eβμ exp
[ g2(tmin )β

2mω2

] + eβ[2μ−U (tmin )] exp
[ 2g2(tmin )β

mω2

]
1 + 2eβμ exp

[ g2(tmin )β
2mω2

] + eβ[2μ−U (tmin )] exp
[ 2g2(tmin )β

mω2

] , (B3)

so we see, by comparison with Eq. (B2), that we have 〈n̂σ̄ 〉 = 1
2 〈n̂σ + n̂σ̄ 〉 = 1

2 〈n̂ f 〉. In addition,

〈n̂σ n̂σ̄ 〉 = eβ[2μ−U (tmin )] exp
[ 2g2(tmin )β

mω2

]
1 + 2eβμ exp

[ g2(tmin )β
2mω2

] + exp{β[2μ − U (tmin)]} exp
[ 2g2(tmin )β

mω2

] , (B4)

so we have

〈n̂σ̄ x̂(t )〉 = −
(

g(tmin)

mω2
cos[ω(t − tmin)] + Re

{
ie−iωt

∫ t

tmin

dt ′ g(t ′)
mω

eiωt ′
})

(〈n̂σ n̂σ̄ 〉 + 〈n̂σ̄ 〉). (B5)

Next,

〈n̂σ̄ x̂2(t )〉 =
(

−g(tmin)

mω2
cos[ω(t − tmin)] − Re

{
ie−iωt

∫ t

tmin

dt ′ g(t ′)
mω

eiωt ′
})2

(〈n̂σ̄ 〉 + 3〈n̂σ n̂σ̄ 〉) + 1

2mω
coth

(
βω

2

)
〈n̂σ̄ 〉. (B6)

In addition,

〈x̂2(t )〉 − 〈x̂(t )〉2 =
(

g(tmin)

mω2
cos[ω(t − tmin)] + Re

{
ie−iωt

∫ t

tmin

dt ′ g(t ′)
mω

eiωt ′
})2

(B7)

× (〈n̂↑ + n̂↓〉 − 〈n̂↑ + n̂↓〉2 + 2〈n̂↑n̂↓〉) + 1

2mω
coth

(
βω

2

)
(B8)

Finally,

〈x̂3(t )〉 − 〈x̂(t )〉3 = −
(

g(tmin)

mω2
cos[ω(t − tmin)] + Re

{
ie−iωt

∫ t

tmin

dt ′ g(t ′)
mω

eiωt ′
})3

(〈n̂↑ + n̂↓〉 − 〈n̂↑ + n̂↓〉3 + 6〈n̂↑n̂↓〉)

+ 3

2mω
coth

(
βω

2

)
〈x̂(t )〉. (B9)

These are all the expectation values required to evaluate the spectral moments up to third order.

APPENDIX C: TWO-PARTICLE GREEN’S FUNCTION

In this Appendix, we present the exact non-equilibrium two-particle Green’s function for the atomic Holstein-Hubbard model,
which is calculated in the same manner as the single-particle case. For the two-particle Green’s function, there are no known
sum rules to compare our results against, so we no longer have an independent check. There are two possibilities for the spin σ ′,
σ ′ = σ and σ ′ = σ̄ . Here, we will enumerate all the terms which appear in the two-particle Green’s function, defined by

Gσσ ′ (t0, t1, t2, t3) = −〈Tt ĉσ (t0)ĉσ ′ (t1)ĉ†
σ ′ (t2)ĉ†

σ (t3)〉. (C1)

To begin, there is a time-dependent factor which is the same for every term, so we define it here:

A(t0, t1, t2, t3) ≡ A = [n(ω) + 1]

Z
eiμ(t0+t1−t2−t3 ) exp

[(
−1

2
− n(ω)

)
|C(t2) + C(t3) − C(t0) − C(t1)|2

]

× exp{i[I (t0) + I (t1) − I (t2) − I (t3)]}, (C2)
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where, again, n(ω),C(t ), and I (t ) are given by Eqs. (21), (18), and (19), respectively. Next, we define

