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The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate

quantum classes by directly solving the time-dependent Schr€odinger equation as a differential

equation. In this work, we provide an alternative way to calculate the free expansion by

recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic

oscillator with its frequency adjusted to give the initial width of the Gaussian, and the time

evolution, given by the free-particle Hamiltonian, being the same as the application of a time-

dependent squeezing operator to the harmonic oscillator ground state. Operator manipulations

alone (including the Hadamard lemma and the exponential disentangling identity) then allow us to

directly solve the problem. As quantum instruction evolves to include more quantum information

science applications, reworking this well-known problem using a squeezing formalism will help

students develop intuition for how squeezed states are used in quantum sensing. # 2023 Published

under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/5.0083964

I. INTRODUCTION

A common example of time evolution taught in quantum
mechanics classes—in fact, in many cases, the first example
that is considered—is the free expansion of a Gaussian
wavepacket starting from a state with variance r and zero
average momentum, which is in the following wavepacket at
t¼ 0

wðx; t ¼ 0Þ ¼ 1

ð2pr2Þ
1
4

e�x2=4r2

: (1)

It is then solved by transforming from position to momentum
space, time evolving in momentum space, and then trans-
forming back to position space. These Fourier transformation
integrals are elementary to do, because they are in a
Gaussian form and Gaussians integrate to Gaussians.
However, the analysis is fairly technical and does not pro-
vide great physical intuition as to what is happening (aside
from the notion that because we have a spread in momentum,
this means that components of the wavepacket move in posi-
tion space at different rates and hence the position-space
wavepacket spreads in time).

In this work, we present a different methodology to solve
this problem based on the modern concept of squeezing.
Squeezing is a phenomenon whereby a quantum state main-
tains a minimum uncertainty product, but the uncertainties in
position and momentum oscillate in time, with each individ-
ual uncertainty becoming very small at some moment of
time and the other uncertainty becoming very small at a later
time. Squeezing is often discussed within the context of a
simple harmonic oscillator. Here, the squeezing operator
looks similar to the exponentiation of the Hamiltonian itself,
but with different coefficients in front of the individual
terms. The application to the free-expansion of a Gaussian
comes from the facts that the ground state of a harmonic
oscillator is also a Gaussian, and the free time-evolution
operator is a squeezing operator (for the harmonic oscillator

system). Hence, the time evolution of a Gaussian can be
solved by simply applying a squeezing operator to the har-
monic oscillator ground state!

Squeezed states can be difficult to understand. One way to
physically picture them is via a quantum quench. If a system
is in a harmonic oscillator energy eigenstate with an initial
frequency xi, and then suddenly the frequency changes to
xf, then we would expect the initially steady state to evolve
over time. This subsequent time evolution is one way to
think of the behavior of a squeezed state. Unlike a coherent
state, which preserves its shape as it evolves in time, the
squeezed state changes its shape as it evolves, periodically
changing from a squeezed state, with smaller variance in
position space, to an expanded state, with a larger variance
in position space. The period of the shape oscillations is one
half the period of the new oscillator. If, the quench goes all
the way to xf ¼ 0, then we will no longer have periodic
motion. Instead, the Gaussian will simply expand forever as
a function of time. This is precisely the scenario for the free
expansion of a Gaussian that we consider here.

We have surveyed 25 different undergraduate textbooks to
see whether they cover the free-expansion of a Gaussian
wavepacket and where this material appears relative to dis-
cussions of the operator-based solution of the simple har-
monic oscillator. We also looked at whether these textbooks
discuss coherent states and squeezed states. The results are
summarized in Table I. Clearly, none of these texts are ideal
for using the material presented here—supplemental material
will be required for all of them.

For undergraduate classes that employ these textbooks,
the methodology we discuss fits in best with a course orga-
nized so that the abstract operator method is used to solve
the harmonic oscillator problem before a discussion of the
spreading Gaussian wavepacket. However, because all of
these textbooks have inadequate resources for these topics,
extra instruction on squeezed states of the harmonic oscilla-
tor is required. Since quantum mechanics classes are likely
to change the material they cover to be more aligned with
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quantum information science, we anticipate many more clas-
ses will provide coverage of coherent and squeezed states
and be well positioned to discuss the material we develop
here in the near future. Indeed, we find from our textbook
survey that more recent books are more likely to cover
coherent and squeezed states, supporting this trend.

