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The factorization method of Schr€odinger shows us how to determine the energy eigenstates without

needing to determine the wavefunctions in position or momentum space. A strategy to convert the

energy eigenstates to wavefunctions is well known for the one-dimensional simple harmonic

oscillator by employing the Rodrigues formula for the Hermite polynomials in position or

momentum space. In this work, we illustrate how to generalize this approach in a representation-

independent fashion to find the wavefunctions of other problems in quantum mechanics that can be

solved by the factorization method. We examine three problems in detail: (i) the one-dimensional

simple harmonic oscillator; (ii) the three-dimensional isotropic harmonic oscillator; and (iii) the

three-dimensional Coulomb problem. This approach can be used in either undergraduate or

graduate classes in quantum mechanics. # 2024 Published under an exclusive license by American Association of
Physics Teachers.

https://doi.org/10.1119/5.0177925

I. INTRODUCTION

Quantum mechanics is typically taught in one of two
approaches—a differential-equation-based approach that
uses the Schr€odinger equation in position space or an alge-
braic operator-based method that uses abstract operator
manipulations to find energy eigenstates. The algebraic
method is primarily used for two problems: (i) solving the
simple harmonic oscillator in one dimension and (ii) deter-
mining states that have both definite total and z-component
of angular momentum. In 1940, Schr€odinger showed how to
use algebraic factorization method to solve all exactly solv-
able quantum problems1–3 (see Infeld and Hull4 for a
review). Schr€odinger’s factorization method was reinvigo-
rated by Witten in his development of supersymmetric quan-
tum mechanics.5 The factorization method approach, in its
simplest form, is what is used in the abstract treatment of the
simple harmonic oscillator. Nearly all textbooks that discuss
it will also show how one can find wavefunctions in this
approach as well. Most use the subsidiary condition
(described in more detail below), given by âj0i ¼ 0, to
determine the ground-state wavefunction by converting it
into a first-order differential equation in position space. A
much smaller subset of quantum textbooks (maybe about
15%) will also show how the higher-energy eigenstates,
given by 1=

ffiffiffiffi
n!
p� �

ðâ†Þnj0i ¼ jni, can be expressed as a dif-
ferential operator (raised to the nth power) acting on the
ground-state wavefunction. They then convert the power of
operators acting on the ground state, via the Rodrigues for-
mula, into the well-known result for the excited-state wave-
functions in terms of a Hermite polynomial multiplied by a
Gaussian. In this work, we show how this approach can be
generalized, using an operator-based methodology (as
opposed to a differential equation-based methodology), to
find the wavefunctions of energy eigenstates in a Rodrigues-
formula inspired approach. Note that we can only do this for

exactly solvable problems, which are so-called shape-invari-
ant potentials for the operator method. We explicitly cover
three problems: (i) the simple harmonic oscillator in one
dimension; (ii) the isotropic oscillator in three dimensions;
and (iii) the Coulomb problem in three dimensions. We pro-
vide shorter summaries for two two-d examples in the sup-
plementary material.6

Here, we provide a brief summary of the traditional
Rodrigues formulas. There are two of these relevant for this
work: (i) the formula for the Hermite polynomials, given by

HnðxÞ ¼ ð�1Þnex2 dn

dxn

�
e�x2

�
(1)

and (ii) the formula for the associated Laguerre polynomials,
given by

LðaÞn ðxÞ ¼
x�aex

n!

dn

dxn

�
xnþae�x

�
: (2)

A treatment of the Rodrigues formula from a differential
equation point of view is given in Chap. 12 of Arfken et al.;7

another way to determine them is by using the Laplace
method to solve the confluent hypergeometric equation,
where they arise as residues in a contour integral.8

The remainder of the paper is organized as follows. In
Sec. II, we describe in detail how the Schr€odinger factoriza-
tion method works, and how it can be manipulated to repre-
sent a generalized operator form of the Rodrigues formulas
for the wavefunctions. In Sec. III, we show how these techni-
ques can be applied to the simple harmonic oscillator in one
dimension. Section IV does the same for the isotropic oscil-
lator in three dimensions. Section V covers the Coulomb
problem in three dimensions. In Sec. VI, we describe our
thoughts on how to present these materials in instruction. We
summarize the results in Sec. VII.
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II. FORMALISM OF THE FACTORIZATION

METHOD AND PROCEDURE TO RELATE

TO RODRIGUES FORMULAS

We briefly review the factorization method of
Schr€odinger1 to clarify our notation and to set the stage for
how the Rodrigues formula is generalized into an operator
form. In the factorization method, we seek to find Hermitian

conjugate operators Â0 and Â
†

0 such that Ĥ ¼ p̂2=2M

þVðx̂Þ ¼ Ĥ0 ¼ Â
†

0Â0 þ E0, where we introduce a subscript
0 to the original Hamiltonian because it will be the first ele-
ment in the factorization chain. These ladder operators are
not the same as the conventional ones used for the harmonic
oscillator, and in general, their commutator is not equal to
one.

The ground state of Ĥ0 is the state that satisfies

Â0jw0i ¼ 0, which is called the subsidiary condition. This is
the ground state because the operator part of the Hamiltonian
is a positive semidefinite operator (all eigenvalues greater or
equal to zero) when expressed in terms of the raising and
lowering operators. This can be seen by relating expectation

values to norms—hwjÂ†
Âjwi ¼ jÂjwij2 � 0, and the only

case where it equals zero is if the vector Âjwi ¼ 0, which is
the origin of the subsidiary condition determining the ground
state. To find the excited states, we next form the factoriza-
tion chain by defining the first auxiliary Hamiltonian

Ĥ1 ¼ Â0Â
†

0 þ E0 ¼ p̂2=2M þ V1ðx̂Þ, which has the raising
and lowering operators reversed. This auxiliary Hamiltonian
has a different potential from the original Hamiltonian
V1ðx̂Þ 6¼ V0ðx̂Þ, which is determined after explicitly comput-

ing Â0Â
†

0, so we factorize it as well, in the form

Ĥ1 ¼ Â
†

1Â1 þ E1, where the auxiliary ground state is given

by Â1j/1i ¼ 0. We continue forming new auxiliary
Hamiltonians and finding new auxiliary Hamiltonian ground
states by repeating this procedure. So, in general, we have
that

Ĥiþ1 ¼
P̂

2

2M
þ Viþ1ðx̂Þ ¼ ÂiÂ

†

i þ Ei ¼ Â
†

iþ1Âiþ1 þ Eiþ1

and

Âiþ1j/iþ1i ¼ 0: (3)

The definitions of the factorization chain allow us to con-
struct the intertwining relation, given by

ĤiÂ
†

i ¼ Â
†

i ÂiÂ
†

i þ EiÂ
†

i ¼ Â
†

i Ĥ iþ1; (4)

which follows from the definition of the two auxiliary
Hamiltonians and factoring the raising operator out to the
left or to the right. The intertwining relation allows us to con-
struct the excited states of the original Hamiltonian.
Consider the state

jwni ¼ CnÂ
†

0Â
†

1 � � � Â
†

n�1j/ni; (5)

with Cn a normalization constant that will be determined
later. To show that this is an energy eigenstate of Ĥ0, we
simply apply the Hamiltonian to the state from the left.