F (t ) ≡ 2I (t ) −
∫ t

tmin

dt ′ U (t ′) (C3)

and the prefactor, which depends on the four times (and whether each time is associated with a creation or an annihilation
operator),

P((±)1t, (±)2t ′, (±)3t̄, (±)4t̄ ′) = exp[−iIm{(±)1(±)2C
∗(t )C(t ′) + (±)3(±)4C

∗(t̄ )C(t̄ ′) + (±)1(±)3C
∗(t )C(t̄ )

+ (±)1(±)4C
∗(t )C(t̄ ′) + (±)2(±)3C

∗(t ′)C(t̄ ) + (±)2(±)4C
∗(t ′)C(t̄ ′)}], (C4)

where the + sign is for a time associated with a creation operator and the − sign is for a time associated with an annihilation
operator. Finally, we note that the sign of the term is negative (positive) if the parity of the permutation which brings the times
back to the order t0 > t1 > t2 > t3 is even (odd).

1. Same-spin case

For the case where the spins are the same, we find a number of terms in the time ordering vanish because ĉ2
σ = ĉ†2

σ = 0 due
to the Pauli exclusion principle. In this case, only 8 of the 24 possible time orderings are non-vanishing. They are the following
eight time orderings:

(1) t0 > t2 > t1 > t3.
(2) t0 > t3 > t1 > t2.
(3) t1 > t2 > t0 > t3.
(4) t1 > t3 > t0 > t2.
(5) t2 > t1 > t3 > t0.
(6) t2 > t0 > t3 > t1.
(7) t3 > t1 > t2 > t0.
(8) t3 > t0 > t2 > t1.
When we expand the time-ordering operator for the same spin Green’s function, we obtain

Gσσ (t0, t1, t2, t3) = −〈Tt ĉσ (t0)ĉσ (t1)ĉ†
σ (t2)ĉ†

σ (t3)〉
= θ (t0, t2, t1, t3)〈ĉσ (t0)ĉ†

σ (t2)ĉσ (t1)ĉ†
σ (t3)〉 − θ (t0, t3, t1, t2)〈ĉσ (t0)ĉ†

σ (t3)ĉσ (t1)ĉ†
σ (t2)〉

+ θ (t1, t3, t0, t2)〈ĉσ (t1)ĉ†
σ (t3)ĉσ (t0)ĉ†

σ (t2)〉 − θ (t1, t2, t0, t3)〈ĉσ (t1)ĉ†
σ (t2)ĉσ (t0)ĉ†

σ (t3)〉
+ θ (t2, t0, t3, t1)〈ĉ†

σ (t2)ĉσ (t0)ĉ†
σ (t3)ĉσ (t1)〉 − θ (t2, t1, t3, t0)〈ĉ†

σ (t2)ĉσ (t1)ĉ†
σ (t3)ĉσ (t0)〉

+ θ (t3, t1, t2, t0)〈ĉ†
σ (t3)ĉσ (t1)ĉ†

σ (t2)ĉσ (t0)〉 − θ (t3, t0, t2, t1)〈ĉ†
σ (t3)ĉσ (t0)ĉ†

σ (t2)ĉσ (t1)〉,

(C5)

where θ (t ) is the Heaviside function and θ (t1, t2, t3, t4) = θ (t1 − t2)θ (t2 − t3)θ (t3 − t4). The expectation values are as follows:
(i) t0 > t2 > t1 > t3,

〈ĉσ (t0)ĉ†
σ (t2)ĉσ (t1)ĉ†

σ (t3)〉 = A exp [P(−t0, t2,−t1, t3)]

{
1 + exp

[
β

(
μ + g2(tmin)

2mω2

)]

× exp

[
−i

2g(tmin)√
2mω3

Re{−C(t0) + C(t2) − C(t1) + C(t3)}
]

