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We describe coupled nonequilibrium electron-phonon systems semiclassically—Ehrenfest dynamics
for the phonons and quantum mechanics for the electrons—using a classical Monte Carlo approach that
determines the nonequilibrium response to a large pump field. The semiclassical approach is expected to
be accurate, because the phonons are excited to average energies much higher than the phonon frequency,
eliminating the need for a quantum description. The numerical efficiency of this method allows us to
perform a self-consistent time evolution out to very long times (tens of picoseconds), enabling us to
model pump-probe experiments of a charge-density-wave (CDW) material. Our system is a half-filled,
one-dimensional (1D) Holstein chain that exhibits CDW ordering due to a Peierls transition. The chain is
subjected to a time-dependent electromagnetic pump field that excites it out of equilibrium, and then a
second probe pulse is applied after a time delay. By evolving the system to long times, we capture the
complete process of lattice excitation and subsequent relaxation to a new equilibrium, due to an exchange
of energy between the electrons and the lattice, leading to lattice relaxation at finite temperatures. We
employ an indirect (impulsive) driving mechanism of the lattice by the pump pulse due to the direct
driving of the electrons. We identify two driving regimes, where the pump can either cause small
perturbations or completely invert the initial CDW order. Our work successfully describes the ringing of
the amplitude mode in CDW systems that has long been seen in experiment but never successfully
explained by microscopic theory. We also describe the fluence-dependent crossover that inverts the CDW
order parameter and changes the phonon dynamics. Finally, we illustrate how this method can examine a
number of different types of experiments including photoemission, x-ray diffraction, and two-dimen-

sional (2D) spectroscopy.

DOI: 10.1103/PhysRevX.14.031052

I. INTRODUCTION

A variety of experimental techniques exist to track
nonequilibrium dynamics in excited condensed matter
systems, for example, time- and angle-resolved photo-
emission spectroscopy (trARPES), ultrafast electron dif-
fraction, time-resolved x-ray diffraction, or transient
optical spectroscopy. Through the application of these
techniques, it becomes possible to explore and possibly
control new states of matter created in pump-probe
experimental settings. Time-resolved angle-resolved
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photoemission spectroscopy is an ultrafast measuring
technique [1-4] capable of capturing the real-time evo-
lution and occupation of electronic states in an array of
materials: from superconductors [5] and semimetals
such as graphene [6] to topological insulators [7]. A
particular focus is given to charge-density-wave (CDW)
materials [8,9] due to the specific ordering nature of
their ground state and different competing phases they
can exhibit. The trARPES experiments utilize a combi-
nation of time-delayed pump and probe pulses to excite
the studied material and track the dynamics of the
induced nonequilibrium state. The technique was so
far successfully used to study oscillations of the CDW
amplitude mode, as well as CDW melting in various
materials, from TaS, [10,11] to rare-earth tritellurides
such as TbTe; [12-14], LaTe; [15], and DyTe; [16].
Photoinduced insulator-to-metal phase transitions and
charge order melting was also measured in quasi-1D
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organic salts using time-resolved optical spectroscopy [17].
Additionally, photoemission spectroscopy was used to
study the dynamics of the electronic structure out of
equilibrium in the quasi-1D CDW material blue
bronze [18].

In a typical trARPES experiment, the pump-induced
modification of the electronic structure is observed in the
measured photoemission spectrum (PES). The lattice can
be driven due to direct dipole coupling with the pump
field or indirectly through coupling with electrons. The
conventional explanation of the indirect driving involves
the transfer of energy from the laser pump to electrons,
happening on a femtosecond timescale, and then from
electrons to the crystal lattice, happening on a picosecond
timescale. A detailed understanding of this driving
mechanism is essential in the context of Floquet engi-
neering [19], where the dressing of the electronic
structure by lattice motion can be used to fine-tune the
electronic spectrum.

In addition to trARPES, which focuses on the elec-
tronic spectrum, it is also useful to examine nonequili-
brium structural dynamics via ultrafast diffraction [20].
One can use ultrafast electron diffraction or ultrafast
x-ray diffraction [21]. Some recent diffraction studies
explored lattice motion in tritellurides [22-24] and
dichalcogenides [25].

The theoretical description of pump-probe experiments
for CDW systems has relied on phenomenological
approaches like time-dependent Ginzburg-Landau theory,
whereas the study of microscopic models has been
hindered by the absence of efficient numerical methods
that can resolve the very different timescales of electron and
phonon dynamics. Dynamical mean-field theory [26,27] and
related studies [28-30] focused on the excitation of the
nonequilibrium electronic state for several tens of femto-
seconds, but the slow lattice motion was not considered.
But, within this short time frame, many different types of
experiments have been examined, including nonequili-
brium resonant inelastic x-ray scattering spectra [31] in
an approach that ignores the momentum dependence of
the resonant inelastic x-ray scattering response. Exact
diagonalization and the density-matrix renormalization
group are alternative methods subject to different limi-
tations, such as small lattice sizes, short timescales, or
high phonon frequencies [32-37]; as time proceeds, the
growing number of phonon excitations and the growing
entanglement of the quantum state often make it difficult
to run simulations for long times, although local basis
optimization (and other strategies) can mitigate this issue.
To date, density-matrix renormalization group calcula-
tions have focused only on high phonon frequencies (eV
range) rather than phonon frequencies in the meV range,
which are required for an accurate description of most
CDW materials. A closely related approach to pump-
probe experiments with impulsively driven phonons is the
theory of displacive excitation of coherent phonons [38].

In this theory, the equilibrium coordinates of the lattice
phonons (that have the same symmetry as the lattice) have
their quasiequilibrium position displaced proportional to
the change in the charge density of the electrons due to
the pump excitation. While this interpretation is differ-
ent from the electron-phonon coupling approach we use
here (because we impulsively drive the phonons), the
semiclassical equations of motion are essentially iden-
tical, each having a force term proportional to the
change in the electron density. Note that, in our work,
we do not need to add a damping term, as that
automatically arises in our formalism for nonzero
temperature initial states. To explain the indirect driving
mechanism, as exemplified by the experiment in
Ref. [12], it is necessary to develop approaches that
naturally include the slow phonon dynamics.

In this article, we extend a time-dependent
Monte Carlo (MC) method [39], recently developed
for frozen phonons, to include the classical lattice
motion. This approach is similar to that of ab initio
molecular dynamics [40], except we can also examine
measurable electronic properties in the context of
trARPES experiments. A classical description of the
phonons is expected to become accurate if the temper-
ature and/or the Peierls gap are larger than the phonon
frequency [41], as confirmed by exact quantum
Monte Carlo simulations in equilibrium [42]. For realistic
parameters, this is already the case at very low temper-
atures. Although the semiclassical approach is poor at
zero temperature, because it neglects the quantum fluc-
tuations in the ground state and has no damping, we find
that a sliding time average of 7 = 0 data can still explain
some of the features we observe at finite temperatures.
Furthermore, the addition of energy into the system via a
strong pump only improves the accuracy of this method,
as the quantization of the phonon energies becomes less
and less important. For our method to be efficient, we
neglect electron-electron interactions, as they mainly
affect the short-time decay after the pump. The present
method captures the universal long-time features of the
induced lattice dynamics. In particular, our results reveal
details of the indirect driving mechanism found in
experiments. Note, however, that this approach cannot
describe superconductivity, because superconductivity
requires dynamical quantum phonons. So this approach
is limited to CDW phases and thermally induced dis-
ordered phases.