As we move the Hamiltonian to the right through each rais-
ing operator, the intertwining relation tells us that the index
increases by 1 for each shift, until we get to the end of the
product, where we have Ĥn acting on j/ni. However, that
state is the ground state of this auxiliary Hamiltonian, with
energy En. Hence, we learn that the full state is an eigenstate
of the original Ĥ with eigenvalue En. To find the normaliza-
tion constant, we simply calculate hwnjwni and replace the

innermost Â0Â
†

0 by Ĥ1 � E0. We then move the Hamiltonian
operator to the right using the intertwining relation until it

reaches the state on the right, where it is converted to Ĥn. It
can then act on the state giving En. Hence, we can remove

the factor Â0Â
†

0 and replace it by En � E0. We repeat this to
remove each pair of lowering-raising operator products and
finally determine that

Cn ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEn � E0ÞðEn � E1Þ � � � ðEn � En�1Þ
p : (6)

This procedure of constructing auxiliary Hamiltonians and
finding excited states of the original Hamiltonian via strings
of raising operators acting on auxiliary Hamiltonian ground
states is called the factorization chain. Each auxiliary
Hamiltonian has the same energy eigenvalues as the previous
Hamiltonian in the chain, except for the ground state energy
eigenvalue. The energies of the states across the chain are all
equal to each other, as illustrated in Fig. 1. A summary of
the factorization method can be found in Ohanian9 and
Cooper et al.10

The lowering operator is written in a standard form in
terms of the position x̂ and momentum p̂ operators as

Â ¼ 1ffiffiffiffiffiffiffi
2M
p p̂ � i�hkWðk0x̂Þ

� �
; (7)

where k and k0 are real constants with dimensions of inverse
length, M is the mass, and the superpotential W is a real-
valued function of its dimensionless argument. The name
lowering operator does not imply the well-known properties
of the lowering operator in the one-d harmonic oscillator. By
examining Fig. 1 and using the intertwining relation, one can
see that applying Âi to any eigenstate in the ith column will
produce an eigenstate of the same energy in the adjacent col-
umn to the right and in the same row. The name superpoten-
tial comes from supersymmetric quantum mechanics. We
can think of it as an operator-valued function and also as a
regular function, by replacing x̂ ! x. The requirement that
the auxiliary ground state is normalizable is that kWðk0xÞ
must be positive for x!1 and negative for x! �1—this
condition guarantees the wavefunctions decay faster than
any power as x! 61. We need this condition because the
factorization of a given Hamiltonian is not unique, and this
condition allows us to determine the correct superpotential
to use in each factorization.

The energy eigenstate is given by the product of a string
of raising operators acting on an auxiliary Hamiltonian
ground state. The wavefunction in position space is then
found by simply multiplying this state by a position bra,

wnðxÞ ¼ hxjwni: (8)

We can evaluate this most efficiently if we can convert the
product of the string of operators acting on the auxiliary
ground state into a set of nested commutators acting on a
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state derived from the auxiliary Hamiltonian ground state.
The strategy to do this is the operator generalization of the
Rodrigues formula. Five steps are involved.

(1) Rewrite the raising operators as a similarity transforma-
tion in the form

Â
†

n ¼
1ffiffiffiffiffiffiffi
2M
p Ônp̂Ô

�1

n ; (9)

with Ôn some operator that needs to be determined. We
will show how to accomplish this in the different exam-
ples. Since exactly solvable problems have shape-
invariant superpotentials for the ladder operators,11 once
we solve it for one operator, it is a simple task to solve it
for all other ladder operators in the factorization chain.

(2) Find a state, constructed by applying operators onto
j/ni, that is annihilated by p̂. Once we have such a state,
we can add p̂ times that state to any expression, without
changing it, because it corresponds to adding zero.

(3) Use the add-zero property to convert the product of a
string of raising operators acting on an auxiliary
Hamiltonian ground state into a sequence of nested com-
mutators acting on the state that is annihilated by p̂.
Since a commutator with p̂ acts in the same way as a
derivative, the nested commutator object is a form of a
Rodrigues formula for a polynomial, namely, a deriva-
tive raised to the nth power acting on a function and then
divided by that function.

(4) Determine a recurrence relation for these nested commu-
tators when we compare the sequence for one excited
state with the next excited state.

(5) Solve the recurrence relation to determine an expression
for the product of raising operators acting on an auxiliary
ground state as a function of the position operator acting
on the same state.

This completes the generalization of the Rodrigues formula
in terms of operators. One can jump from the nested commu-
tators to repeated derivatives, which then become Rodrigues
formulas for the different polynomials in the wavefunctions.
In this work, we carry out all steps in a representation-
independent fashion.

This procedure sounds somewhat abstract, so we next
describe an explicit example. However, note that by following
this procedure, we can calculate wavefunctions completely
algebraically, without requiring any differential equations. This
will also become clearer as we go through the examples.

III. ONE-DIMENSIONAL SIMPLE HARMONIC

OSCILLATOR

The simple harmonic oscillator in one dimension is our
first example. The Hamiltonian is

Ĥ ¼ p̂2

2M
þ 1

2
Mx2x̂2; (10)

with ½x̂; p̂� ¼ i�h. Here, M is the mass of the particle, and x is
the frequency of the oscillator. In the Schr€odinger factoriza-

tion method, we factorize the Hamiltonian into Â
†
Â, with

Â ¼ 1ffiffiffiffiffiffiffi
2M
p ðp̂ � iMxx̂Þ (11)

and E ¼ �hx=2; the requirement that the superpotential
kWðk0xÞ ¼ Mxx=�h has positive values for x!1 and nega-
tive values for x! �1 (to ensure normalizability) is clearly

satisfied. Because ÂÂ
† ¼ Â

†
Â þ �hx, we immediately verify

that the auxiliary Hamiltonians in Eq. (3) have the same
functional form for the potential Vnðx̂Þ, but each is shifted
upward by a constant n�hx for the nth auxiliary Hamiltonian,

so that Vnðx̂Þ ¼ Mx2x̂2=2þ n�hx. This means the factoriza-
tion chain produces the same ladder operators for each auxil-
iary Hamiltonian in the chain; in fact, this is the only

Hamiltonian that does this. Hence, Ân ¼ Â for all n, and the

state that satisfies the initial subsidiary condition Âj0i ¼ 0 is
the auxiliary Hamiltonian ground state for all n.