× exp{−i[−F (t0) + F (t2) − F (t1) − F (t3)]}
}
, (C6)

(ii) t0 > t3 > t1 > t2,

−〈ĉσ (t0)ĉ†
σ (t2)ĉσ (t1)ĉ†

σ (t3)〉 = −A exp[P(−t0, t3,−t1, t2)]

{
1 + exp

[
β

(
μ + g2(tmin)

2mω2

)]

× exp

[
−i

2g(tmin)√
2mω3

Re{−C(t0) + C(t2) − C(t1) + C(t3)}
]

× exp{−i[−F (t0) + F (t2) − F (t1) − F (t3)]}
}
, (C7)

(iii) t1 > t2 > t0 > t3,

−〈ĉσ (t1)ĉ†
σ (t2)ĉσ (t0)ĉ†

σ (t3)〉 = −A exp[P(−t1, t2,−t0, t3)]

{
1 + exp

[
β

(
μ + g2(tmin)

2mω2

)]
exp

[
−i

2g(tmin)√
2mω3

Re{−C(t0)

+ C(t2) − C(t1) + C(t3)}
]

exp{−i[−F (t0) + F (t2) − F (t1) − F (t3)]}
}
, (C8)
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(iv) t1 > t3 > t0 > t2,

〈ĉσ (t0)ĉ†
σ (t2)ĉσ (t1)ĉ†

σ (t3)〉 = A exp[P(−t1, t3,−t0, t2)]

{
1 + exp

[
β

(
μ + g2(tmin)

2mω2

)]

× exp

[
−i

2g(tmin)√
2mω3

Re{−C(t0) + C(t2) − C(t1) + C(t3)}
]

× exp{−i[−F (t0) + F (t2) − F (t1) − F (t3)]}
}
. (C9)

Note that for these orderings all that changed is the ordering of the times in the prefactor P. We see something similar for the
next four orderings.

(v) t2 > t1 > t3 > t0,

−〈ĉ†
σ (t2)ĉσ (t1)ĉ†

σ (t3)ĉσ (t0)〉 = −A exp[P(t2,−t1, t3,−t0)]

{
exp

[
β

(
μ + g2(tmin)

2mω2

)]

× exp

[
−i

2g(tmin)√
2mω3

Re{−C(t0) + C(t2) − C(t1) + C(t3)}
]

+ exp

[
β

(
2μ − U (tmin) + 2g2(tmin)

mω2

)]

× exp{−i[−F (t0) + F (t2) − F (t1) + F (t2)]} exp

[
−i

4g(tmin)√
2mω3

× Re{−C(t0) + C(t2) − C(t1) + C(t3)}
]}

, (C10)

(vi) t2 > t0 > t3 > t1,

〈ĉ†
σ (t2)ĉσ (t0)ĉ†

σ (t3)ĉσ (t1)〉 = A exp[P(t2,−t0, t3,−t1)]

{
exp

[
β

(
μ + g2(tmin)

2mω2

)]

× exp

[
−i

2g(tmin)√
2mω3

Re{−C(t0) + C(t2) − C(t1) + C(t3)}
]

+ exp

[
β

(
2μ − U (tmin) + 2g2(tmin)

mω2

)]

× exp{−i[−F (t0) + F (t2) − F (t1) + F (t2)]} exp

[
−i

4g(tmin)√
2mω3

× Re{−C(t0) + C(t2) − C(t1) + C(t3)}
]}

, (C11)

(vii) t3 > t1 > t2 > t0,

〈ĉ†
σ (t3)ĉσ (t1)ĉ†

σ (t2)ĉσ (t0)〉 = A exp[P(t3,−t1, t2,−t0)]

{
exp

[
β

(
μ + g2(tmin)

2mω2

)]

× exp

[
−i

2g(tmin)√
2mω3

Re{−C(t0) + C(t2) − C(t1) + C(t3)}
]

+ exp

[
β

(
2μ − U (tmin) + 2g2(tmin)

mω2

)]