The pedagogical literature has also discussed the free
expansion of a Gaussian wavepacket extensively, but we are
not aware of any physics education research work on this
squeezed states approach. Our discussion of previous peda-
gogical work will not be exhaustive here. Much of the previ-
ous work is interested in the question of whether and how
the wavepacket expands,1,2 how its shape evolves over
time,3–5 and whether a power-series expansion to the time-
evolution operator converges.2 Some papers discuss alterna-
tive methodologies to compute the evolving wavepacket.6,7

We are aware of three works that discuss this problem in
relationship to squeezed states of the simple harmonic oscil-
lator.8–10 Unlike this previous work, our work emphasizes
the operator approach to squeezed states.

The ground-state wavefunction of a simple harmonic
oscillator, with mass m and frequency x is given by

wgsðxÞ ¼ hxj0i ¼
mx
p�h

� �1
4

e�mxx2=2�h: (2)

Here, j0i is the ground state of the simple harmonic oscilla-
tor, and jxi is the position eigenstate at the location x. The
variance r2 of the initial Gaussian is set by choosing
x ¼ �h=2mr2. Next, we can use a displacement operator to
displace the Gaussian in both position space and momentum

space. The displacement by x0 and p0, respectively, is
given by

D̂ðx0; y0Þ ¼ e�
i
�hðx0p̂�p0 x̂Þ; (3)

where x̂ and p̂ are the operators of position and momentum,
which satisfy the canonical commutation relation ½x̂; p̂� ¼ i�h.
The displaced Gaussian state can then be represented by

jwgs; x0; p0i ¼ D̂ðx0; p0Þj0i; (4)

our choice for writing the wavepacket in this fashion fixes its
initial global phase.

The free-particle evolves according to the free
Hamiltonian, given by Ĥ free ¼ p̂2=2m, so the time evolution
of the initial Gaussian state becomes

jwgsðtÞ; x0; p0i ¼ e�
i
�hĤ freetD̂ðx0; p0Þj0i; (5)

and the spreading Gaussian wavefunction evolves according
to time via

wgsðx; t; x0; p0Þ ¼ hxje�
i
�hĤ freetD̂ðx0; p0Þj0i: (6)

It turns out that this is in the form of a squeezed and dis-
placed simple harmonic oscillator state, which can be seen
most easily when we express the position and momentum
operators in terms of the ladder operators of the simple har-
monic oscillator.

The raising and lowering operators for a simple harmonic
oscillator are given by

Table I. Summary of different topics, as presented in 25 undergraduate quantum mechanics textbooks. The X indicates that the topic is covered in the corre-

sponding textbook.

Author Title

Spreading

Gaussian

SHO in

operator form

SHO before

Gaussian

Coherent

states

Squeezed

states

Banks Quantum Mechanics X X � � � X � � �
Beck Quantum Mechanics X X � � � X X

Binney and Skinner The Physics of Quantum Mechanics X X � � � � � � � � �
Brandsden and Joachain Quantum Mechanics X � � � � � � � � � � � �
Burkhardt and Leventhal Foundations of Quantum Physics X X � � � X � � �
Cohen-Tannoudji, Diu, and Lalo€e Quantum Mechanics X X � � � X � � �
Dicke and Wittke Introduction to Quantum Mechanics � � � X � � � � � � � � �
French and Taylor Introduction to Quantum Physics X � � � � � � � � � � � �
Griffiths Introduction to Quantum Mechanics X X X X � � �
Hannabuss An Introduction to Quantum Theory � � � X � � � X X

Kroemer Quantum Mechanics for Engineering X � � � � � � � � � � � �
Liboff Introductory Quantum Mechanics X X � � � � � � � � �
Mahan Quantum Mechanics in a Nutshell � � � x � � � X � � �
McIntyre, Manogue, and Tate Quantum Mechanics � � � X � � � � � � � � �
Miller Quantum Mechanics for Scientists � � � X X � � � X � � �
Ohanian Principles of Quantum Mechanics X X � � � � � � � � �
Puri Nonrelativistic Quantum Mechanics X X � � � X X