Most students are not familiar with the Schr€odinger form
of the ladder operators, so before proceeding further, we con-
vert to the more familiar Dirac form, given by

â ¼ iffiffiffiffiffiffi
�hx
p Â ¼

ffiffiffiffiffiffiffiffi
Mx
2�h

r
x̂ þ i

p̂

Mx

� �
: (12)

Fig. 1. Schematic of the factorization chain. On the far left, we have the original Hamiltonian and its ground and excited states as constructed from the factori-

zation by applying strings of raising operators onto auxiliary Hamiltonian ground states as we move horizontally upward from the ground state. As we move to

the right, we see the ground and excited states for the first auxiliary Hamiltonian (vertically), then the second and so on. If we instead view the figure along the

horizontal lines, we see the different states that are degenerate in energy. For example, the top row shown here starts with the fourth auxiliary Hamiltonian

ground state, then the first excited state of the third auxiliary Hamiltonian, and so on until we reach the fourth excited state of the original Hamiltonian. All

these states have the same energy E4. In this way, you can see the hidden structure behind every energy eigenvalue problem, where there are other

Hamiltonians that share all the bound-state energies except for a finite number of them.
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Using this Dirac form, we have the familiar results: (i) the
subsidiary condition is âj0i ¼ 0; (ii) the nth excited state is
jni ¼ 1=

ffiffiffiffi
n!
p� �

ðâ†Þnj0i; and (iii) the nth energy eigenvalue is
En ¼ �hxðnþ 1=2Þ.

Now we work out the procedure to generalize the
Rodrigues formula to an operator format. First we need to
find the appropriate similarity transformation. One can use
the Hadamard lemma (for example, see Chap. 3 of
Merzbacher12),

eÂ B̂e�Â ¼ B̂ þ Â; B̂
	 


þ 1

2
Â; Â; B̂
	 
	 


þ 1

3!
Â; Â; Â; B̂

	 
	 
	 

þ � � � ; (13)

which relates the similarity transformation of B̂ to an infinite
series of increasingly nested commutators. We use it to
determine the similarity transformation of p̂ that produces
â†. After a little trial and error, we find that

â† ¼ � iffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hMx
p eðMx=2�hÞx̂2

p̂e�ðMx=2�hÞx̂2

: (14)

The Hadamard lemma truncates after two terms here, yield-
ing the lowering operator. Next, we find the state annihilated
by p̂ by taking the Hermitian conjugate of the aforemen-
tioned similarity transformation, given by

â ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hMx
p e�ðMx=2�hÞx̂2

p̂eðMx=2�hÞx̂2

; (15)

and use it in the subsidiary condition (âj0i ¼ 0), multiplied
from the left by the appropriate operator. This gives us

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hMx
p

eðMx=2�hÞx̂2

âj0i ¼ 0 ¼ p̂ eðMx=2�hÞx̂2 j0i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
state annihilated by p̂

:

(16)

Now, we work on the nth excited state using the series of
steps that are explained below:

jni ¼ 1ffiffiffiffi
n!
p ð�iÞn

ð2�hMxÞn=2
eðMx=2�hÞx̂2

p̂ne�ðMx=2�hÞx̂2 j0i

¼ 1ffiffiffiffi
n!
p ð�iÞn

ð2�hMxÞn=2
eðMx=2�hÞx̂2

p̂ne�ðMx=2�hÞx̂2

eðMx=2�hÞx̂2j0i

¼ 1ffiffiffiffi
n!
p ð�iÞn

ð2�hMxÞn=2
eðMx=2�hÞx̂2

� ½p̂; ½p̂;…; ½p̂; e�ðMx=�hÞx̂2 � � � ���neðMx=2�hÞx̂2 j0i

¼ 1ffiffiffiffi
n!
p ð�iÞn

ð2�hMxÞn=2
eðMx=�hÞx̂2

� ½p̂; ½p̂;…; ½p̂; e�ðMx=�hÞx̂2 � � � ���nj0iÞ: (17)

In the first line, we substitute in for â† using the similarity
transformation in Eq. (15) and cancel “interior” Gaussian
operator factors that multiply to one. In the second line, we
use a “multiply-by-one” to introduce the state annihilated by
p̂. In the third line, we start from the rightmost momentum
operator and replace

p̂e�ðMx=�hÞx̂2

eðMx=2�hÞx̂2 j0i ¼ p̂; e�ðMx=�hÞx̂2
h i

eðMx=2�hÞx̂2 j0i;
(18)

because this is the same as adding zero due to the fact that p̂
annihilates the state expðMxx̂2=2�hÞj0i. We then repeat this
procedure with the next momentum operator n – 1 more
times to obtain the n-fold nested commutator. Finally, in the
fourth line, we combine the operator factors that depend on x̂
because the nested commutator is a function of x̂ only so it
commutes with x̂. Recall, the commutator of a function of x̂
with p̂ produces a derivative of the function of x̂ multiplied
by numbers, so it is a function of x̂; this holds for nested
commutators with momentum too.