× exp[−i[−F (t0) + F (t2) − F (t1) + F (t2)]} exp

[
−i

4g(tmin)√
2mω3

× Re{−C(t0) + C(t2) − C(t1) + C(t3)}
]}

, (C12)

(viii) t3 > t0 > t2 > t1,

−〈ĉ†
σ (t3)ĉσ (t0)ĉ†

σ (t2)ĉσ (t1)〉 = −A exp[P(t3,−t0, t2,−t1)]

{
exp

[
β(μ + g2(tmin)

2mω2
)

]

× exp

[
− i

2g(tmin)√
2mω3

Re{−C(t0) + C(t2) − C(t1) + C(t3)}
]

+ exp

[
β

(
2μ − U (tmin) + 2g2(tmin)

mω2

)]

× exp{−i[−F (t0) + F (t2) − F (t1) + F (t2)]} exp

[
− i

4g(tmin)√
2mω3

× Re{−C(t0) + C(t2) − C(t1) + C(t3)}
]}

. (C13)
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So for this case, unlike for the mixed-spin case considered next, we can write a reasonably concise expression for the two particle
Green’s function:

Gσσ (t0, t1, t2, t3) = A

({
1 + exp

[
β

(
μ + g2(tmin)

2mω2

)]
exp

[
−i

2g(tmin)√
2mω3

Re{−C(t0) + C(t2) − C(t1) + C(t3)}
]

× exp{−i[−F (t0) + F (t2) − F (t1) − F (t3)]}
}

× {θ (t0, t2, t1, t3) exp[P(−t0, t2,−t1, t3)] − θ (t0, t3, t1, t2) exp[P(−t0, t3,−t1, t2)]

+ θ (t1, t3, t0, t2) exp[P(−t1, t3,−t0, t2)] − θ (t1, t2, t0, t3) exp[P(−t1, t2,−t0, t3)]}

+
{

exp

[
β

(
μ + g2(tmin)

2mω2

)]
exp

[
−i

2g(tmin)√
2mω3

Re{−C(t0) + C(t2) − C(t1) + C(t3)}
]

+ exp

[
β

(
2μ − U (tmin) + 2g2(tmin)

mω2

)]

× exp{−i[−F (t0) + F (t2) − F (t1) + F (t2)]} exp

[
−i

4g(tmin)√
2mω3

Re{−C(t0) + C(t2) − C(t1) + C(t3)}
]}

× {θ (t2, t0, t3, t1) exp[P(t2,−t0, t3,−t1)] − θ (t2, t1, t3, t0) exp[P(t2,−t1, t3,−t0)]

+ θ (t3, t1, t2, t0) exp[P(t3,−t1, t2,−t0)] − θ (t3, t0, t2, t1) exp[P(t3,−t0, t2,−t1)]}
)

, (C14)

where all the functions which appear are defined above.

2. Mixed-spin case

For the case when σ ′ = σ̄ , none of the orderings vanish, and each of the 24 terms has a slightly different structure. We will
enumerate each of the terms here. To begin, when the time-ordering operator is expanded, the mixed-spin Green’s function is
defined as