Rae and Napolitano Quantum Mechanics � � � X � � � � � � � � �
Robinett Quantum Mechanics: Classical Results, � � � X X � � � X � � �
Saxon Elementary Quantum Mechanics X X � � � � � � � � �
Shankar Principles of Quantum mechanics X X � � � X � � �
Townshend A Modern Approach to Quantum Mechanics X X � � � X � � �
Winter Quantum Physics � � � X � � � � � � � � �
Zettili Quantum Mechanics: Concepts and � � � X X � � � � � � � � �
Zweibach Mastering Quantum Mechanics: � � � X X � � � X X
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â ¼
ffiffiffiffiffiffiffi
mx
2�h

r
x̂ þ i

p̂

mx

� �
and â† ¼

ffiffiffiffiffiffiffi
mx
2�h

r
x̂ � i

p̂

mx

� �
:

(7)

The inverse relations are

x̂ ¼
ffiffiffiffiffiffiffiffiffiffi

�h

2mx

r
â þ â†ð Þ and p̂ ¼

ffiffiffiffiffiffiffiffiffiffi
�hmx

2

r
1

i
â � â†ð Þ:

(8)

We can re-express the free-particle Hamiltonian in terms of
the ladder operators as

p̂2

2m
¼ � �hx

4
ðâ†Þ2 � â†â � ââ† þ â2
� �

: (9)

The most general squeezing operator is written as

Ŝðn; gÞ ¼ e�
n
2

â†ð Þ2þig
2

â†âþââ†ð Þþn�
2

â2

; (10)

with n being a complex number and g being a real number.
When converted to position and momentum operators, this is
the most general unitary operator that can be constructed from
quadratics in position and momentum; namely, it is of the
form exp ðiax̂2 þ ibðx̂p̂ þ p̂x̂Þ þ icp̂2Þ, with the real numbers
a, b, and c independent of each other and expressible in terms
of n and g. Using Eq. (9), we find that the time-evolution oper-
ator e�ip̂2t=2m�h is simply the squeezing operator with

n ¼ � ixt

2
and g ¼ �xt

2
: (11)

Hence, the most general spreading Gaussian is a displaced-
squeezed state with the magnitudes of both n and g increasing
linearly in time. Note that this squeezing operator is a special
case, in which n ¼ ig. We find we need to work with a simpli-
fied form of the squeezing operator, given in general by

Ŝ6ðkÞ ¼ eik â†6âð Þ2
: (12)

Here, the operator for time evolution is Ŝ�
xt
4

� �
, with

k ¼ xt=4, because it involves the exponential of the square
of the momentum operator; we will find we also need to
work with the exponential of a constant times the square of
the position operator, which corresponds to Ŝþðk0Þ for a suit-
ably chosen k0 given below.

II. FORMALISM AND DETAILS OF THE

DERIVATION

If students know about the operator-based solution of the
simple harmonic oscillator, coherent states and squeezed
states, then it is natural to also discuss the spreading of a
Gaussian wavepacket in the context of this simplified
squeezing operator and the displacement operator. We
describe the details for how this works next. What we find to
be particularly interesting about this approach is that we use
ladder operators from the simple harmonic oscillator in the
analysis, even though the quantum state evolves with respect
to a free-particle Hamiltonian, and there is no frequency
scale in the free-particle Hamiltonian. The simple harmonic
oscillator (and thereby the frequency we will use) enters
only because the initial wavepacket is a Gaussian

wavepacket with an initial variance r2. This tells us the fre-
quency of the simple harmonic oscillator for which this
Gaussian is the ground-state wavefunction and allows us to
examine the spreading of the wavepacket in this fashion. The
formal developments in this work are similar to, but different
from, earlier work on how to determine the displaced-
squeezed state wavefunction using operator methods11 in
that here we must work with g 6¼ 0, whereas there, g¼ 0.

We start with a coherent state jai with initial position
x0 ¼ 0 and some arbitrary initial momentum p0. Then, using
the standard notation for coherent states, we have that

a ¼ ip0
1ffiffiffiffiffiffiffiffiffi

2�hmx
p for this special case. We use the free-particle

Hamiltonian, with m and x fixed in our calculations, and we
have that the initial variance of the probability distribution is

given by r2
0 ¼ D2

x ¼ �h=2mx, since it is a coherent state.
To obtain the time-dependent wavefunction, we take the

overlap of a position bra with the time-evolved initial coher-
ent state

wðx; tÞ ¼
D

x
			e� i

�hĤ freet
			aE ¼ Dx

			e� it
2�hmp̂2

e
ip0
�h x̂
			0E: (13)