Readers familiar with Rodrigues formulas will already
recognize that this result looks similar to the Rodrigues for-
mula for Hermite polynomials. At this stage, one can directly
get to the Rodrigues formula in differential form by replac-
ing p̂ ! �i�hd=dx and noting that nested commutators
become multiple derivatives. Then, one can use the
Rodrigues formula in Eq. (1) to complete the derivation.
However, we want to establish it without derivatives, using
just operators. So, we define a polynomial Hn in terms of the
nested commutators in Eq. (17) and show that it is a Hermite
polynomial by verifying its recurrence relation. This requires
introducing some constants to agree with the standard defini-
tions. We define

Hn x̂

ffiffiffiffiffiffiffiffi
Mx
�h

r !
j0i ¼ ð�iÞn

ð�hMxÞn=2
eðMx=�hÞx̂2

� ½p̂; ½p̂;…; ½p̂; e�ðMx=�hÞx̂2 � � � ���nj0i
¼

ffiffiffiffiffi
2n
p

â†ð Þnj0i ¼
ffiffiffiffiffiffiffiffiffi
2nn!
p

jni: (19)

Setting n¼ 0, we find H0 x̂
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mx=�h

p� �
¼ 1. Similarly,

setting n¼ 1 and computing ½p̂; expð�Mxx̂2=�hÞ�
¼ 2iMxx̂ expð�Mxx̂2=�hÞ, which can be most easily worked

out using the Hadamard lemma, gives us H1 x̂
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mx=�h

p� �
¼ 2x̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mx=�h

p
. These are the first two Hermite polynomials

(with the so-called physicist normalization). The general
recurrence relation is found using the series of steps that are
explained below:

Hnþ1 x̂

ffiffiffiffiffiffiffiffi
Mx
�h

r !
j0i

¼ �iffiffiffiffiffiffiffiffiffiffi
�hMx
p eðMx=�hÞx̂2

p̂; e�ðMx=�hÞx̂2

Hn x̂

ffiffiffiffiffiffiffiffi
Mx
�h

r !" #
j0i

¼ 2x̂

ffiffiffiffiffiffiffiffi
Mx
�h

r
Hn x̂

ffiffiffiffiffiffiffiffi
Mx
�h

r !
j0i

� iffiffiffiffiffiffiffiffiffiffi
�hMx
p p̂;Hn x̂

ffiffiffiffiffiffiffiffi
Mx
�h

r !" #
j0i: (20)

The first line comes directly from the definition in Eq. (19);
one needs to use manipulations that move the exponential
operator expðMxx̂2=2�hÞ to the right and use the properties of
the state annihilated by p̂ to establish this result, and the sec-
ond comes from applying the Leibniz rule for products of
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operators in a commutator given by ½Â; B̂Ĉ� ¼ B̂½Â; Ĉ�
þ½Â; B̂�Ĉ. Using the fact that p̂ ¼ ðâ � â†Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hMx=2

p
=i

¼ ½2â � ðâ þ â†Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hMx=2

p
=i as well as the fact that â þ â†

commutes with x̂, we can convert the last term into

�
ffiffiffi
2
p

â;Hn x̂

ffiffiffiffiffiffiffiffi
Mx
�h

r !" #
j0i ¼ �

ffiffiffi
2
p

âHn x̂

ffiffiffiffiffiffiffiffi
Mx
�h

r !
j0i

¼ �
ffiffiffiffiffiffiffiffiffi
2nþ1

p
âðâ†Þnj0i

¼ �
ffiffiffiffiffiffiffiffiffi
2nþ1

p
nðâ†Þn�1j0i:

(21)

The first line uses the subsidiary condition to convert the
commutator into just the first term of the commutator, the
second line applies Eq. (19), and the third line uses the fact
that ½â; ðâ†Þn� ¼ nðâ†Þn�1

and employs the subsidiary condi-
tion for an “add-zero” again. Thus, we have that

Hnþ1 x̂

ffiffiffiffiffiffiffiffi
Mx
�h

r !
j0i ¼ 2x̂

ffiffiffiffiffiffiffiffi
Mx
�h

r
Hn x̂

ffiffiffiffiffiffiffiffi
Mx
�h

r !
j0i

�2nHn�1 x̂

ffiffiffiffiffiffiffiffi
Mx
�h

r !
j0i; (22)

which is the same as the recurrence relation for Hermite
polynomials. Using induction then implies that

Hn x̂
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mx=�h

p� �
j0i is, indeed, equal to an operator-valued

Hermite polynomial acting on j0i. The wavefunction is
found by multiplying with a position bra from the left, so

WnðxÞ / hxjHn x̂

ffiffiffiffiffiffiffiffi
Mx
�h

r !
j0i ¼ Hn x

ffiffiffiffiffiffiffiffi
Mx
�h

r !
hxj0i:

(23)

To finish the calculation, we need to determine hxj0i.
The ground state wavefunction is found by using a multi-

ply-by-one with two Gaussian operators, moving one out of
the matrix element by evaluating it against the position bra,
using the translation operator to write hxj as the translation of
the position eigenstate at the origin h0xj to the state hxj, rec-
ognizing that the translation operator can be replaced by
unity when acting on the state to its right (because p̂ annihi-
lates that state), and finally acting the Gaussian operator
against h0xj where it is replaced by 1. Hence,

hxj0i ¼ hxje�ðMx=2�hÞx̂2

eðMx=2�hÞx̂2 j0i
¼ e�ðMx=2�hÞx2hxjeðMx=2�hÞx̂2 j0i
¼ e�ðMx=2�hÞx2h0xjeði=�hÞxp̂eðMx=2�hÞx̂2 j0i
¼ e�ðMx=2�hÞx2h0xjeðMx=2�hÞx̂2 j0i
¼ e�ðMx=2�hÞx2h0xj0i: (24)

By normalizing, we find that h0xj0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mx=p�h4

p
, so the final

result with all constant factors included is

wnðxÞ ¼
1ffiffiffiffiffiffiffiffiffi
n!2n
p Mx

p�h

� �1=4

Hn x

ffiffiffiffiffiffiffiffi
Mx
�h

r !
e�ðMx=2�hÞx2

;

(25)

which is the well-known result.

One can also perform this derivation in momentum space,
which would be a good exercise to assign to students. In gen-
eral, the similarity transformation cannot be performed on
the ladder operators in terms of a similarity transformation
with respect to x̂, but the harmonic oscillator is the one case
where this can be done.

IV. THREE-DIMENSIONAL ISOTROPIC

OSCILLATOR

The simplest way to solve the three-dimensional isotropic
harmonic oscillator using the factorization method is to use
separation of variables to split the Hamiltonian into its radial
and angular components,

Ĥ ¼ p̂2

2M
þ 1

2
Mxr̂2 ¼ p̂2

r

2M
þ L̂

2

2Mr̂2
þ 1

2
Mxr̂2: (26)

We label the angular momentum eigenstates as jl;mi and
define

Ĥl ¼
p̂2

r

2M
þ �h2lðlþ 1Þ

2Mr̂2
þ 1

2
Mx2r̂2; (27)

so that Ĥðjwi � jl;miÞ ¼ ðĤljwiÞ � jl;mi, which is just sep-
aration of variables in the Dirac form.13 Here, p̂r is the radial
momentum operator given by ð1=r̂Þ~̂r � ~̂p � i�h=r̂ . Ĥl can be
factored with the lowering operator

Âl ¼
1ffiffiffiffiffiffiffi
2M
p p̂r þ

i�hðlþ 1Þ
r̂

� iMxr̂

� �
; (28)

with energy El ¼ �hxðlþ 3=2Þ; for assistance with working
out commutators, please see the appendix of Ref. 13. In this

case, we find ÂlÂ
†

l þ El ¼ Ĥlþ1 þ �hx, so the kth auxiliary

Hamiltonian for Ĥl is just Ĥlþk þ k�hx. Thus, the eigenstates

of Ĥl are given by Ck;lÂ
†

l � � � Â
†

lþk�1j/lþki, where j/li repre-

sents the ground state of Ĥl. Note that one needs to be very
careful to keep straight the difference between the
Hamiltonians for definite angular momentum versus the aux-
iliary Hamiltonians for each problem with definite angular
momentum; they are related to each other by constant shifts
proportional to �hx.