Gσ σ̄ (t0, t1, t2, t3) = −θ (t0, t1, t2, t3)〈ĉσ (t0)ĉσ̄ (t1)c†
σ̄ (t2)ĉ†

σ (t3)〉 + θ (t1, t0, t2, t3)〈ĉσ̄ (t1)ĉσ (t0)ĉ†
σ̄ (t2)ĉ†

σ (t3)〉
− θ (t1, t0, t3, t2)〈ĉσ̄ (t1)ĉσ (t0)ĉ†

σ (t3)ĉ†
σ̄ (t2)〉 + θ (t0, t1, t3, t2)〈ĉσ (t0)ĉσ̄ (t1)c†

σ (t3)c†
σ̄ (t2)〉

− θ (t0, t2, t3, t1)〈ĉσ (t0)c†
σ̄ (t2)c†

σ (t3)ĉσ̄ (t1)〉 + θ (t0, t2, t1, t3)〈ĉσ (t0)c†
σ̄ (t2)ĉσ̄ (t1)c†

σ (t3)〉
− θ (t0, t3, t1, t2)〈ĉσ (t0)c†

σ (t3)ĉσ̄ (t1)ĉ†
σ̄ (t2)〉 + θ (t0, t3, t2, t1)〈ĉσ (t0)ĉ†

σ (t3)ĉ†
σ̄ (t3)ĉσ̄ (t1)〉

− θ (t1, t3, t2, t0)〈ĉσ̄ (t1)c†
σ (t3)c†

σ̄ (t2)ĉσ (t0)〉 + θ (t1, t2, t3, t0)〈ĉσ̄ (t1)c†
σ̄ (t2)c†

σ (t3)ĉσ (t0)〉
− θ (t1, t2, t0, t3)〈ĉσ̄ (t1)c†

σ̄ (t2)ĉσ (t0)ĉ†
σ (t3)〉 + θ (t1, t3, t0, t2)〈ĉσ̄ (t1)c†

σ (t3)ĉσ (t0)c†
σ̄ (t2)〉

− θ (t2, t0, t1, t3)〈ĉ†
σ̄ (t2)ĉσ (t0)ĉσ̄ (t1)ĉ†

σ (t3)〉 + θ (t2, t1, t0, t3)〈ĉ†
σ̄ (t2)ĉσ̄ (t1)ĉσ (t0)ĉ†

σ (t3)〉
− θ (t2, t1, t3, t0)〈ĉ†

σ̄ (t2)ĉσ̄ (t1)c†
σ (t3)ĉσ (t0)〉 + θ (t2, t3, t1, t0)〈ĉ†

σ̄ (t2)c†
σ (t3)ĉσ̄ (t1)ĉσ (t0)〉

− θ (t2, t3, t0, t1)〈ĉ†
σ̄ (t2)c†

σ (t3)ĉσ (t0)ĉσ̄ (t1)〉 + θ (t2, t0, t3, t1)〈ĉ†
σ̄ (t2)ĉσ (t0)ĉ†

σ (t3)ĉσ̄ (t1)〉
− θ (t3, t1, t0, t2)〈ĉ†

σ (t3)ĉσ̄ (t1)ĉσ (t0)ĉ†
σ̄ (t2)〉 + θ (t3, t0, t1, t2)〈ĉ†

σ (t3)ĉσ (t0)ĉσ̄ (t1)ĉ†
σ̄ (t2)〉

− θ (t3, t2, t1, t0)〈ĉ†
σ (t3), ĉ†

σ̄ (t2)ĉσ̄ (t1)ĉσ (t0)〉 + θ (t3, t2, t0, t1)〈ĉ†
σ (t3)ĉ†

σ̄ (t2)ĉσ (t0)ĉσ̄ (t1)〉
− θ (t3, t0, t2, t1)〈ĉ†

σ (t3)ĉσ (t0)ĉ†
σ̄ (t2)ĉσ̄ (t1)〉 + θ (t3, t1, t2, t0)〈ĉ†

σ (t3)ĉσ̄ (t1)ĉ†
σ̄ (t2)ĉσ (t0)〉. (C15)

In what follows, we group terms by the order of the operators ĉ, ĉ† to help with the bookkeeping. There are four terms with each
of the six orderings: (i) ĉĉĉ†ĉ†, (ii) ĉĉ†ĉ†ĉ, (iii) ĉĉ†ĉĉ†, (iv) ĉ†ĉĉĉ†, (v) ĉ†ĉĉ†ĉ, and (vi) ĉ†ĉ†ĉĉ. In evaluating these expectation
values we must take more care because the operator n̂σ̄ , which appears in the time-dependence of ĉσ (t ) and ĉ†