The coherent state is simply a momentum translation opera-
tor applied to the harmonic oscillator ground state. We will
also find it convenient to later introduce the position state at
the origin j0xi, which satisfies x̂j0xi ¼ 0. Then, using the
translation operator for position yields the position eigenstate

at x via jxi ¼ e�
i
�hxp̂ j0xi, so that x̂jxi ¼ xjxi. In addition,

because the position translation operator has the semigroup

property, given by e�
i
�hxp̂ e�

i
�hx
0p̂ ¼ e�

i
�hðxþx0Þp̂ , we find that

jxþ x0i ¼ e�
i
�hx
0p̂ jxi ¼ e�

i
�hxp̂ jx0i both hold. We will also use

this identity below.
Our manipulations will employ two other operator identi-

ties: (i) the Hadamard lemma,

eÂ B̂e�Â ¼ B̂ þ Â; B̂

 �

þ 1

2!
Â; Â; B̂

 �
 �

þ � � � ; (14)

with the nth term in the summation equal to

1

n!
Â; Â;…B̂

 �

� � �

 �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

n nested commutators

of Â with B̂

(15)

and (ii) the exponential disentangling identity, which is dis-
cussed in the Appendix.

Now, we begin our work to simplify Eq. (13). We use a
multiply by 1 to create a Hadamard lemma expression,
which, after evaluating the Hadamard lemma, effectively

moves the exp ip0

�h x̂
� �

term from the right of the time evolu-

tion operator to its left

wðx; tÞ ¼ x

					 eip0
�h x̂ e�

ip0
�h x̂|fflfflfflfflffl{zfflfflfflfflffl}

¼1

e�
it

2�hmp̂2

e
ip0
�h x̂

					0
* +

¼ x

					eip0
�h x̂ e�

ip0
�h x̂ e�

it
2�hmp̂2

e
ip0
�h x̂|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Hadamard

					0
* +

¼ e
ixp0

�h

D
x
			e� it

2�hmðp̂þp0Þ2
			0E: (16)

Here, we used the fact that hxjx̂ ¼ hxjx to replace

hxj exp ip0

�h x̂
� �

by hxj exp ip0

�h x
� �

and then moved the number
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out of the matrix element. Evaluating the Hadamard lemma
requires some standard operator manipulations. First, we expand
the central exponential in a power series, and note that the expo-
nential factors can be moved into the exponent (this operation is
called the braiding relation), because the “internal” exponential
factors appear in pairs and multiply to 1

e�
ip0
�h x̂ e�

it
2�hmp̂2

e
ip0
�h x̂ ¼

X1
n¼0

1

m!
� it

2�hm

� �m

e�
ip0
�h x̂ p̂2me

ip0
�h x̂

¼
X1
n¼0

1

m!
� it

2�hm

� �m

e�
ip0
�h x̂ p̂e

ip0
�h x̂|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Hadamard

 !2m

¼
X1
n¼0

1

m!
� it

2�hm

� �m

p̂ � ip0

�h
x̂; p̂½ �

� �2m

¼
X1
n¼0

1

m!
� it

2�hm

� �m

p̂ þ p0ð Þ2m

¼ e�
it

2�hmðp̂þp0Þ2 : (17)

Note that the Hadamard for the exponent truncates after just
the first commutator, because it is a number, which subse-
quently commutes with all operators.

Next, we expand the squared exponent in Eq. (16), pull
out the constant terms, let the terms with a linear exponent in
p̂ act on the bra to translate the position state, and then
replace the momentum operator with its expression in terms
of ladder operators (of the simple harmonic oscillator) in the
quadratic exponent to give us

wðx; tÞ ¼ e
ip0x

�h �
itp2

0
2�hm

D
x� tp0

m

			eixt
4

â†�âð Þ2
			0E: (18)

We need to motivate our next step. The exponent of the oper-
ator is proportional to the difference of the ladder operators,
and we do not know how such an operator acts on the posi-
tion bra to the left. However, if we could find a way to
change the difference of ladder operators into a sum in the
exponent, then the operator in the exponent would be propor-
tional to x̂2, which can be readily applied onto the position
eigenbra to its left. This would then leave us with the
ground-state wavefunction evaluated at x� tp0

m . In order to
accomplish the sign change, we first use the exponential dis-
entangling identity acting on the simple harmonic oscillator
ground state and apply it to the operator with a quadratic
exponent as given in Eq. (A12). We use the case with a dif-
ference of the ladder operators and k ¼ xt=4. We find Eq.
(18) becomes

wðx; tÞ ¼ e
ip0x

�h �
itp2

0
2�hmffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ixt
2

q D
x� tp0

m

			e ixt
4þ2ixtðâ

†Þ2
			0E; (19)

where two of the exponential factors in the exponential
disentangling identity have been replaced by 1 because