Applying the Hadamard lemma as well as the fact that

r̂ kp̂r r̂
�k ¼ p̂r þ i�hk=r̂ , we can re-express the raising operator

as

Â
†

l ¼
1ffiffiffiffiffiffiffi
2M
p eðMx=2�hÞr̂2 1

r̂ lþ1
p̂r r̂

lþ1e�ðMx=2�hÞr̂ 2

: (29)

One can employ the commutator identities in the Appendix
of Ref. 13 to compute these commutators without converting
to differential operators. We likewise convert Âl into

1ffiffiffiffiffiffiffi
2M
p e�ðMx=2�hÞr̂2

r̂ l p̂r þ
i�h

r̂

� �
1

r̂ l
eðMx=2�hÞr̂2

; (30)

giving us the subsidiary condition

p̂r þ
i�h

r̂

� �
1

r̂ l
eðMx=2�hÞr̂2 j/li ¼ 0: (31)
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The reason we write this with a specific shift of the radial
momentum operator will become clear in the course of the
derivation.

Now, using our formula for the kth eigenstate jwk;li of Ĥl,
we find that

jwk;li ¼
Ck;lffiffiffiffiffiffiffi
2M
p k

eðMx=2�hÞr̂2 1

r̂ lþ1

� p̂r

1

r̂

� �k

r̂ lþkþ1e�ðMx=2�hÞr̂2 j/lþki; (32)

after canceling out the factors of expð6Mxr̂2=2�hÞ and oppo-
site powers of r̂ from adjacent raising operators. If we look
only at the last factor of p̂r=r̂ and everything that comes after
it, we find

p̂r r̂
lþke�ðMx=2�hÞr̂ 2 j/lþki

¼ 1

r̂
p̂r þ

i�h

r̂

� �
r̂ lþkþ1e�ðMx=2�hÞr̂2 j/lþki

¼ 1

r̂
p̂r þ

i�h

r̂

� �
; e�ðMx=�hÞr̂2

r̂2lþ2kþ1

� 

� r̂�l�keðMx=2�hÞr̂2 j/lþki

¼ 1

r̂
p̂r; e

�ðMx=�hÞr̂2

r̂2lþ2kþ1

� 

r̂�l�keðMx=2�hÞr̂ 2 j/lþki:

(33)

In the first line, we move one factor of 1=r̂ to the left, shift-
ing the radial momentum by its commutator with 1=r̂ . In
the second line, we use a multiply-by-one to create the
state annihilated by p̂r þ i�h=r̂ , so we can introduce the
commutator. In the third line, we recognize that functions
of r̂ commute with 1=r̂ . Repeating this with each additional
factor of p̂r=r̂ gives us the operator form of the Rodrigues
formula,

jwk;li ¼
Ck;lffiffiffiffiffiffiffi
2M
p k

eðMx=2�hÞr̂2 1

r̂ lþ1

� 1

r̂
p̂r;…

1

r̂
p̂r; e

�ðMx=�hÞr̂ 2

r̂2lþ2kþ1

� 

� � �

� 

k

� r̂�l�keðMx=2�hÞr̂ 2 j/lþki

¼ 1

r̂ k

�2i�hffiffiffiffiffiffiffi
2M
p
� �k

eðMx=�hÞr̂2 Mx
�h

r̂2

� ��l�ð1=2Þ

� 1

r̂

ip̂r

2Mx
;…

1

r̂

ip̂r

2Mx
; e�ðMx=�hÞr̂2

��

� Mx
�h

r̂2

� �kþlþð1=2Þ
#
� � �

#
k

j/lþki: (34)

If one wants to work with the differential form of the
Rodrigues formula, one can again convert the nested com-
mutators into multiple derivatives and employ Eq. (2) to
determine the associated Laguerre polynomials in the solu-
tion. Instead, we introduce

L
lþð1=2Þð Þ

k

Mx
�h

r̂2

� �

¼ 1

k!

Mx
�h

r̂2

� ��l�ð1=2Þ
eðMx=�hÞr̂2

� 1

r̂

ip̂r

2Mx
;…

1

r̂

ip̂r

2Mx
; e�ðMx=�hÞr̂2

��

� Mx
�h

r̂2

� �kþlþð1=2Þ
#
� � �

#
k

: (35)

We would like to show that L
ðlþ1=2Þ
k is equal to an associated

Laguerre polynomial, which we will once again do by a
recurrence relation. To do this, we need to show that
L
ðlþ1=2Þ
0 ðxÞ ¼ 1 and verify the general recurrence relation,

kL
lþð1=2Þð Þ

k ðxÞ ¼ k þ lþ 1

2

� �
L

lþð1=2Þð Þ
k�1 ðxÞ

� xL
lþð3=2Þð Þ

k�1 ðxÞ; (36)

for Laguerre polynomials. Starting with k¼ 0, we see that
there is no commutator, but the power of r̂ and the Gaussian
factor remain, so one can see all factors cancel out, and we,
indeed, find the Laguerre polynomial is 1. If we evaluate the
innermost commutator in Eq. (35) by using Leibniz’s prod-
uct rule, we find

1

r̂

ip̂r

2Mx
; e�ðMx=�hÞr̂2 Mx

�h
r̂2

� �kþlþð1=2Þ
" #

¼ ie�ðMx=�hÞr̂2

2Mxr̂

Mx
�h

� �kþlþð1=2Þ
½p̂r; r̂

2kþ2lþ1�

þ i

2Mxr̂
½p̂r; e

�ðMx=�hÞr̂ 2 � Mx
�h

r̂2

� �kþlþð1=2Þ

¼ e�ðMx=�hÞr̂2

k þ lþ 1

2

� �
Mx
�h

r̂2

� �kþl�ð1=2Þ

�e�ðMx=�hÞr̂ 2 Mx
�h

r̂2

� �kþlþð1=2Þ
: (37)