σ (t ), no longer
commutes with everything when we have operators which depend on σ̄ . In each of the terms, only one of the four Fermionic
states, |0〉 , |σ 〉 , |σ̄ 〉 , |σ σ̄ 〉, gives a nonzero contribution to the trace. The terms are as follows:

(i) ĉĉĉ†ĉ† terms:
(1) t0 > t1 > t2 > t3,

−〈ĉσ (t0)ĉσ̄ (t1)ĉ†
σ̄ (t2)ĉ†

σ (t3)〉 = −AeP(−t0,−t1,t2,t3 ) exp{i[F (t1) − F (t2)]}, (C16)
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(2) t1 > t0 > t2 > t3,

〈ĉσ̄ (t1)ĉσ (t0)ĉ†
σ̄ (t2)ĉ†

σ (t3)〉 = AeP(−t1,−t0,t2,t3 ) exp{i[−F (t2) + F (t0)]}, (C17)

(3) t1 > t0 > t3 > t2,

−〈ĉσ̄ (t1)ĉσ (t0)ĉ†
σ (t3)ĉ†

σ̄ (t2)〉 = −AeP(−t1,−t0,t3,t2 ) exp{i[F (t0) − F (t3)]}, (C18)

(4) t0 > t1 > t3 > t2,

〈ĉσ (t0)ĉσ̄ (t1)ĉ†
σ (t3)ĉ†

σ̄ (t2)〉 = AeP(−t0,−t1,t3,t2 ) exp{i[F (t1) − F (t3)]}. (C19)

(ii) ĉĉ†ĉ†ĉ terms:
(5) t0 > t2 > t3 > t1,

−〈ĉσ (t0)ĉ†
σ̄ (t2)ĉ†

σ (t3)ĉσ̄ (t1) = −AeP(−t0,t2,t3,−t1 ) exp

[
g2(tmin)β

2mω2

]

× exp

[
βμ − 2i

g(tmin)√
2mω3

Re{−C(t0) + C(t2) + C(t3) − C(t1)}
]

exp{i[−F (t2) + F (t0)]},
(C20)

(6) t0 > t3 > t2 > t1,

〈ĉσ (t0)ĉ†
σ (t3)ĉ†

σ̄ (t2)ĉσ̄ (t1)〉 = AeP(−t0,t3,t2,−t1 ) exp

[
g2(tmin)β

2mω2

]

× exp

[
βμ − 2i

g(tmin)√
2mω3

Re{−C(t0) + C(t2) + C(t3) − C(t1)}
]

exp{i[−F (t3) + F (t0)]}, (C21)

(7) t1 > t3 > t2 > t0,

−〈ĉσ̄ (t1)ĉ†
σ (t3)ĉ†

σ̄ (t2)ĉσ (t0)〉 = −AeP(−t1,t3,t2,−t0 ) exp

[
g2(tmin)β

2mω2

]

× exp

[
βμ − 2i

g(tmin)√
2mω3

Re{−C(t0) + C(t2) + C(t3) − C(t1)}
]

exp{i[−F (t3) + F (t1)]},
(C22)

(8) t1 > t2 > t3 > t0,

〈ĉσ̄ (t1)ĉ†
σ̄ (t2)ĉσ (t3)ĉσ (t0)〉 = AeP(−t1,t3,t2,−t0 ) exp

[
g2(tmin)β

2mω2

]

× exp

[
βμ − 2i

g(tmin)√
2mω3

Re{−C(t0) + C(t2) + C(t3) − C(t1)}
]

exp{i[−F (t2) + F (t1)]}. (C23)

(iii) ĉĉ†ĉĉ† terms:
(9) t0 > t2 > t1 > t3,

〈ĉσ (t0)ĉ†
σ̄ (t2)ĉσ̄ (t1)ĉ†

σ (t3)〉 = AeP(−t0,t2,−t1,t3 ) exp

[
g2(tmin)β

2mω2

]
exp

[
βμ − 2i

g(tmin)√
2mω3

× Re{−C(t0) + C(t2) + C(t3) − C(t1)}
]

exp{i[F (t0) − F (t2) + F (t1) − F (t3)]}, (C24)