âj0i ¼ 0. This means that both exp ðbâ†âÞj0i ¼ j0i and

exp ðcâ2Þj0i ¼ j0i, with b and c numbers, as can be verified
by expanding the exponentials into power series and acting
them on the harmonic oscillator ground-state ket. Next, we
use Eq. (A12) again, but now for the sum of ladder operators
and with k0 ¼ xt

4ð1þixtÞ. In addition, we start from the expres-

sion on the right and replace it by the equivalent expression
on the left. A direct calculation gives

ik0

1� 2ik0
¼ ixt

4ð1þ ixtÞ 1� 2ixt

4ð1þ ixtÞ

� � ¼ ixt

4þ 2ixt
:

(20)

So, we find

wðx; tÞ ¼ e
ip0x

�h �
itp2

0
2�hmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ixt

2

r x� tp0

m

					
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ixt

2
1þ ixt

vuut
e

ixt
4ð1þixtÞ â†þâð Þ2

					0
* +

¼ e
ip0x

�h �
itp2

0
2�hmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ixt
p

D
x� tp0

m

			e imx2 t
2�hð1þixtÞx̂

2
			0E

¼ e
ip0x

�h �
itp2

0
2�hmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ixt
p e

imx2 t
2�hð1þixtÞ x� tp0

mð Þ2Dx� tp0

m

			0E

¼ e
ip0x

�h �
itp2

0
2�hmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ixt
p e

imx2 t
2�hð1þixtÞ x� tp0

mð Þ2wgs x� tp0

m

� �
: (21)

Substituting in the ground-state wavefunction from Eq. (2)
yields our final result

wðx; tÞ ¼ mx
p�h

� �1
4 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ixt
p e�

mx
2�hð1þixtÞ x�tp0

mð Þ2þip0x

�h �
itp2

0
2�hm:

(22)

The probability density becomes

jwðx; tÞj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mx
p�hð1þ x2t2Þ

r
e
� mx

�hð1þx2 t2Þ
x�tp0

mð Þ2
: (23)

Now we see the variance is increasing approximately qua-
dratically in time as

r2ðtÞ ¼ D2
xðtÞ ¼

�h

2mx
ð1þ x2t2Þ ¼ r2ð0Þð1þ x2t2Þ: (24)

This is, of course, the standard result for the spreading
Gaussian wavefunction in position space. Using operator
methods to determine it is a straightforward exercise that
helps build facility in working with operators. It is also inter-
esting to think of this in terms of squeezing and a “hidden”
simple harmonic oscillator.

The momentum-space derivation is even simpler. We start
with

/ðp; tÞ ¼ hpje� i
�hĤ freetjai ¼ hpje� it

2�hmp̂2

e
ip0
�h x̂ j0i: (25)

We can immediately apply the momentum operator onto the
momentum eigenstate and replace p̂ ! p. This gives

/ðp; tÞ ¼ e�
it

2�hmp2hpje
ip0
�h x̂ j0i: (26)

The evaluation of the remaining expectation value is easy
once we realize that the exponential operator translates the

momentum via jpi ¼ e
ip
�h x̂ j0pi, with p̂j0pi ¼ 0 defining the

momentum state at the origin j0pi. So, we find the exponen-
tial operator translates the momentum bra to give us
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/ðp; tÞ ¼ e�
ip2 t
2m�hhp� p0j0i: (27)

The term hp� p0j0i is just the ground state of the simple har-
monic oscillator in momentum space. It can easily be found
by Fourier transformation or by operator methods.12

Substituting in this result gives us

/ðp; tÞ ¼ 1

ðp�hmxÞ
1
4

e�
ðp�p0Þ2

2�hmx �
ip2 t
2m�h; (28)

which is our final result for the wavefunction. The probabil-
ity distribution becomes

j/ðp; tÞj2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
p�hmx
p e�

ðp�p0Þ2
�hmx : (29)

The variance of the momentum-space wavefunction does not
change with time

r2
pðtÞ ¼ D2

p ¼
�hmx

2
: (30)

III. APPLICATIONS OF THESE IDENTITIES

AND NEW EXERCISES FOR STUDENT LEARNING

One of the goals in modernizing physics instruction is to
bring modern experimental results into the classroom. Recent
work on atoms trapped in harmonic potentials has been able
to (i) create the ground state, the first excited state, and the
second excited state and (ii) has used time-of-flight spectros-
copy to measure the momentum distribution of the atom
when it is in these different Fock states.13 The formalism we
used to describe the free-expansion of the simple harmonic
oscillator can be immediately adapted to analysing this exper-
iment, which makes for a context-rich problem for students
studying the expansion of wavepackets. We describe how this
can be used in instruction next.