Although in this paper we treat phonons classically
using Ehrenfest forces, our method should not be con-
fused with the methods widely used in quantum chem-
istry. The dynamics in small molecular systems can
often be described with just a few well-defined potential
energy surfaces. This leads to combined quantum-
classical approaches such as multitrajectory Ehrenfest
(MTE) or fewest-switches surface hopping (FSSH) meth-
ods [43,44]. However, in a solid (due to a large number
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of constituent atoms), the density of different energy
surfaces per unit of energy increases with the system size
to a point where problematic surface crossings become
unavoidable. Another obstacle is related to modeling the
interaction of the pump field with the electronic system
which dresses the electronic structure (and the potential
energy surfaces), making the traditional chemistry-based
approaches virtually impossible for solids. We discuss the
similarities and differences between our approach and MTE
and FSSH later in a separate subsection.

Before explaining our method, we briefly describe the
Holstein model and summarize our main findings. A
simplified schematic of a trARPES setup (to which we
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FIG. 1. (a) Schematics of the 1D Holstein chain of tight-binding

sites (orange dots) with local lattice displacements A; at every site
(dark red dots and dark red lines below the orange dots) in our
trARPES setup. A pump pulse E(t) excites the electronic charge
density n; (dark blue bars) by modifying the Peierls phase factor
of the tight-binding hopping parameter y. The energy distribution
of the injected electrons is captured in the computed photoemis-
sion spectrum P(w, t). (b) Three potential energy profiles (green
parabola, red parabola, and brown parabola) of a single lattice
displacement A; (dark red circles and dark red lines on the right
side of the three insets above the parabolas) for different values of
the on-site charge density n; (blue bars on the right side of the
three insets). Green dots show the potential minima of the three
parabolas. The system is initialized at 7 = O temperature. The
green and brown parabolas with green dots also show the two
possible distorted charge-density-wave states with negative and
positive displacements, respectively. For the context of what
happens on the neighboring sublattice, see the grayed sites and
bars on the left side of the three insets. The two possible distorted
states are separated by an energy barrier AV. The pump excitation
modifies the on-site charge density n;, which rotates the potential
energy parabola around the A; = 0 point (see the orange and gray
arrows, which depict the motion of potential minima for strong
and weak pump excitation, respectively). This happens because
the derivative of the potential (9) at A; =0 is n; — 1/2 (the
dashed green and brown lines). For uniform charge density, the
system is considered to be metallic (inset above the red parabola),
and the derivative is zero.

apply our method) is shown in Fig. 1(a). In equilibrium
at zero temperature, it is a perfectly dimerized tight-
binding chain in the CDW phase, where alternating
lattice displacements +A;? are accompanied by an
alternating charge density n;! varying around 1/2. The
indirect driving mechanism can be explained by looking
at the potential energy profile of each lattice displace-
ment, as illustrated in Fig. 1(b). The pump perturbs the
equilibrium electronic order, thus changing the local
charge density n,(¢). The perturbed electronic state sets
a new potential profile for the phonons at each site by
rotating the equilibrium potential parabola around A; = 0
and setting a new dynamical minimum A™"(7) [green
dots in Fig. 1(b)] toward which each local displacement
A;(1) tends to move. For simulations starting at nonzero
temperature, and in one dimension, there is no long-range
order, so the order parameter represents the short-range
order that governs the physics at low temperatures. This
short-range order is stabilized in a finite-sized system,
which is what we use for our calculations.

The pump can be considered strong or weak depending
on its amplitude and frequency. Strong pumps drive
the system from the initial CDW state in the left inset
in Fig. 1(b) to an “overshot” state in the right inset
with an inverted order parameter. The system left to itself
after the pump oscillates between these two insulating
CDW orders by briefly going through a metallic state
[the top inset in Fig. 1(b)]. Flipping the CDW order, as
exemplified by the site considered in Fig. 1(b), means the
local charge density n;(t) goes below 1/2 (if initially
being above 1/2), while the local displacement A;(7)
changes sign. By contrast, weak pumps only slightly
perturb the initial CDW. They cause weak oscillations
of the local displacements A;(¢) but never change
their sign. We show both these scenarios, for the weak
and the strong pump, in two videos in the Supplemental
Material [45].

The pump-induced lattice motion changes the electronic
structure of the system, causing the insulating gap energy to
oscillate. The coupled dynamics repeat until the system
reaches a new equilibrium. This behavior can be deduced
from the computed PES intensity as well as from the order
parameters for the electronic and lattice subsystems (see
Sec. IIT A). In Sec. III B, we emphasize the differences
between dynamics at 7 =0 and at finite temperature.
Additionally, we explore what the conditions are in terms
of pump amplitude and frequency, which cause weak or
strong driving (see Sec. III C). In the pumping regime
that we consider, where the photon frequencies are at
least one order of magnitude higher than the phonon ones,
pump driving is modulated mostly by its amplitude. We
find there is a threshold amplitude at which the driving
begins and also another one which determines the transi-
tion from the weak to the strong pumping regime. We
contrast this with a transient CDW melting regime
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where the two subsystems are temporarily decoupled and
the lattice freely oscillates at its intrinsic frequency.
Additionally, we provide the details of electron dynamics
and populations of the two subbands during the pump
pulse in Sec. III D and in the Supplemental Material [45].
In Sec. III F, we show that our method can be used to
simulate other experiments besides time-resolved PES,
such as x-ray diffraction and 2D spectroscopy. Finally,
we show in Sec. III G that our approach can be applied
to higher-dimensional systems such as the 2D Holstein
model.

II. OVERVIEW OF THE METHOD

The system illustrated in Fig. 1(a) is modeled by the 1D
spinless Holstein model

I:I:I:Iel+ﬁph' (1)

The electronic subsystem consists of a nearest-neighbor
tight-binding model with uniform hopping y and an
electron-phonon interaction with coupling constant g, i.e.,

L L

N o .1

Hy = —Z (chciH + H~C~) + QZ 4 (”i —2)- (2)
i=1 i=1

Here, ¢} and ¢; are the electronic creation and annihilation
operators, respectively, at lattice site i, while g; is the local
phonon displacement operator coupled to the local charge
density 71; = 6,Téi. We impose periodic boundary conditions
to eliminate edge effects. A time-varying pump field is
implemented via the Peierls substitution y — ye~*¢(*) on all
sites, thus rendering the electronic Hamiltonian H(r)
explicitly time dependent. The hopping parameter y sets
the energy scale for our results, since we consider it as a
basic unit of energy. To get a better connection with
experiments where the energy is usually expressed in the
units of eV, one can consider y =1 eV. Following
Refs. [29,46], the probe is considered only perturbatively
and is not included in the Peierls phase. Although in this
paper we consider a spinless system, there is nothing in
our method that prevents the inclusion of spin degrees of
freedom.

The second term in the total Hamiltonian consists of the
phonon kinetic and potential energy:

=32 5K (3)
= Loy T L

with K being the phonon spring constant and M the
phonon mass; p; is the phonon momentum operator. The
electron-phonon interaction comes with a total of three
parameters K, M, and g, but the physics of the model is
fully determined by defining the following two ratios: the

phonon frequency Q = /K/M and the dimensionless
electron-phonon coupling constant A = ¢*/(4Ky). This
can be seen by absorbing one of the three original couplings
into the phonon coordinates (details are given below).
Rescaling in this fashion holds even in the M — oo limit,
because of the rescaled coordinates, so we do not need to
introduce a separate spring constant in that limit. This
parametrization also becomes convenient when introducing
the equations of motion below.