(10) t0 > t3 > t1 > t2,

−〈ĉσ (t0)ĉ†
σ (t3)ĉσ̄ (t1)ĉ†

σ̄ (t2)〉 = −AeP(−t0,t3,−t1,t2 ), (C25)

(11) t1 > t2 > t0 > t3,

−〈ĉσ̄ (t1)ĉ†
σ̄ (t2)ĉσ (t0)ĉ†

σ (t3)〉 = −AeP(−t1,t2,−t0,t3 ), (C26)

(12) t1 > t3 > t0 > t2,

〈ĉσ̄ (t1)ĉ†
σ (t3)ĉσ (t0)ĉ†

σ̄ (t2)〉 = AeP(−t1,t3,−t0,t2 ) exp

[
g2(tmin)β

2mω2

]
exp

[
βμ − 2i

g(tmin)√
2mω3

× Re{−C(t0) + C(t2) + C(t3) − C(t1)}
]

exp{i[F (t1) − F (t3) + F (t0) − F (t2)]}. (C27)
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(iv) ĉ†ĉĉĉ† terms:
(13) t2 > t0 > t1 > t3,

−〈ĉ†
σ̄ (t2)ĉσ (t0)ĉσ̄ (t1)ĉ†

σ (t3)〉 = −AeP(t2,−t0,−t1,t3 ) exp

[
g2(tmin)β

2mω2

]

× exp

[
βμ − 2i

g(tmin)√
2mω3

Re{−C(t0) + C(t2) + C(t3) − C(t1)}
]

exp{i[F (t1) − F (t3)]}, (C28)

(14) t2 > t1 > t0 > t3,

〈ĉ†
σ̄ (t2)ĉσ̄ (t1)ĉσ (t0)ĉ†

σ (t3)〉 = AeP(t2,−t1,−t0,t3 ) exp

[
g2(tmin)β

2mω2

]

× exp

[
βμ − 2i

g(tmin)√
2mω3

Re{−C(t0) + C(t2) + C(t3) − C(t1)}
]

exp{i[F (t0) − F (t3)]}, (C29)

(15) t3 > t1 > t0 > t2,

−〈ĉ†
σ (t3)ĉσ̄ (t1)ĉσ (t0)ĉ†

σ̄ (t2)〉 = −AeP(t3,−t1,−t0,t2 ) exp

[
g2(tmin)β

2mω2

]

× exp

[
βμ − 2i

g(tmin)√
2mω3

Re{−C(t0) + C(t2) + C(t3) − C(t1)}
]

exp{i[F (t0) − F (t2)]}, (C30)

(16) t3 > t0 > t1 > t2

〈ĉ†
σ (t3)ĉσ (t0)ĉσ̄ (t1)ĉ†

σ̄ (t2)〉 = AeP(t3,−t0,−t1,t2 ) exp

[
g2(tmin)β

2mω2

]

× exp

[
βμ − 2i

g(tmin)√
2mω3

Re{−C(t0) + C(t2) + C(t3) − C(t1)}
]

exp{i[F (t1) − F (t2)]}. (C31)

(v) ĉ†ĉĉ†ĉ terms:
(17) t2 > t1 > t3 > t0,

−〈ĉ†
σ̄ (t2)ĉσ̄ (t1)ĉ†

σ (t3)ĉσ (t0)〉 = −AeP(t3,−t0,t2,−t1 ) exp

[
2g2(tmin)β

mω2

]
exp[−βU (tmin)] exp

[
2

(
βμ − 2i

g(tmin)√
2mω3

× Re{−C(t0) + C(t2) + C(t3) − C(t1)}
)]

exp{i[−F (t2) + F (t1) − F (t3) + F (t0)]}, (C32)