These experiments employ time-of-flight spectroscopy, which
is an important experimental technique that does not often get
discussed in quantum instruction. The only quantum textbook
we are aware of that discusses this technique in any detail is
Ballentine’s book.14 In fact, even though many textbooks say
that one can measure the momentum of a quantum particle, vir-
tually none explain just how one does this. It is subtle, because
we usually measure position to infer momentum; hence, intro-
ducing a discussion of time-of-flight provides a great opportu-
nity to properly explain how Heisenberg’s uncertainty principle
applies to a real experiment on measuring momentum.

In fact, while many textbooks do describe how one can
measure position, they are often silent about how to measure
momentum. For example, Griffiths states “You might won-
der how it is enforced in the laboratory—why can’t you
determine (say) both the position and the momentum of a
particle? You can certainly measure the position of the parti-
cle, but the act of measurement collapses the wave function
to a narrow spike, which necessarily carries a broad range of
wavelengths (hence momenta) in its Fourier decomposition.”
In this discussion, Griffiths is intimating that a simultaneous
measurement of position and momentum is impossible. It is
certainly true that subsequent measurements of position can-
not be used to determine the original momentum, but that
does not forbid position and momentum to be measured at

the same time, as we see below. Zweibach explicitly states
“given a particle, you cannot simultaneously know both its
position and its momentum.” However, a time-of-flight
measurement is one way to determine momentum and it
does so by measuring position. Is this in conflict with the
Copenhagen interpretation? Of course not, because the
momentum is inferred from the position measurement and
the assumption that the wavepacket is traveling as a free par-
ticle. One simply needs to perform the analysis properly. Let
us explain carefully how time-of-flight works.

In a time-of-flight experiment, one prepares a reasonably
localized state. (In Ref. 13, the state is localized on the order
of 0:3–0:5 lm.) Then at a specific time, the harmonic oscilla-
tor trapping potential is shut off (a quench to xf ¼ 0, just
like we analyzed above). We start a clock at this time and let
the atom expand in its wavepacket for some time before
measuring its position. (In Ref. 13, the time of flight is about
10 ls.) At the moment of the measurement, we know the
position to the accuracy of the position detector—but, we
also know its momentum, which is inferred from the fact
that it traveled as a free particle from its localized origin to
where it was detected in the time of flight. So, at the moment
of the measurement, we know the position and momentum
of the quantum particle for this one experimental shot!

Does this violate uncertainty? Of course not. The uncer-
tainty principle applies to the spread in the results if we repeat
the measurement many times (which will actually determine
the momentum distribution). The momentum distribution is
that of the original trapped atom, plus any spread in the distri-
bution that occurred due to the time of flight. However,
because the momentum distribution does not spread in time,
we do really measure the momentum distribution of the atom
in its trap. What about the original position uncertainty?
Unfortunately, we cannot determine that, because this mea-
surement is not sensitive to the initial position. However, the
uncertainty in knowing just what the initial position is (due to
the initial wavepacket spread) does lead to an intrinsic uncer-
tainty in the momentum measurement in a time-of-flight exper-
iment, but one can make that uncertainty as small as desired
by simply increasing the time for the time of flight (which
reduces the relative error for the momentum measurement).

Hence, the time-of-flight measurement does not fall into
the standard measurement paradigm taught in most quantum
textbooks, and it avoids the uncertainty principle restrictions
on individual experimental shots due to the way it is set-up.
The time of flight is employed to magnify the position values
so that we can distinguish these different positions (due to
the magnification effect) and then infer the different
momenta in the initial momentum distribution.

What gets confused about quantum mechanics postulates
is that every quantum state has complementary uncertainties
that must obey the uncertainty principle. In other words, no
quantum state can be created that has definite position and
momentum. Similarly, no von Neumann style projective
measurement can measure both position and momentum
without obeying uncertainty as well. However, the von
Neumann paradigm is not sufficient to be used to describe all
of the parts of the time-of-flight measurement—it only
describes the position measurement part. This is a subtle
point, but an important one to convey to students.