Throughout the remainder of the paper, we use y as the
unit of energy and set Q = 0.01y/A, A = 0.6, and L = 30
(for the 1D case) if not stated otherwise. Because the
approach described here derives from the static-phonon
limit, it is most appropriate for systems with low renor-
malized phonon frequencies. This typically occurs in CDW
systems, because a phonon often goes soft at the transition
and then recovers at a low frequency in the ordered phase.

The Holstein model is one of the simplest models of
electron-phonon coupling and is widely studied. If one
wants to examine a more material-specific system, one can
include an additional integration over the phonon fre-
quency, weighted by the Eliashberg function o?F(Q) in
order to have a more material-specific calculation. We do
not do that here; we simply point out that it can be
incorporated if desired. It does require the assumption that
the Eliashberg function does not get modified by the
nonequilibrium excitation of the electrons, though. It also
requires the material to be dirty enough that the anisotropic
effects in the electron-phonon coupling are washed out due
to disorder effects, so that only the energy dependence of
the @*F is relevant for the subsequent dynamics. This is
essentially always true for conventional superconductors
but may not be true for some CDW systems (if they have
substantially smaller coherence lengths).

To solve for the long-time dynamics of the coupled
electron-phonon system, we treat the electrons quantum
mechanically but approximate the phonons by classical
variables ¢; and p;. A classical description of the phonons
becomes exact in the frozen phonon limit where M — oo
(i.e., Q = 0). The quantum and classical harmonic oscil-
lators are closely related to each other, especially if the
harmonic oscillator has a large average energy. We state
some of the facts about the quantum and classical oscillator
that show this relationship. First, if the quantum state is
described via a coherent state, then the time dependence of
the average position and the momentum of the quantum
oscillator are identical to that of a classical pulled mass on a
spring. Second, if we compute the product of the fluctua-
tions about the mean of the position and momentum over a
period of oscillation for a classical harmonic oscillator, it is
given by E/Q, which is exactly what the quantum state
uncertainty product is for energy eigenstates—the major
difference is that the quantum oscillator has only an
allowed set of energies. Third, if the average energy of
the oscillator is larger than the phonon frequency, then the
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difference between the quantum and classical expectation
values become quite small and decreases as the average
energy increases by Bohr’s correspondence principle. The
main difference is at low temperatures, because the
classical oscillator can have energies smaller than %hQ,
and the fluctuations in position and momentum then both
go to zero. This is clearly quite different from that of the
quantum oscillator. Hence, in situations where the oscillator
has a relatively large average energy, as compared to A2,
the semiclassical approximation for the electron-phonon
coupled problem is expected to be accurate. This should
always occur when one pumps significant energy into a
system to drive it to nonequilibrium, as we do in the work
presented here. On the other hand, if the system is driven by
a very weak pump so that it is very close to the equilibrium
(and at very low temperature), the quantum phonon effects
neglected by our approach do become important.

While the short-time response of the electrons to an
applied pump field can be calculated efficiently in the static
limit, the slow energy exchange between electrons and
phonons requires small but finite phonon frequencies. To
this end, we apply the Ehrenfest theorem to obtain the
classical phonon equations of motion:

— A1) = Q1) (4)

Sl = =80 =4 = 1/2). (9

for the rescaled classical variables A;(7) = gq;(¢) and
7;(t) = gp;(t)/K. Here, n;(t) = «ﬁi(t)»&()-ﬁo is the elec-
tronic expectation value of the charge density at time ¢,
considering that the phonons were initialized in a configu-
ration (&0,710). The rhs in Eq. (5) defines a force that
depends on the local phonon displacement A;(¢) and on the
charge density n,(¢).

For classical phonons, we calculate time-dependent
observables

(0(0) = [ dBy [ digWe(Ba )(OWON3,5, (6

as a weighted average with respect to the equilibrium
phonon distribution W,. We initialize our system in the
equilibrium solution of the static phonon limit, which is
accurate for temperatures kg7" 2 AQ [42]. Then, the initial
phonon displacements &0 are sampled from W,y [Q = 0]
using a classical MC method [47], and we set 7, = 0.
At T = 0, our system is set up by a single configuration
Ay; = (—1)'A with perfect dimerization which is accom-
panied by CDW order, as illustrated in Fig. 1(a). A band
gap of 2A separates the fully filled lower band from the
empty upper band, so that the rescaled displacements are
directly related to the single-particle gap A. Although there

is no true long-range CDW order in 1D at 7 > 0, the band
gap as well as short-range CDW correlations remain stable
up to kg7 = 0.1y. For details on the equilibrium solution,
see Ref. [47].

For each initial phonon configuration, the coupled
electron-phonon dynamics is implemented self-consistently
in two steps. In the first step, we update the electron
annihilation operators &;(t+Ar) =% U;;(t+ At,1)¢;(t)
through evolution by direct diagonalization (for technical
details, see Ref. [39]). This allows us to update n;(7). In the
second step, the obtained 7;(7) is replaced in Eq. (5) and new
lattice displacements are computed using the Verlet integra-
tion scheme. Because I:Iel(t) is quadratic for each phonon
configuration, we need only O(L?) operations for every time
step (also because we do not consider any electron-electron
interaction, for which matrix diagonalization would lead to
an exponential scaling in L). This allows us to reach long
enough times to observe the damped phonon oscillations also
found in experiments. Note that the MC average over many
initial phonon configurations recovers the interacting nature
of our electron-phonon coupled system.

At T =0, the perfectly dimerized state with Aj; =
(—1)'A remains a static (ground state) solution of the
equations of motion if no field is applied, whereas our
MC averaged quantities at 7 > 0 require a thermalization
period (20 0007 /y or approximately 20 ps) before we apply
the pump. For all our simulations, we use a time step of
At = 0.1h/y, which is set by the fast electron dynamics.

The chain is driven out of equilibrium with an external
electric field applied uniformly in space along the x
direction:

2
E(r, 1) = Eexp (- ;—62) sin(wpex. (7
p
Here, E| is the pump amplitude, o, the pump width, @, the
pump frequency, and e, the unit vector along the chain. The
pump field modifies the phase ¢(7) of the nearest-neighbor
hopping in Eq. (2) through the time-dependent vector
potential A(r,7) = —c ["E(r,#)df; a spatially homo-
geneous field essentially shifts the electron momentum.
We work in the gauge where the time-dependent scalar
potential ®(r, ¢) is zero.
The time-dependent PES intensity is computed accord-
ing to Ref. [46]:

P(w,t) = —i/°° dt, /°° dtrs(t = 1)s(ty — t)e—i(u(tl—tz)
1 L
XZ;GE(ZMQ), (8)

where G5 (1,.1,) = i(¢](t,)é;(1,)) is the time-displaced

local lesser Green’s function and s(r) = exp[~1*/207 .|/

V276 yrone 18 the shape of the probe pulse of width 6. =
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107/y centered at t = 0. This expression neglects matrix
element effects for the photoemission process and is man-
ifestly gauge invariant. We call it the PES intensity here,
because we are neglecting matrix elements, which set the
overall scale, so we can only compare to the experimental
shape, that is the measured magnitude of the experimental
results; experiments also use arbitrary units for the PES
intensity.