Thus, multiplying Eq. (35) by k and using it again to
define the Laguerre polynomials with different indices, we
find that

kL
lþð1=2Þð Þ

k

Mx
�h

r̂2

� �
¼ k þ lþ 1

2

� �
L

lþð1=2Þð Þ
k�1

Mx
�h

r̂2

� �

� Mx
�h

r̂2

� �
L

lþð3=2Þð Þ
k�1

Mx
�h

r̂2

� �
:

(38)

Hence, the operator definition of the Laguerre polynomials
does properly satisfy the recurrence relation of the Laguerre
polynomials. This then allows us to replace the iterated com-
mutator by the Laguerre polynomial via

jwk;li ¼ Ck;l �
2i�hffiffiffiffiffiffiffi
2M
p

� �k k!

r̂ k
L

lþð1=2Þð Þ
k

Mx
�h

r̂2

� �
j/lþki:

(39)

The normalization constant Ck;l is found from Eq. (5); one
must be careful to use the auxiliary Hamiltonians in this
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calculation and recall that they are shifted upward by con-
stants proportional to integers times �hx. We then find that

Ck;l ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�hxÞkk!

q : (40)

What remains is to determine the wavefunction for the
ground state. Following a similar strategy as before, we have
that

hrj/li ¼ rle�ðMx=2�hÞr̂2hrjr̂�leðMx=2�hÞr̂2 j/li

¼ rle�ðMx=2�hÞr2h0rjeði=�hÞrðp̂rþði�h=r̂ÞÞr̂�leðMx=2�hÞr̂2 j/li
¼ rle�ðMx=2�hÞr2h0rjr̂�lj/li: (41)

The second line replaces hrj by the r¼ 0 bra, h0rj times an
exponential of the spherical translation operator,13 and the
third line uses the fact that the state to the right is annihilated
by p̂r þ i�h=r̂ , which replaces the spherical translation opera-
tor by 1 and then operates expðMxr̂2=2�hÞ to the left onto
h0rj, where it is replaced by 1 as well. The remaining term,
h0rjr̂�lj/li, is a constant, which we can calculate by normal-
izing the wavefunction, giving

h0rjr̂�lj/li ¼
Mx
�h

� �ðl=2Þþð3=4Þ
2ðl=2Þþ1

p
1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ!!

p : (42)

One might have thought that this term diverges, but because
the wavefunction behaves as rl for r ! 0, it is the well-
defined coefficient of this term. In summary, our work gives
us the radial wave function,

wk;lðrÞ ¼
1

pð1=4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþkþ2k!

ð2ðlþ kÞ þ 1Þ!!

s
Mx
�h

� �ðl=2Þþð3=4Þ

� L
lþð1=2Þð Þ

k

Mx
�h

r2

� �
rle�ðMx=2�hÞr2

; (43)

where we have omitted the overall phase factor of ð�iÞk. The
wave function is more commonly expressed in terms of the
principle quantum number. Since the kth auxiliary
Hamiltonian for Ĥl is Ĥlþk þ k�hx, the energy of jwk;li is the
ground state energy of Ĥlþk þ k�hx, which is ðlþ 2k
þ3=2Þ�hx. Hence, we introduce the principle quantum num-
ber n ¼ lþ 2k to obtain our final result,

wn;lðrÞ ¼
1

pð1=4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþl=2Þþ2 n� l

2

� �
!

ðnþ lþ 1Þ!!

vuuut Mx
�h

� �ðl=2Þþð3=4Þ

� L
lþð1=2Þð Þ
ðn�l=2Þ

Mx
�h

r2

� �
rle�ðMx=2�hÞr2

; (44)

which is now in standard form for the radial wavefunction.
The problem can also be solved in momentum space, but

this might be too challenging for students to carry out. This
is not because it is too difficult, but rather because it might
be unfamiliar to them. This is again a case where the similar-
ity transformation can be made with respect to the r̂ function
for the ladder operators, which allows for a very similar solu-
tion procedure. However, determining the proper definition
for the Laguerre polynomials from the nested commutators

and solving the recurrence relation would be a challenge for
students unless properly scaffolded.

V. COULOMB PROBLEM FOR HYDROGEN

Like the 3D harmonic oscillator problem, it is easiest to
solve the Coulomb problem by using the rotational symme-
try and separation of variables, so that

Ĥ ¼ p̂2

2M
� e2

r̂
¼ p̂2

r

2M
þ L̂

2

2Mr̂2
� e2

r̂
: (45)

We can define the Hamiltonians with constant angular
momentum as

Ĥl ¼
p̂2

r

2M
þ �h2lðlþ 1Þ

2Mr̂2
� e2

r̂
; (46)

so that once again Ĥðjwi � jl;miÞ ¼ ðĤljwiÞ � jl;mi. We
can factor Ĥl with the lowering operator, given by

Âl ¼
1ffiffiffiffiffiffiffi
2M
p p̂r þ

i�hðlþ 1Þ
r̂

� i�h

ðlþ 1Þa0

� �
(47)

and energy El;0 ¼ �e2=½2ðlþ 1Þ2a0�. This time ÂlÂ
†

l þ El;0

¼ Ĥlþ1, so the auxiliary Hamiltonian for Ĥl is Ĥlþ1.
Therefore, the kth excited state with angular momentum l is

Cl;kÂ
†

l � � � Â
†

lþk�1j/lþki (where j/lþki is the ground state of

Ĥlþk and has energy El;k ¼ �e2=½2ðlþ k þ 1Þ2a0�).
However, we usually define these states not in terms of l and
k, but in terms of the principal quantum number n, so that

En ¼ �e2=½2n2a0�. The state jn; li corresponds to
k ¼ n� l� 1. Thus, we write

jn; li ¼ Cn;lÂ
†

l � � � Â
†

n�2jn; n� 1i: (48)

Using the Hadamard lemma, we re-express the raising opera-
tor as a similarity transformation via

Â
†

l ¼
1ffiffiffiffiffiffiffi
2M
p 1

r̂ lþ1
eðr̂=ðlþ1Þa0Þp̂re

�ðr̂=ðlþ1Þa0Þr̂ lþ1 (49)

and the subsidiary condition becomes

p̂re
r̂=na0

1

r̂ n jn; n� 1i ¼ 0: (50)