(18) t2 > t0 > t3 > t1,

〈ĉ†
σ̄ (t2)ĉσ (t0)ĉ†

σ (t3)ĉσ̄ (t1)〉 = AeP(t2,−t0,t3,−t1 ) exp

[
g2(tmin)β

2mω2

]
exp

[
βμ − 2i

g(tmin)√
2mω3

Re{−C(t0) + C(t2) + C(t3) − C(t1)}
]
,

(C33)

(19) t3 > t0 > t2 > t1,

−〈ĉ†
σ (t3)ĉσ (t0)ĉ†

σ̄ (t2)ĉσ̄ (t1)〉 = −AeP(t3,−t0,t2,−t1 ) exp

[
2g2(tmin)β

mω2

]
exp[−βU (tmin)] exp

[
2

(
βμ − 2i

g(tmin)√
2mω3

× Re{−C(t0) + C(t2) + C(t3) − C(t1)}
)]

exp{i[−F (t3) + F (t0) − F (t2) + F (t1)]}, (C34)

(20) t3 > t1 > t2 > t0,

〈ĉ†
σ (t3)ĉσ̄ (t1)ĉ†

σ̄ (t2)ĉσ (t0)〉 = AeP(t3,−t1,t2,−t0 ) exp

[
g2(tmin)β

2mω2

]
exp

[
βμ − 2i

g(tmin)√
2mω3

Re{−C(t0) + C(t2) + C(t3) − C(t1)}
]
.

(C35)

(vi) ĉ†ĉ†ĉĉ terms:
(21) t2 > t3 > t0 > t1,

−〈ĉ†
σ̄ (t2)ĉ†

σ (t3)ĉσ (t0)ĉσ̄ (t1)〉 = −AeP(t2,t3,−t0,−t1 ) exp

[
2g2(tmin)β

mω2

]
exp[−βU (tmin)] exp

[
2

(
βμ − 2i

g(tmin)√
2mω3

× Re{−C(t0) + C(t2) + C(t3) − C(t1)}
)]

exp{i[F (t1) − F (t2)]}, (C36)
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(22) t2 > t3 > t1 > t0,

〈ĉ†
σ̄ (t2)ĉ†

σ (t3)ĉσ̄ (t1)ĉσ (t1)〉 = AeP(t2,t3,−t1,−t0 ) exp

[
2g2(tmin)β

mω2

]
exp[−βU (tmin)] exp

[
2

(
βμ − 2i

g(tmin)√
2mω3

× Re{−C(t0) + C(t2) + C(t3) − C(t1)}
)]

exp{i[F (t1) − F (t2)]}, (C37)

(23) t3 > t2 > t1 > t0,

−〈ĉ†
σ (t3)ĉ†

σ̄ (t2)ĉσ̄ (t1)ĉσ (t0)〉 = −AeP(t3,t2,−t1,−t0 ) exp[−βU (tmin)] exp

[
2g2(tmin)β

mω2

]
exp

[
2

(
βμ − 2i

g(tmin)√
2mω3

× Re{−C(t0) + C(t2) + C(t3) − C(t1)}
)]

exp{i[F (t0) − F (t3)]}, (C38)

(24) t3 > t2 > t0 > t1:

〈ĉ†
σ (t3)ĉσ̄ (t2)ĉσ (t0)ĉσ̄ (t1)〉 = AeP(t3,t2,−t0,−t1 ) exp

[
2g2(tmin)β

mω2

]
exp[−βU (tmin)]

× exp

[
2

(
βμ − 2i

g(tmin)√
2mω3

Re{−C(t0) + C(t2) + C(t3) − C(t1)}
)]

exp{i[F (t1) − F (t3)]}.
(C39)

This fully determines the two-particle Green’s function in the mixed-spin case. This, combined with the expression found for
when the spins are the same, completely determines the exact two-particle time-ordered Green’s function of the local Holstein-
Hubbard model with arbitrary time-dependent couplings.
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