III. RESULTS

A. Indirect driving mechanism and photoemission
at a finite initial temperature

Insight on how the lattice is set in motion can be obtained
from an effective phonon potential. By integrating the
force in Eq. (5), we obtain a potential for a single lattice
displacement:

1

Vi(Ai) = 81y

A7+ Ai(ni(1) = 1/2), )
which is just the sum of the local phonon potential energy and
the electron-phonon energy. For the perfectly dimerized
chain, there are two possible ground states which differ from
each other by the sign of A; and n; — 1/2 at every site [see the
left and right insets in Fig. 1(b)]. When n; changes, it rotates
the potential parabola around A; = 0, because its steepness is
given by the first derivative at that point, i.e., n;(t) — 1/2. The
equilibrium condition of the zero force at the potential
minimum gives A} = —44y(n;? — 1/2) as well as the initial
energy barrier AV = 2y(n{* — 1/2)? which separates the
two ground states in Fig. 1(b). The equilibrium is perturbed by
the pump, which modifies n;* and sets a new dynamical
minimum AM"(¢) = —42y(n;(t) — 1/2) [see the green dots in
Fig. 1(b) and in the two Supplemental Material [45] videos]
toward which A;(z) starts to move. The pump is also
modifying the initial energy barrier, making AV(z) time
dependent. The barrier can completely disappear for
n;(t) = 1/2, allowing the lattice to transition from one
excited ground state to another by flipping the sign of A;.
As observed in experiments (see, e.g., Refs. [12,18]), the
lattice motion causes the gap energy to oscillate, which is
reflected in the computed PES intensity at low temperatures
in Fig. 2. Both experimental and theoretical results do not
depend strongly on dimensionality, as similar behavior is
seen in 1D and 2D materials. The equilibrium spectrum
before the pump is gapped (due to the Peierls distortion),
which implies that only the lower band is populated. After
excitation, the system will stabilize to a new equilibrium
with a reduced gap energy. We call the state in the long-
time limit (long after the pump pulse) the new equilibrium,
because the system is expected to ultimately thermalize.
Right after the pump, the system is considered to be in a
nonequilibrium state. Since the pump added energy into the
system and the system is closed, the temperature in the
long-time limit will be higher than in the initial state.

0.00 0.02 0.04 0.06 0.08

3 AYS ¥
A s s e |

-2 0 2 4 6 8 -2 0 2 4 6 8
Time (10 /) Time (10 /)

— L1 — 1 1 1

FIG. 2. Photoemission spectra intensity for a chain of L = 30
sites at different temperatures. The electron-phonon coupling is
A = 0.6, and the phonon frequency is Q = 0.01y/A. The pump
parameters are E, = 0.33, o, = 102/y, and @, = 0.1y/h. The
thin red dashed lines in (c) show the energy range where we
average the PES intensity in order to compute the inverted
intensity shown in Fig. 3(c). The finite size effects produce the
“lumpiness” in these spectra, but the band edge behavior does not
depend strongly on the lattice size, and that is the effect we focus
on here.

Increasing the initial temperature of the lattice has two
major effects on the computed PES intensity. The first is the
evident damping of the gap oscillations, so the system
relaxes faster to a new equilibrium PES for higher initial
temperatures. The second effect is the “washing out” of the
finer details in the spectrum at higher temperatures,
increasing at longer times. The period of initial PES
oscillations in Fig. 2(a) is much larger (around 10007%/y)
than what one would expect for Q = 0.01y/A, which is a
clear sign that electron-phonon interaction significantly
modifies the intrinsic phonon frequency. The advantage of
our self-consistent MC approach is evident from the
timescale of Fig. 2, where the time resolution must be
kept at 0.17/y to capture the electron dynamics; still, the
fast evolution scheme allows us to average over 3000 MC
configurations. Translating these units to the ones in
experiments, for y = 1 eV, the time step is A7 = 0.07 fs,
while the simulation time is around 7 ps. For comparison,
current time-dependent density-matrix renormalization
group calculations have gone out only to the order of
several femtoseconds (assuming a similar hopping energy
of about 1 eV) [33-35].

The internal dynamics captured by the PES intensity in
Fig. 2 is also reflected in two order parameters that track
the behavior of the electronic and the lattice subsystem.
For the electrons, we define the order parameter via the
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time-dependent density-density correlation function at the
ordering vector g = x:

1 P
Sa(f) = zz(‘l)“_’2<”h (1), (1)) (10)
Ji:Ja
For the lattice, we define a similar correlation function of
the local lattice displacements:

1 o
S(0) =7 (=18, (08, (0). (1)
J1J2
The oscillations of these two order parameters, shown in
Figs. 3(a) and 3(b) for different temperatures, follow the
average inverted PES intensity near the gap in Fig. 3(c). As
with the PES intensity in Fig. 2, the order parameters are
also stabilizing at a new equilibrium, with relaxation times

(d)
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FIG. 3. (a), (b) Time evolution of the electron and phonon order
parameters S¢;() and Sy (), as defined in Egs. (10) and (11), for
different initial temperatures [see the color bar in (b)]. The order
parameters are normalized to one before the pump is applied.
(c) Time evolution of the inverse of a normalized in-gap PES
intensity [averaged over the energy window between the two red
lines in Fig. 2(c)] for the same temperatures as in (a) and (b).
(d) Initial temperature dependence of the relaxation time 7
extracted from (a) by fitting S.(¢) to the form Ae™"/ cos(wyt);
the relaxation time diverges as 7' — 0. (e), (f) Time evolution of
the energy expectation values per site of the different contribu-

tions in Egs. (2) and (3), EXn, Eei_ph- E];L“, and Egﬁt, at temper-
atures kg7 = 0 and kgT = 0.02y. Because of the fast electron
motion at 7 = 0 (due to no relaxation), the electronic energies in
(e) are time averaged over 50 time steps (with a sliding time
window). These time-averaged curves are similar to the nonzero
initial 7 curves in (f) except they do not get damped. The time
profile of the pump field is shown as a thin red curve above (a)
and (e). The pump parameters are @, = 0.1y/#, 6, = 10i/y, and

E, = 0.33, while for the phonons Q = 0.01y/# and A = 0.6.

inversely depending on the initial lattice temperature.
For each initial temperature in Fig. 3(a), we fit the time
dependence of S, () with an exponentially decaying
function Ae™"/7 cos(wyt) to determine the relevant relaxa-
tion time 7. The fitted decay times in Fig. 3(d) show that an
initially hotter system relaxes faster toward the new
equilibrium (at long times).

We observe similar relaxation dynamics for the electron
and phonon energies in Fig. 3(f). During relaxation, the
electrons exchange kinetic energy with the lattice, thus
reducing the initial lattice displacement and thereby also
the phonon potential energy Eggt. The resulting oscillations in
Fig. 3(f) are underdamped. The transfer of energy from
electrons to phonons is a slow process, happening on a
timescale significantly longer than those determined by
relevant electronic and phonon energy scales. Because of
the self-consistent nature of our method, we are able to
predict these nontrivial timescales starting only from a tight-
binding Hamiltonian in Egs. (2) and (3) and without any
additional assumptions about the given system. Note that the
oscillating behavior can already be deduced from the zero-
temperature results with a sliding time average, as shown in
Fig. 3(e), but zero-temperature dynamics remains undamped
and cannot give any insight into relaxation times.