So, while one can certainly say one cannot create a quan-
tum state with definite position and momentum, one should
never say that one cannot measure position and momentum at
the same time. One can. Discussing how this works provides
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a great opportunity to carefully explain the subtleties of the
Heisenberg uncertainty principle and the strategies used to
measure momentum. These are two topics often given “short
shrift” in the traditional quantum mechanics courses.

Back to the experiment in Ref. 13. In those measurements,
they examine not just the momentum distribution of the
ground state, but of the two lowest excited states as well. We
can easily generalize the techniques we developed above to
determine the momentum distributions for these different
Fock states too, and this is an excellent exercise for students
post instruction. Since the momentum distribution of a har-
monic oscillator is identical in shape to the position distribu-
tion, this also can be thought of as a magnified visualization
of the original position distribution as well. The calculation
is quite simple to do, and this is because all harmonic oscilla-
tor Fock states maintain their shape (in momentum space)
during time of flight.5 So, if I start in the nth Fock state,

given by
ðâ†Þnffiffiffi

n!
p j0i, then the momentum distribution after a

time of flight of duration t is simply given by

/nðp; tÞ ¼



p

				e� i
�hĤ freet â†ð Þnffiffiffiffi

n!
p

				0
�
; (31)

which can be immediately solved to be

/nðp; tÞ ¼
1

ðp�hmxÞ
1
4

1ffiffiffiffiffiffiffiffiffi
n!2n
p Hn

pffiffiffiffiffiffiffiffiffiffi
�hmx
p
� �

e�
p2

2�hmx�
ip2 t
2�hm: (32)

Here, we have introduced the physicist’s form of the
Hermite polynomial. Details for how to do this using opera-
tors have been discussed by Rushka and Freericks.12

One might say that because we directly measure the posi-
tion in the time-of-flight, we should really calculate the posi-
tion distribution at time t. One can do this as well for the
Fock states, but it takes a few more steps. Again, we assume
the initial momentum is zero because we are in an energy
eigenstate. Then, the only difference in the derivation is that
at the point when we use the exponential disentangling iden-
tity, the exponentials of â2 and of â†â cannot immediately
act on the ground state because the ðâ†Þn term is in the way.
However, this causes no problem, as one can move the expo-
nentials past that operator by using a “multiply-by-one”
followed by the Hadamard lemma. We have to do this
twice—once when we use the disentangling identity on the
square of the momentum operator and once when we bring
the required factors needed to convert the exponential to the
square of the position operator. This requires a fair amount
of algebra, which then yields

wnðx; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ixt
p e

imx2 t
2�hð1þixtÞx

2 1ffiffiffiffi
n!
p
ð1þ ixtÞn

�



x

				 â† þ ðixtÞ2â
� �n

				0
�
: (33)

If n¼ 0, this is the same answer as we had before. When
n¼ 1, we obtain

w1ðx; tÞ ¼
mx
p�h

� �1
4 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ixt
p

ffiffiffiffiffiffiffiffiffiffi
2mx

�h

r
x

ð1þ ixtÞ
� e�

mx
2�hð1þixtÞx

2

: (34)

The first excited state probability distribution then becomes

jw1ðx; tÞj
2 ¼

ffiffiffiffiffiffiffi
mx
p�h

r
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2t2
p 2mxx2

�hð1þ x2t2Þ e
� mx

�hð1þx2 t2Þ
x2

:

(35)

This has the same shape as the first excited state, but with
x2 ! x2=ð1þ x2t2Þ (and the required change in the normali-
zation factor), as we expect it to.5 The calculation of higher-
order excited states follows in a similar fashion but is tedious
to work out the details, because the Hermite polynomial must
have each power of x scaled with a different factor, leading to
cumbersome equations to work out. So we stop here.

IV. CONCLUSION

In this work, we showed an alternative way to determine
the expansion of a Gaussian wavepacket in free space as a
function of time by mapping the problem onto the applica-
tion of a squeezing operator on a simple-harmonic-oscillator
ground state with the same variance as the initial wavepacket
at t¼ 0. The squeezing operator used here is particularly
simple, which allows us to use an exponential disentangling
identity in the derivation that is easy to derive. Given the
increasing interest in quantum information science, espe-
cially in quantum sensing, we feel this approach will provide
an interesting new perspective on an old problem.