Therefore,

jn; li ¼ Cn;lffiffiffiffiffiffiffi
2M
p n�l�1

1

r̂ lþ1
eðr̂=ðlþ1Þa0Þ

�
Yn�l�1

j¼1

p̂re
�r̂=a0 1=ðlþjÞ�1=ðlþjþ1Þð Þ 1

r̂

� �

� e�ðr̂=na0Þr̂njn; n� 1i: (51)

The product contains terms when l 6¼ n� 1. We take the
rightmost factor of the product and act it on everything to the
right, giving us the commutator replacement,
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p̂re
�ðr̂=ðn�1Þa0Þr̂n�1jn; n� 1i

¼ ½p̂r; e
�ðr̂=a0Þð2n�1Þ=nðn�1Þr̂2n�1�eðr̂=na0Þ 1

r̂ n jn; n� 1i;

(52)

after recalling the state annihilated by p̂r. We continue pull-
ing out factors from the rightmost terms in the remaining
products to similarly convert to additional nested commuta-
tors. We obtain jn; li ¼ M̂n;ljn; n� 1i, with

M̂n;l ¼
Cn;lffiffiffiffiffiffiffi

2M
p n�l�1

1

r̂ lþ1
eðr̂=ðlþ1Þa0Þ

� p̂r; e
�ðr̂=a0ðlþ1Þðlþ2ÞÞ 1

r̂

�
� p̂r;…; p̂r; e

�ðr̂=a0ðn�2Þðn�1ÞÞ
		

� 1

r̂
½p̂r; e

�ðr̂=a0Þð2n�1Þ=nðn�1Þ�r̂2n�1 �


� � �




n�l�1

� eðr̂=na0Þ 1

r̂n : (53)

The normalization constant is found from Eq. (6), using the
fact that

En � Ej ¼
e2

2a0

1

j2
� 1

n2

� �
¼ e2ðnþ jÞðn� jÞ

2a0n2j2
: (54)

This results in

Cn;l ¼
n
ffiffiffiffiffiffiffi
2a0

p

e

� �n�l�1 ðn� 1Þ!
l!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ lÞ!
ð2n� 1Þ!

1

ðn� l� 1Þ!

s
:

(55)

We need to simplify the nested commutator expressions.
This can again be done with differential operators, but we
instead show how to do it with abstract operators. We follow
the same procedure as before. We define a polynomial such
that

jn; li ¼ Cn;l
ð2n� 1Þ!l!ðn� l� 1Þ!
ðnþ lÞ!ðn� 1Þ! � i�hffiffiffiffiffiffiffi

2M
p 1

2r̂

� �n�l�1

� L
ð2lþ1Þ
n�l�1

2r̂

na0

� �
jn; n� 1i (56)

and verify that it is a Laguerre polynomial using induction.
Starting with l ¼ n� 1, we find that L

ð2lþ1Þ
0 ð2r̂=na0Þ ¼ 1.

When l ¼ n� 2, Eq. (53) becomes

jn; n� 2i ¼ Cn;n�2ffiffiffiffiffiffiffi
2M
p 1

r̂n�1
eðr̂=ðn�1Þa0Þ

� ½p̂r; e
�ðr̂=a0Þð2n�1Þ=nðn�1Þr̂2n�1�

� eðr̂=na0Þ 1

r̂n jn; n� 1i

¼ � i�hCn;n�2ð2n� 1Þffiffiffiffiffiffiffi
2M
p

ðn� 1Þ2r̂

� 2n� 2� 2r̂

na0

� �
jn; n� 1i: (57)

Using Eq. (56), we find that

L
ð2n�3Þ
1

2r̂

na0

� �
¼ 2n� 2� 2r̂

na0

; (58)

which is also correct for this Laguerre polynomial. To com-
plete the proof by induction, we need to use two more recur-
rence relations for Laguerre polynomials,

mLðaÞm ðxÞ ¼ ð2mþ a� 1� xÞLðaÞm�1ðxÞ

�ðmþ a� 1ÞLðaÞm�2ðxÞ (59)

and

Lðaþ1Þ
m ðxÞ � L

ðaþ1Þ
m�1 ðxÞ ¼ LðaÞm ðxÞ; (60)

as well as the explicit formula for the Laguerre polynomials

LðaÞm ðxÞ ¼
Xm

j¼0

ð�1Þj mþ a
m� j

� �
xj

j!
: (61)

The induction step assumes that Eq. (56) holds for l and
lþ 1, and then we need to establish that it also holds for
l – 1. Using Eq. (53), we have that

jn; l� 1i ¼ M̂n;l�1jn; n� 1i

¼ Cn;l�1ffiffiffiffiffiffiffi
2M
p

Cn;l

1

r̂ l
eðr̂=la0Þ

� ½p̂r; e
�ðr̂=la0Þr̂ lM̂n;le

�ðr̂=na0Þr̂n�

� eðr̂=na0Þ 1

r̂n jn; n� 1i: (62)

After expanding the commutator using the Leibniz product
rule and simplifying, we find that this becomes

jn; l� 1i

¼ Cn;l�1ffiffiffiffiffiffiffi
2M
p

Cn;l

i�hM̂n;l
nþ l

nla0

� nþ l

r̂

� ��

þ p̂r; M̂n;l

h i�
jn; n� 1i

¼ Cn;l�1ffiffiffiffiffiffiffi
2M
p n�l

�i�h

2

� �n�l�1 ð2n� 1Þ!l!ðn� l� 1Þ!
ðnþ lÞ!ðn� 1Þ!

� i�h

r̂n�l�1
L
ð2lþ1Þ
n�l�1

2r̂

na0

� �
nþ l

nla0

� nþ l

r̂

� � 

þ p̂r;
1

r̂n�l�1
L
ð2lþ1Þ
n�l�1

2r̂

na0

� �� 
�
: (63)

The commutator can be determined using Eq. (61) and eval-
uating the commutators term-by-term. It becomes

i�h

r̂n�l

2r̂

na0

L
ð2lþ2Þ
n�l�2

2r̂

na0

� �
þ ðn� l� 1ÞLð2lþ1Þ

n�l�1

2r̂

na0

� �� �

¼ i�h

r̂n�l
ðnþ lÞLð2lþ1Þ

n�l�2

2r̂

na0

� �
; (64)

where the last equality used Eq. (36), with lþ 1=2! 2lþ 1.
Substituting this result back into Eq. (63) gives
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jn; l� 1i ¼ Cn;l�1

ð2n� 1Þ!ðl� 1Þ!ðn� l� 1Þ!
ðnþ l� 1Þ!ðn� 1Þ!