B. Dynamics at the initial temperature of 7=0

As shown in Fig. 3(e), results at zero initial tempera-
ture are limited, because they do not show any damping
effects, and once the system is excited it will continue to
oscillate forever. On the other hand, computing the dynamics
at T = 0 is numerically more efficient and requires far less
computational resources, while it can be accurate in describ-
ing the dynamics during and right after the pump pulse, when
damping effects are small (and we use a sliding time
average). Figure 4 shows the raw data for the electron kinetic

energy EX™ and electron-phonon interaction Eg_, and their

—0.1 '_,/\/\/W\/\/\/\/\/\
02} Fel-ph
< —o03}
S
—04F
P
—0.5F
0 2 4 6 8 10

Time (10° h/v)

FIG. 4. Raw T = 0 results for the electron kinetic and potential
energy (transparent background) and the corresponding time-
averaged results (full color curves) presented in Fig. 3(e). The
system parameters are L =30, 1=0.6, Q=0.0ly/h,
Ey =0.33, w, = 0.1y/h, and o, = 107/y.
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sliding time averages [also shown in Fig. 3(e)]. The elec-
tronic variables oscillate on two timescales. The smaller
timescale is determined by the electron kinetic energy
(fast oscillations on the order of a few #/y), while the
larger timescale is determined by the phonon frequency
(slow oscillations on the order of 103#/y obtained by the
sliding time average). At a finite temperature, the fast
electronic oscillations are smoothed out due to small phase
differences between different MC configurations, while
the slow oscillations caused by the phonons persist, at
least for low temperatures. As shown in the next section,
the dynamics at 7 = (0 temperature are very useful in
determining different driving regimes the system exhibits
when one increases the pump amplitude. Computing these
regimes at a finite temperature is numerically very demand-
ing, and currently it presents a challenge even for our
Monte Carlo method.

Another advantage of the numerical efficiency of our
method at zero temperature is that it allows one to perform
simulations in large systems. Because of the time evolution
through direct diagonalization combined with the sampling
of many MC lattice configurations, the simulation time for
a finite temperature increases drastically with the system
size. Results obtained at 7 = 0, therefore, can provide an
insight on how the dynamics changes with the system size,
reaching sizes which are out of the scope of our MC
method (starting at a finite temperature), but are also

PES NN = TS
0.00 0.02 0.04 0.06 0.08

Time (10° h/7)

FIG. 5. The photoemission spectrum at 7 = 0 temperature.
Data for times below 5 x 1034/y are obtained for a system
with L = 30 sites, while data above this time are obtained
using a system with L = 100 sites. The red curve shows the
oscillations of the phonon displacement, which corresponds to
the gap energy A(r). Other parameters are the same as those
used in Fig. 2: Q = 0.01y/h, 4 = 0.6, E; = 0.33, 6, = 10A/y,
and w, = 0.1y/h.

important in justifying our choice to perform simulations
with L = 30 sites for 7 > 0. An example of this is shown
in the photoemission spectrum at 7= 0 in Fig. 5. The
dynamics of the energy levels reveals the gap centered
at w = 0, which is modulated by the symmetric motion of
the upper and the lower band, a behavior previously
observed experimentally [48]. Note that the discreteness
of the spectra in the left part in Fig. 5 is due to the limited
lattice size. We verify that L = 30 sites are sufficient to
reliably estimate the oscillating gap (from the band edges)
and that the PES intensity becomes continuous for
L =100, as shown in the right in Fig. 5. The numerical
efficiency of simulating the dynamics at the zero temper-
ature is used once again in the next section, where we check
different pump driving regimes in systems consisting of
L = 600 sites.

C. Driving regimes as a function
of the pump amplitude

We examine the conditions for the weak and strong
driving scenarios by modulating the square of the pump
amplitude E} (which is proportional to its fluence) for the
four pump pulse profiles in Fig. 6. For the first profile in
Fig. 6(a), weak (strong) driving is illustrated in Fig. 6(e) for
E} = 0.1 (E} = 0.2). The inversion of order at Ej = 0.2
happens in both electronic and lattice subsystems simulta-
neously. To invert the order, the pump needs to exceed a
threshold intensity [marked by the dashed yellow line in
Fig. 6(i)]. The pump does not invert the order immediately,
but it is the coupled dynamics of electrons and phonons
which leads to the inversion only at later times [e.g., around
5007/y for E3 =0.2 in Fig. 6(e)], because the lattice
moves much slower than the electrons. At the crossover
intensity, the phonon amplitude saturates to a constant
value [see the inset in Fig. 6(i)] and does not further change
with E%. This amplitude saturation as a function of fluence
is one of the signatures of order inversion to look for in
CDWs but also in other systems with degenerate ground
states such as excitonic insulators, as recently demonstrated
in Ref. [49].

We contrast the two driving regimes obtained from
the pump in Fig. 6(a) with those obtained with pumps in
Figs. 6(b)-6(d) with higher frequencies. In the melting
regime, the electrons are almost instantly driven to a state
with charge density oscillating around 1/2 [Figs. 6(f)
and 6(g)]. The electron-phonon coupling at this point is
effectively zero, and the electrons and phonons are dynami-
cally decoupled for a period of time. This decoupling does
not arise from g being renormalized to zero but rather from
n; x % which makes the expectation value of the electron-
phonon coupling small (even though the phonon still
oscillates). In addition, the Ehrenfest force on the phonons
becomes small for the same reason. Hence, in this case,
phonons initially oscillate fully harmonically, as a sine
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FIG. 6. Perturbation of CDW order for a system starting at kg7 = 0 by a pump. (a)—(d) Electric field (red curve) and its envelope
function (dotted black curve) for four considered pump profiles. The pump used in Figs. 2 and 3 is presented in (a), while the pump with
parameters set from Ref. [12] is in (d). In (b) and (c), we consider pumps with frequencies between the ones in (a) and (d). The field is
given in units of y/(ea), where e is the electron charge and a is the lattice constant. (¢)—(h) Time evolution of the charge density 1, (¢) on
the first site of the chain for the pump profiles presented in the first row (a)—(d) and for two different amplitudes E}. The thin red lines
illustrate the time profiles of the four pulses from (a)—(d). The presented charge density is time averaged over a window of 50 time steps.
(i)—(1) The time evolution of the phonon displacement A, (#) on the first site of the lattice as a function of the pump intensity E% for the
four pump profiles in (a)—(d), respectively. The dashed yellow line in (i) is the threshold intensity at which the lattice order changes sign.
The inset in (i) tracks the amplitude of the first peak in A; as marked with the black curve in (i). The phonon frequency is Q = 0.01y/#,

A =0.6, and L = 600.

wave with periodicity 2z/Q and a low amplitude [see
Figs. 6(j) and 6(k)], just to be perturbed by the electrons
at later times, once the electron-phonon coupling dynami-
cally kicks in. The dependence on the pump intensity in
Figs. 6(1)-6(1) is computed for 7' = 0. The results for low
temperatures would be similar, because the damping effect
caused by the temperature is low in the time range
considered in Figs. 6(1)-6(1). Similar to the electronic
energy in Fig. 3(e), the charge density at 7 =0 is time
averaged.

D. Band excitation during the pump pulse

The dispersion relation for our 1D CDW system consists
of two bands separated by a gap A. The pump pulse excites
the filled lower band and creates a nonequilibrium charge
density by partially populating the upper band. In this
section, we examine the details of this dynamics.