We worked with operators throughout, because we believe
working with operators makes the material accessible to
more students since it does not require calculus. (Calculus is
only needed to determine normalization constants, and those
can be told to the student if needed.)

All of the pedagogy used with the free-expansion of a
Gaussian wavepacket can also be used if it is taught this
way. This pedagogy is well-known and appears in many text-
books, so we do not rehash it here. Instead, we described
how this approach can be employed to introduce a modern
time-of-flight experiment that measures the momentum dis-
tribution of a quantum particle in a harmonic trap and in the
ground state or a low-lying excited state. This provides an
interesting new application of the freely expanding
Gaussian, which should become a standard in quantum
mechanics courses of the future.
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APPENDIX: SIMPLIFIED EXPONENTIAL

DISENTANGLING IDENTITY FOR THE

SYMPLECTIC GROUP

We want to find a disentangled expression for

eik â† 6 âð Þ2 ¼ eikððâ†Þ2 6 ðâ†â þ ââ†Þþ â2Þ; (A1)
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with k being a complex number. Disentangling identities are
proven by mapping the operators in the exponent onto Lie
algebra generators.15 Here, the Lie algebra is that of the sym-
plectic group. We employ a faithful matrix representation of
that Lie algebra to derive an identity of the exponential oper-
ator in terms of the product of three different exponential
operators—each involving one of the Lie algebra generators.
Then, because the representation is faithful, the identity
holds when expressed in terms of the Lie generators as well.

We start by working with the following operators, which
serve as generators of the symplectic Lie algebra

K̂0¼
1

4
ðâ†âþ ââ†Þ; K̂þ ¼

1

2
ðâ†Þ2; and K̂� ¼

1

2
â2: (A2)

They satisfy the commutation relations

K̂0; K̂6


 �
¼ 6K̂6 and K̂þ; K̂�


 �
¼ �2K̂0; (A3)

as can be directly worked out from the fact that ½â; â†� ¼ 1.
This algebra looks quite similar to the more familiar SU(2)
algebra, except for the change in sign on the last commuta-
tor. Then, we have

eik â† 6 âð Þ2 ¼ e2ik K̂þ6 2K̂ 0 þ K̂�ð Þ; (A4)

and our goal is to find a, b, and c such that

e2ikðK̂þ6 2K̂ 0 þ K̂�Þ ¼ eaK̂þebK̂ 0 ecK̂� : (A5)

We create a faithful representation of the Lie algebra via the
following 2� 2 matrix representation of the Lie algebra

K̂0 $
1

2

�1 0

0 1

� �
; K̂þ $

0 0

�1 0

� �
;

and

K̂� $
0 1

0 0

� �
: (A6)

It is a worthwhile exercise to show that these matrices satisfy
the symplectic Lie group commutator algebra in Eq. (A3).
Using this representation, we find that

K̂þ62K̂0 þ K̂� $
71 1

�1 61

� �
¼ M6: (A7)

The matrices M6 are nilpotent with index two—in other
words, M2

6 ¼ 0. Then the power-series expansion of the
exponential truncates after the first term, so we have

e2ikM6 ¼ I2 þ 2ikM6 ¼
172ik 2ik

�2ik 162ik

 !
: (A8)

Each term in the right-hand side of Eq. (A5) can also be eas-
ily calculated, and we find

eaK̂þebK̂ 0 ecK̂� $
1 0

�a 1

 !
e�

b
2 0

0 e
b
2

 !
1 c

0 1

 !

¼ e�
b
2 ce�

b
2

�ae�
b
2 �ace�

b
2 þ e

b
2

 !
: (A9)

We equate these two matrices to find that

a6 ¼ c6 ¼
2ik

172ik
and b6 ¼ �2 ln ð1 7 2ikÞ: (A10)

Hence, the exponential disentangling identity becomes

eik â† 6 âð Þ2 ¼ e
ik

1 7 2ik â†ð Þ2
e�

1
2
ln ð1 7 2ikÞ â†âþ ââ†ð Þ

e
ik

1 7 2ikâ
2

: (A11)

Acting this on the simple-harmonic-oscillator ground state
then gives us

eik â†6âð Þ2 j0i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 7 2ik
p e

ik
1 7 2ik â†ð Þ2 j0i; (A12)

because âj0i ¼ 0. This last identity is used in our derivation
with two different k values, k ¼ xt

4
and k0 ¼ xt

4ð1þixtÞ.
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