� ð�1Þn�l�1 i�hffiffiffiffiffiffiffi
2M
p

2r̂

� �n�l

� 2lL
ð2lþ1Þ
n�l�2

2r̂

na0

� �
þ 2r̂

na0

� 2l

� ��

� L
ð2lþ1Þ
n�l�1

2r̂

na0

� ��
jn; n� 1i; (65)

after bringing in a factor of 2l=ðnþ lÞ from the constants
out front into the parenthesis. Using Eq. (59) with m ¼ n� l

and a ¼ 2lþ 1 gives ðn� lÞLð2lþ1Þ
n�l ð2r̂=na0Þ ¼ ð2n� 2r̂=na0Þ

� L
ð2lþ1Þ
n�l�1ð2r̂=na0Þ � ðnþ lÞLð2lþ1Þ

n�l�2ð2r̂=na0Þ. Using this fact,
as well as Eq. (60) multiple times, we find that

2lL
ð2lþ1Þ
n�l�2

2r̂

na0

� �
þ 2r̂

na0

� 2l

� �
L
ð2lþ1Þ
n�l�1

2r̂

na0

� �� �

¼ �ðn� lÞ L
ð2lþ1Þ
n�l

2r̂

na0

� �
� 2L

ð2lþ1Þ
n�l�1

2r̂

na0

� ��

þL
ð2lþ1Þ
n�l�2

2r̂

na0

� ��

¼ �ðn� lÞ L
ð2lÞ
n�l

2r̂

na0

� �
� L

ð2lÞ
n�l�1

2r̂

na0

� �� �

¼ �ðn� lÞLð2l�1Þ
n�l

2r̂

na0

� �
: (66)

In the first step, we replaced ð2r̂=na0ÞLð2lþ1Þ
n�l�1ð2r̂=na0Þ using

Eq. (59), and then Eq. (60) was used twice to obtain the third
line and once to obtain the final result. The final result is

jn; l� 1i ¼ Cn;l�1

ð2n� 1Þ!ðl� 1Þ!ðn� lÞ!
ðnþ l� 1Þ!ðn� 1Þ!

� � i�hffiffiffiffiffiffiffi
2M
p

2r̂

� �n�l

L
ð2l�1Þ
n�l

2r̂

na0

� �
jn; n� 1i;

(67)

which establishes the proof by induction.
The wavefunction of the l ¼ n� 1 state can then be calcu-

lated from the subsidiary condition using techniques similar
to what we used before. Namely, we find that

hrjn; n� 1i ¼ rn�1e�ðr=na0Þhrjeðr̂=na0Þ 1

r̂n�1
jn; n� 1i

¼ rn�1e�ðr=na0Þh0rjeði=�hÞr p̂rþði�h=r̂Þð Þeðr̂=na0Þ

� 1

r̂n�1
jn; n� 1i

¼ rn�1e�ðr=na0Þh0rjeðr̂=na0Þ 1

r̂n�1
jn; n� 1i

¼ rn�1e�ðr=na0Þh0rj
1

r̂ n�1
jn; n� 1i: (68)

The normalization constant is then immediately found by
integration, resulting in

h0rj
1

r̂ n�1
jn; n� 1i ¼ 2

na0

� �nþð1=2Þ
1ffiffiffiffiffiffiffiffiffiffi
ð2nÞ!

p : (69)

Combining this with the result for Cn;l and Eq. (56) gives us
the final Coulomb radial wavefunction,

wn;lðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� l� 1Þ!
2nðnþ 1Þ!

s
2

na0

� �lþ3=2

L
ð2lþ1Þ
n�l�1

2r

na0

� �
rle� r=na0ð Þ;

(70)

which is the standard result.

VI. APPROACHES TO INCLUDE THIS TECHNIQUE

IN QUANTUM INSTRUCTION

The operator Rodrigues formula approach to calculating
wavefunctions has some aspects to it that are tedious, technical,
and abstract. The steps leading up to the nested commutators
are quite straightforward and certainly can be shown to under-
graduates and graduate students alike. The determination of the
special polynomial for each solution is a more complex task.
Similar to how the Rodrigues polynomials are defined in terms
of n-fold derivatives acting on the generating functions, one
could just define the Rodrigues polynomials here via nested
commutators and simply tell the students what the general form
is without requiring them to determine the recurrence relations.
This can make the approach easier to digest by students, and
then it has a similar level of complexity as the differential
Rodrigues formula approaches where students are told the spe-
cial polynomial. Graduate students, however, should be able to
work with the recurrence relations, especially because the iden-
tities needed to solve all of the recurrence relations can be eas-
ily derived from the defining power series expansion for the
Laguerre polynomials.

In instruction, it is probably better to spread out the content
in different units, so that the material can be revisited multiple
times and be absorbed more easily by the students. We would
recommend covering the material for the simple harmonic
oscillator in one dimension and three dimensions and for the
Coulomb problem in three dimensions. The two-d examples or
the Morse potential could then be assigned as exercises for the
students, as could the harmonic oscillator problems in momen-
tum space, which we did not cover in this work. They would
likely need scaffolding to help students derive the recurrences
if this is a goal of the homework problems.

We believe there is an elegance to these approaches, espe-
cially to how the ground-state wavefunctions are found, that
students are likely to enjoy working with. We anticipate this
is similar to how students prefer working with ladder opera-
tors in many different calculations for the simple harmonic
oscillator instead of working with differential equations or
integration. It is for this reason that these materials are likely
to be well-received by students and are worth the effort
needed to work more abstractly.

VII. SUMMARY AND CONCLUSIONS

Quantum mechanics suffers from being taught primarily
in the position-space representation. This is often argued to
be necessary because this is the only representation where
the Schr€odinger equation is always expressed as a second-
order linear differential equation. Hence, all energy eigen-
value problems are treated on the same footing.

However, not everybody teaches quantum mechanics solely
in this fashion. Most instructors will teach both the simple har-
monic oscillator and the angular momentum eigenstates using an
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abstract, representation-independent approach. Ever since 1940,
we have known how to do this for all solvable problems in quan-
tum mechanics, but the approach has not been widely adopted.
We suspect this is true primarily because using these approaches
does not allow for a direct calculation of the wavefunctions in
position or momentum space. This work shows how one can
ameliorate such a concern and actually calculate wavefunctions
without resorting to working in the position representation.
Because of the importance of working with representation-
independent formulations, we feel this is an important new tool
that is available for instructors to use who wish to teach quantum
mechanics without relying solely on the position representation.
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