The first step in obtaining the populations of the two
bands is to diagonalize the system Hamiltonian in k space.
For kgT =0 and alternating phonon displacements
A; = (=1)'A, the Hamiltonian in k space simplifies to

ﬁ<k>=Z(éI@Z+”)(€(Z) _A(k))() (1)

k

where ¢(k) = =2y cos(k) is the 1D dispersion. The off-
diagonal coupling between k and k+ 7 components
reduces the Brillouin zone from k € [—(z/a), (z/a)] to k€
[=(7/2a), (x/2a)]. By diagonalizing the Hamiltonian in
Eq. (12), one obtains the two bands e* (k) = £/e(k)* + A2
[right inset in Fig. 7(b)]. The instantaneous diagonalization
operators X, allow for the computation of time-dependent
creation and annihilation operators for the two bands in the
reduced Brillouin zone (we drop the time label):

gy o [ Ck
< i ) - Xk( C ,
- Chktrn

which give the time-dependent population densities in the

(13)

upper n; = () &) and the lower band ny = (d}_a;_).

Figure 7(b) shows the dynamics of the band excitation in k
space during the pump pulse. Results are shifted in k so that
the gap is now centered at z/2a. Initially, the system is
excited around the gap where the energy difference between
the two bands is minimal. As the vector potential increases,
the excitations occur across the entire band, leading to a
symmetric nonequilibrium distribution as the pump is
switched off. There is no clear connection between the
population of the two bands and the real space distribution
of the charge density on the two sublattices [Fig. 7(c)].
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FIG. 7. Electron excitation dynamics in k space during the
pump pulse at kg7 = 0. (a) Time evolution of the pump vector
potential intensity. (b) Time evolution of the k-resolved occupa-
tion number for electrons in the upper band n; (¢). The inset on
the right shows the two bands ¢ ™ (k) and e~ (k) separated by a gap
2A for a 1D Holstein model. (c) Dynamics of the charge density
in real space at odd and even sites nyq(f) and ngyen(?),
respectively, compared to the populations of the upper n'*(r)
and the lower n~(r) bands in the reciprocal space. Populations
n*(f) in each band are obtained by summing the k-resolved
densities n(¢) in (b) over the reduced Brillouin zone. The system
size is L = 30.

The population n; + n;" for each wave vector k is constant
throughout time, so the two populations complement one
another. The excitation (or deexcitation) is then always
vertical (from n; to n,f and vice versa), and it involves
changing the direction of the group velocity de/ ok. The initial
excitation of k > 0 states for < 0 leads to a finite current in
the system and is followed by an excitation of the k£ < 0 states
(equivalentto k > 7/2) atlater times. This can be understood
semiclassically as follows: The initial rise of the vector
potential corresponds to a force acting on the electrons and
pushing them in one direction, only to be pushed in the
opposite direction at later times (due to either Bragg
diffraction or a change in the sign of the slope of the vector
potential). The induced electronic state then creates the
nonequilibrium potential for the phonons, setting the lattice
into motion as described previously (but on a much longer
timescale—one should think of the electrons as impulsively
driving the phonons).

E. Comparison with other methods

As emphasized in the introduction, although our method
uses the Ehrenfest theorem, it should not be confused

with methods used in quantum chemistry such as MTE
and FSSH. Similarly to our approach, both MTE and
FSSH use classical lattice dynamics and independent
trajectories sampled from an initial quantum phonon
distribution. Here, we use a thermal (Boltzmann) distri-
bution for the initial sampling and neglect quantum effects
for the phonons. When it comes to computing the
dynamics, although all three approaches (MTE, FSSH,
and our method) rely on the split propagation scheme,
where at each time step the electronic and lattice sub-
systems are updated self-consistently, the implementation
details on how this is achieved (in particular, for the
electrons) differ. An important difference is that our
method does not rely on static potential energy surfaces
and on a partially transformed Wigner density matrix.
Instead, our method is based on nonequilibrium Greens
functions often applied to solid-state systems. Computing
the force in Eq. (5) using the expectation value of the
charge density operator n;(t) makes our method more
analogous to MTE, which is also a mean-field approach.

The exact diagonalization and basis transformation that
we apply at every time step allows us to fully incorporate
the time-dependent pump field into the system dynamics.
This is not an easy task for MTE and FSSH. The pump
field mixes the eigenenergy levels for every single MC
trajectory even for the static lattice (Fig. 8). In the MTE
and FSSH formalisms, these levels would represent a
cross section of the potential-energy surfaces at the point
Q =(41,92.93, ---,qr) in the multidimensional phonon
phase space. Because of the interaction with the field, the
energy surfaces at this point would become dynamical,
and they would change with the field even in the case of
static phonons with Q = 0 (the situation becomes even
more complicated when Q # 0). The crossing of energy
levels during the pump pulse causes a mixing of the
initial probability distributions associated with each
potential energy surface, making it cumbersome to track
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FIG. 8. Dynamics of the eigenenergy levels for a single static
MC configuration (Q = 0y/#%, kgT = 0.033y) during the pump
pulse. The other parameters are L = 30 sites, E, = 0.33,
o, = 10y/n, and w, = 0.1y /A.
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the electron trajectories in the presence of a field within
the MTE and FSSH approaches. Since our method is
based on exact diagonalization for the electronic system
(which includes the time-dependent external field) and
does not rely on static potential-energy surfaces, we find
it more suitable for treating problems where the field is
interacting with electron-phonon coupled systems. For
the case considered in this paper, when the pump field is
acting on timescales much smaller than the phonon
period, the field perturbation of the initial probability
distribution can be taken into consideration with MTE
and FSSH by imposing new initial conditions after the
pump pulse and assuming the phonon positions did not
change significantly during the pump pulse. However,
this becomes challenging for the case of resonant driving,
when the field frequency matches that of the phonons in
the lattice.

Another approach to describe the coupled electron-
phonon dynamics is called generalized discrete truncated
Wigner approximation (GDTWA) [50]. Similarly to MTE
and FSSH, the GDTWA method is based on the sampling
of independent trajectories from some initial phonon
distribution in phase space. It differs from the two previous
methods in the choice of the basis set used to expand the
electronic operators, leading to different sampling of the
initial electronic states and to a modified set of equations of
motion. The method is very efficient when one deals with a
small number of electronic states well separated in energy.
The dynamics of the whole system then depends only on
the few electronic states close to the ground state. The
method is not suited to model electron-phonon dynamics in
systems with large numbers of electronic states, which are
energetically very close. In the case presented here, most
states participate in the dynamics. This is commonly the
situation for solid-state systems.

Lastly, the dynamics of electron-phonon coupled sys-
tems can be explored using time-dependent density func-
tional theory (TDDFT) [51-55]. The advantage of TDDFT
is that it provides a full microscopic description of the
studied materials to a very high accuracy. Since our method
is based on a tight-binding description, the results in our
case are as good as the model parameters extracted from the
first principles, and those can change with lattice motion,
which might present problems when modeling real materi-
als. TDDFT does not have this problem. On the other hand,
the disadvantage of TDDFT is that (by default) it does not
include the electron-phonon interaction in the system
Hamiltonian and the Ehrenfest forces are introduced in
an ad hoc way. Therefore, TDDFT does not accurately
describe the process of energy exchange between the lattice
and the electrons and has problems dealing with thermal-
ization and decoherence [52]. Also, due to the high
numerical demands, TDDFT can efficiently consider super-
cells of only a limited size and the dynamics on timescales
significantly below the ones presented in this work.
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FIG. 9. X-ray diffraction in the 1D Holstein model. (a) Time
dependence of the phonon structure factor Sph(k) in k space. The
initial temperature is kzT = 0.02y, and the pump amplitude is
Ey = 0.35. The structure factor is normalized by the value at
k =z at the zero time moment. (b) Time dependence of the
structure factor at k = 7 for different pump amplitudes. (c) Cross
section of Sp,(k) from (a) for three different time steps [also

marked in (a) and (b) by vertical lines]. There are L = 30 sites in
the system, w, = 0.1y/h, Q = 0.01y/#, and 6, = 10A/y.

F. X-ray diffraction and 2D spectroscopy

In previous sections, we focused on computing the
photoemission spectrum measured in trPES experiments.
However, our method is not limited to trPES and can be
used to compute other observables, such as x-ray diffrac-
tion [21] (Fig. 9) or 2D spectroscopy (Fig. 10).

Because of the finite system size, the k-dependent
structure factor in Fig. 9(a) shows periodic oscillations
with changing k vector (these can be thought of as
resonances due to the nearly periodic order in the sample).
A similar effect has been observed experimentally [21] with
x-ray diffraction on a CDW material. These wave-vector-
dependent oscillations are already present in equilibrium,
and they are further modified by the pump pulse. After the
pump pulse at ¢t = 0, all the peaks (including the main one
at k = &) are suppressed and start to additionally oscillate
in time. In Fig. 9(c), we show the cross section of the k-
dependent structure factor for three different times: during
the pump pulse (gray), during the first phonon oscillation
(red), and in the long-time limit (blue). Although the main
peak at k = z and its neighboring peaks are suppressed by
the pump, the k-dependent oscillations remain in the long-
time limit with a small recovery. The pump-induced
suppression of the structure factor is permanent (due to
the addition of energy into the system, which ultimately
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FIG. 10. 2D spectroscopy of the 1D Holstein model. (a) Time
dependence of the phonon structure factor Sy, as a function of
two-pump excitation. The positions of two pump pulses are
marked by the two dashed lines. The two pumps are identical
in amplitude, Ej, = 0.3, width ¢, = 107/y, and frequency
@, = 0.1y/h. (b) 2D spectroscopy map obtained by double
Fourier transform of the data shown in (a). The main peak
appears at (@, @) diagonal with @y, = 0.00615y/#. (c) Sum of
the Fourier coefficients F,, in the range 0.005 < w, < 0.0074
[vertical red lines in (b)] showing off-diagonal components of
the 2D spectrum. The data for different pump amplitudes are
translated vertically to remove the overlap. There are L = 100
sites in the system, Q = 0.01y/A, and the initial temperature
is zero.

heats it) as also shown by Fig. 9(b), where the structure
factor is more suppressed for stronger pump amplitudes.
Figure 9(b) additionally shows stronger damping of the
oscillations for stronger pumps [compare the blue and red
curves in Fig. 9(b)] and a fluence-dependent change in
the oscillation frequency becoming a longer period for a
higher fluence. This precise behavior has been observed
experimentally in the oscillations of differential reflectivity
in Refs. [56,57]. The modification of the oscillations of the
structure factor, usually associated with a phonon fre-
quency in the solid, arises from a nonlinear process, which
can naively be thought of, in a first approximation, as
arising from integrating out the electrons, which converts
the linear electron-phonon coupling to a quadratic modifi-
cation of the phonon frequency. But, because it also involves
nonlinear effects, the precise nature of the modification is
difficult to predetermine and needs to be numerically calcu-
lated, as we do here. The damping rate of these oscillations
arises from a combination of both dynamic phonon disorder,

which scatters electronic states, and electronic disorder,
which is more prevalent at higher fluences, because they
take us further away from a degenerate electron gas and
cause more rapid dissipation of energy. To our knowledge,
this is the first microscopic model that successfully pre-
dicts these two effects in time-resolved x-ray diffraction.
We additionally fit the structure factor oscillations in Fig. 9(b)
with exponentially decaying oscillatory functions. Lower
fluences fit this form better than higher fluences. For more
information, see the Supplemental Material [45], which
quantitatively determines how the S, damping increases
with increasing pump amplitude (accompanied by the
increase in the oscillation period).

We also examine the so-called 2D spectroscopy [58—60],
which is thought to be one of the next-generation probes
to be used with newer x-ray free-electron lasers. In this
experiment, two identical pump pulses are shot at the
sample, with a time delay z; between them, and then they
are followed by a probe pulse at an even further time delay.
The additional pump is taken to be a copy of the first one
but translated in time:

_ (f + Td)2

E(r,t,7;) = Eyexp ( 52
P

) sin (o, (1 +74)) ey,
(14)

where 7, is the time-translation constant. The first pump
sets the lattice into motion at some (initial) negative time
(—7,), and the second pump (centered at zero time) further
excites the system (Fig. 10). One of the hallmarks of a two-
dimensional experiment is that it promotes the excitation of
multiple quanta due to a nonlinear process arising from the
two pump pulses. By performing a double Fourier trans-
form—one with respect to the time delay between the two
pumps and one with respect to the time delay between
the second pump and the probe—one obtains the so-called
2D spectrum, as shown in Fig. 10. What the spectrum
illustrates is a very strongly pronounced peak along the
diagonal (g, ). The response frequency w, is smaller
than the bare phonon frequency of € due to renormaliza-
tion effects arising from the electron-phonon coupling
(interaction with electrons slows down the phonon motion
and renormalizes the phonon frequency). What is interest-
ing is that besides the diagonal elements, which correspond
to exciting single quanta, there is a significant excitation
of the off-diagonal elements, particularly in the “vertical”
direction around the o, frequency. Smaller peaks at higher
frequencies such as 2w, and 3w, can be seen in the 2D
spectrum. While these are usually interpreted as multiquanta
excitations, in our model, because we use semiclassical
phonons, there is no multiquantum effect with phonon
excitations. Instead, the 2w, excitation can be interpreted
along the lines of parametric excitation, as we discuss in
more detail below. In general, the peak intensity depends on
the strength of excitation by the pump pulse [Fig. 10(c)],
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where stronger pumps induce higher peaks, especially off
the main diagonal. One can think of the 2w, excitation as
similar to the process of pushing a child on a swing. Usually,
we think of applying the pushes at the back of the child,
every period. But we also can apply them at the front of the
child, every half period, relative to the driving from the back.
This then can excite a 2w, response. Furthermore, depend-
ing on the timing and the direction of the push or pull, one
can even enhance the amplitude of the swing when the push
is not applied after a full period. This might also explain the
3w, peak. Note that, for pump amplitudes higher than the
ones considered in Fig. 10(c), the CDW order melts and there
are no more regular oscillations of the lattice, so even the
peak at the diagonal disappears.

To get a better understanding of the vertical (off-
diagonal) peaks in the 2D spectrum, in Fig. 11(a) we show
the sum of Fourier amplitudes around the main peak w
but without performing the second Fourier transform (the
one with respect to pump-pump delay). Further trans-
forming these data, one would obtain the off-diagonal
peaks in Fig. 10(a). The data in Fig. 11(a) are not a simple
sine wave and cannot be associated with a single oscillation
frequency. This further indicates the strong nonlinear
response of the system. In addition, we have an interesting
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FIG. 11. (a) Sum of the Fourier amplitudes F, in the range

€ (0.005,0.007)y/7 for different two-pump delays z,. Time
dependence of the phonon structure factor Sy, (blue curve)
for different delays of the second pump (b) 7, = 1000%/y,
(c) 7, =1500n/y, and (d) 7, = 1965h/y. The orange curve
shows the scaled force F'| acting on the first site, while the green
curve shows the scaled first phonon coordinate A;. The vertical
gray areas mark the time periods when two pumps are active. All
parameters are the same as in Fig. 10.

correlation between the 2D spectroscopy and dynamical
slowing down [61]. The two sharp dips (just below 1000
time steps and near 2000 time steps) occur because the
system has dynamical slowing down and can even be used
to identify precisely where dynamical slowing down
occurs, so it can be further studied (this can be particularly
useful experimentally). This can be seen in more detail in
Fig. 11(d), which is focused at the dip near 2000 time steps.

G. 2D Holstein model

The results we have presented have been limited to the 1D
Holstein model, but the methodology can be applied to
higher-dimensional systems at a greatly expanded computa-
tional cost. To illustrate this, we apply our method to a 2D
Holstein sheet of 20 x 20 lattice sites with the periodic
boundary conditions. The system that we consider is initially
at zero temperature and similar to the 1D system has two
possible ground states which differ just by a sign of the
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FIG. 12. CDW oscillations in a 2D Holstein model.
(a)—(c) Phonon coordinates A; of a5 x 5 piece of the 2D Holstein
sheet (L, =20 x L, = 20) at different time moments showing
CDW inversion in (c). (d) Photoemission spectrum of the 2D
Holstein sheet. The violet curve shows the average phonon
coordinate obtained from all positive sites [red sites in (a)],
while the orange curve shows the average phonon coordinate for
all negative sites [blue sites in (a)]. (e) Average on-site charge
density for all positive and negative sites of the 2D Holstein sheet.
The vertical lines in (d) and (e) mark the three time moments for
which we show the phonon coordinates in (a)—(c). The coupling
constant is 4 = 0.6, the phonon frequency is Q = 0.01%/y, the
pump amplitude is E,, = Ey, = 0.5, with o, =107/y and
@, = 0.1y/h, and the probe parameters are the same as in the
1D case. The temperature is zero.
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phonon coordinates. We pick one of the two states [shown in
Fig. 12(a)] as the initial state. The pump pulse is chosen to
lie along the diagonal direction, so it has two components:
one along the x direction and one along the y direction.
We use the same pump profile along the y as the one along the
x and given by Eq. (7). A sufficiently strong pump causes
an inversion of the CDW order, as shown in Fig. 12(c).
The inversion of the phonon coordinates in Fig. 12(c) is
accompanied by an inversion of the on-site charge density,
as shown in Fig. 12(e). The photoemission spectrum also
illustrates characteristic signatures of the CDW inversion.
Compared to Fig. 5, where the pump causes just a modula-
tion of the gap energy in the form of a sine wave, we find
in Fig. 12(d) that the gap is closed at certain instants in time
at the intersections of two sine waves.

Our results on the 2D system are just a short preview of
how our method can be applied in higher dimensions. A
systematic study as a function of the initial temperature will
illustrate many more properties of these systems. We leave
this to future work due to the significant computational cost
required for such work.

IV. DISCUSSION

We demonstrated that our time-dependent semiclassical
MC modeling captures the experimentally observed
dynamics of electron-phonon coupled systems driven out
of equilibrium, starting from the initial excitation to the
subsequent relaxation at finite temperatures. This is made
possible because we preserve the quantum-mechanical
behavior of the electrons, but we treat the phonons semi-
classically using Ehrenfest forces from the electrons. We
use a small time step on the electronic timescale but
accumulate the result to much longer timescales relevant
for the phonons. This approach now allows many recent
(and future) ultrafast experiments to be analyzed micro-
scopically rather than phenomenologically.

In this work, we have concentrated on an indirect driving
mechanism for the lattice dynamics, where the excited
electrons “impulse” the phonons, and the phonon motion
extends over much longer timescales. In future studies, a
direct coupling of the lattice to the field may give additional
insight into the interplay between indirect and direct
driving mechanisms. Moreover, different types of elec-
tron-phonon interaction can lead to a periodic lattice
distortion accompanied by charge order, which opens up
new questions about their pump-probe dynamics. For
example, in the Su-Schrieffer-Heeger model [62], the
diagonal coupling of lattice displacements and on-site
charge density is replaced with an off-diagonal coupling
between deviations of neighboring bond length and the
neighboring hopping. However, the equations of motion
remain of the same form; therefore, the indirect driving
mechanism revolves around the pump driving a local bond
current, which modifies the local bond length. Another
question is how the indirect driving mechanism is

influenced by anharmonic potential terms like Y, Q,A?
considered in Ref. [63]. Although this term modifies the
shape of the potential energy curve for each lattice
displacement, a connection between the time-dependent
charge density n;(¢) and the local displacement minima still
exists.

A nonlinear coupling of the electronic density to the
phonon coordinates, as studied for equilibrium systems in
Ref. [64], can be included as well and might be important at
large field strengths. In addition, we have demonstrated
that, with additional computational cost, our approach can
be extended to two dimensions [39], but we leave an
extensive study of the two-dimensional systems for future
studies.

It is comforting to know that our explanation of the
indirect driving in terms of the modification of the local
lattice potential and the reduction of the energy barrier is
very similar to the standard phenomenological Ginzburg-
Landau (GL) model, often employed to explain pump-
probe experiments in CDW materials. The GL model
predicts a double-well structure in the free-energy potential,
which upon excitation with a strong pump can turn into a
single-well potential where the order parameter oscillates
around zero [14]. Here, we propose an efficient comple-
mentary approach to GL, which allows for a more detailed
microscopic exploration with consideration of the full
Hamiltonian of the system but without the computational
cost of a more demanding first-principles method such
as, for example, TDDFT. We view our method as a
balanced alternative, which offers a way to self-consistently
induce lattice motion by direct coupling with the pump
field and to evolve the system to timescales relevant for
phonon effects to appear. The damping of the phonon
oscillations emerges naturally from our finite-temperature
method, without the need to modify the lattice equations of
motion in order to include damping in a phenomenological
way. Another important characteristic of our time evolution
scheme is that it includes the electronic degrees of freedom
and it produces a true nonequilibrium electronic state,
without any additional assumptions regarding the time-
scales it takes for electrons to thermalize. This opens up the
possibility to examine many different types of pump-probe
experiments.

The inversion of the lattice order, accompanied by
the inversion of electronic charge density ordering, is
not a specific feature of just CDW systems. A similar
mechanism was recently reported and measured in exci-
tonic insulators [49]. A double pump pulse was used to
modulate the phonon oscillations and suppress or enhance
the phonon amplitude, and the enhancement was related to
the inverted structural order. A similar modulation of the
phonon amplitude was also reported for tritellurides [48],
although it was not directly associated with the inversion of
order. The possibility to invert the order appears to be a
general feature of all systems with degenerate ground states
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coupled to the lattice. An interesting feature of the order
inversion brought out by our theoretical work is that a
system can briefly pass through a metastable state where
electrons and phonons are effectively decoupled, so the
inversion of order is accompanied with a state that might
have dramatically different conductivity (because the
Holstein-like electron-phonon coupling vanishes when
the phonon coordinate lies at the origin). It will be exciting
to apply our methodology to these interesting problems.

We want to end with a cautionary note. While we have
been able to show that results from these calculations
display a number of different experimentally seen phenom-
ena, we have not been able to independently benchmark
these results against other known accurate methods such as
exact diagonalization or density-matrix renormalization
group calculations. This is because our results are antici-
pated to be most accurate in regimes that are not so readily
accessible to these alternative methods. We hope that, in the
future, it will be possible to benchmark this approach
against alternative methods to better understand fully its
overall accuracy.
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