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Long-time error-mitigating simulation of
open quantum systems on near term
quantum computers

Check for updates

Brian Rost1, Lorenzo Del Re1, Nathan Earnest2, Alexander F. Kemper 3 , Barbara Jones 4 &
James K. Freericks 1

Westudyanopenquantumsystemsimulation onquantumhardware,whichdemonstrates robustness
to hardware errors even with deep circuits containing up to two thousand entangling gates. We
simulate two systems of electrons coupled to an infinite thermal bath: 1) a system of dissipative free
electrons in a driving electric field; and 2) the thermalization of two interacting electrons in a single
orbital in a magnetic field—the Hubbard atom. These problems are solved using IBM quantum
computers, showing no signs of decreasing fidelity at long times. Our results demonstrate that
algorithms for simulating open quantum systems are able to far outperform similarly complex non-
dissipative algorithms on noisy hardware. Our two examples show promise that the driven-dissipative
quantum many-body problem can eventually be solved on quantum computers.

Quantum systems in nature are inherently open—they inevitably interact
with an environment, except in extreme cases of perfectly isolated particles.
As a prototypical example, we consider condensed-matter systems, where
the electrons that exhibit interesting emergent phenomena (such as
superconductivity) and their strongly coupled lattice vibrations co-exist
with a hard-to-characterize environment that has contributions from, for
example, remaining lattice vibrations and spurious external electromagnetic
fields. Nevertheless, we observe emergent quantum phenomena in nature,
which indicates that the presence of these (typically dissipative) effects does
not destroy the emergence of complex quantumphysics. This is because the
open quantum system has fixed points1,2 that continue to exhibit the
emergent phenomena. Thus, we can theoretically ignore the open-ness, and
focus on the emergent phase within an approximate closed-system
description.

The situation gets more complicated when driving fields are intro-
duced. Now, the dissipative effects are crucial for determining the fixed
point(s), called non-equilibrium steady state(s) (NESS), and thus a full open
system needs to be solved. This requires the use of a density matrix form-
alism, which further exacerbates the “curse of dimensionality” that already
plagues pure state simulation. However, this is also a research frontier in
many different disciplines: (i) in quantum condensed-matter physics,
pump-probe experiments drive a system into nonequilibrium and watch
how it evolves3; (ii) in chemistry, driving and dissipation play important
roles in photochemistry4 and in cavity-enhanced reactions5; (iii) in nuclear
and high-energy physics, collisions of heavy nuclei induce nonequilibrium

dynamics6; (iv) in quantum optics, cavity QED studies dressed atoms in a
cavity andhow they reach a steady state7; andmanymore. In some cases, the
system is driven to new (meta)stable non-equilibrium phase that cannot be
producedanyotherway8. In thiswork,weare interested inboth steady states
that do not change, and limit cycle states, which have periodically repeating
“steady states”.

From an applications perspective, many devices rely upon the non-
linear response of the system to external fields—the switchable nonlinear
current-voltage curve of a transistor is a classic example. As quantum
materials are sought foruse innovel device applications, understandinghow
they respond tofields in the presenceof dissipation is critical for engineering
these devices. Hence, driven dissipative systems also have an almost ubi-
quitous appearance through many fields of applied science.

An emergent technique for modeling quantum systems is to use
quantum computers. These are naturally open systems by themselves:
the qubits interactwith an uncontrollable environment. They undergo τ1
and τ2 decay, and the fixed point of their evolution is typically the ∣0i 0h ∣
state, i.e., the individual qubit’s ground state. Indeed, much of the pro-
gress on today’s quantum hardware is limited by the decoherence of the
individual qubits9. Efforts are underway to improve this situation, but
with an eye towards closed quantum simulation, which is sensitive to the
environment, and which does not typically exhibit fixed points in the
dynamics. The situation improves when simulating open systems on a
quantum computer10–15, which is a topic that has garnered some interest
recently16–22.
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Herewe show thatmodeling a driven-dissipative systemon a quantum
computer is intrinsically stable on the hardware, even in the presence of
noise and decoherence. The stability happens because the dynamicsmap all
initial states that are not protected in some way onto the fixed point of the
evolution, which is a periodic NESS. This naturally includes states that have
undergone some perturbation by the noise in the hardware, and in this way,
errors incurred in one-time step are corrected by the inherent dynamics in
the next step. The fixed point is determined by a combination of the
quantum channel corresponding to the evolution of the system under study
and the intrinsic quantum channel of the noisy quantum computer. The
quantum-computer channel shifts the fixed point slightly, which is borne
out in our results, and we show that the clean limit can be obtained via
extrapolation of the noisy results. Because of this inherent stability and
because these problems are challenging to solve on conventional computers,
the driven-dissipative problem is an excellent application for near-term
quantum computing.

We illustratehowdissipativequantumsimulation canbeperformedon
IBM’s quantum computers by considering two problems derived from the
Hubbard model in two distinct limits: 1) a noninteracting system of lattice
electrons atfinite electricfield and temperature; and 2) an interacting single-
site two-electron system in a magnetic field that thermalizes—the Hubbard
atom. As discussed below, while the free fermionic problem is trivially
solvable in a closed system, the presence of dissipation adds significant
complications that inhibit a simple solution of the (polynomially-sized)
1-body Hamiltonian.

The key new feature that allows for open quantum system simulation
on near-term hardware is the mid-circuit reset gate. There are two ways to
use this to simulate dissipation into a reservoir or environment—one way
simulates the full system plus reservoir and uses mid-circuit resets to dis-
sipate energy from the qubits that represent the reservoir, while the second
way integrates out the reservoir and implements more complicated
dynamics involving superoperators. In the first case, oneworkswith a larger
Hilbert space corresponding to the system plus reservoir, but the dynamics
are unitary time evolution, followed by reset operations on the reservoir
qubits which remove energy and create mixed states22. In the second case,
one works with the smallerHilbert space of the system only (and hence can
incorporate infinite-sized reservoirs), but the timedynamics is that of a non-
unitary quantum channel, which is more complicated to implement. In this
work, we follow the second approach.

Results
Approach
Althoughmanyquantumalgorithms are known for the simulationof closed
quantum systems, fewer studies have considered the simulation of open
quantum systems despite their rich and interesting behavior23. Current
approaches using inherent qubit decoherence15,24,25, direct simulation of an
environment26–28, implementing Kraus maps/Lindblad operators20,29–33,
variational techniques34,35, and more36,37. Since Barreiro et al. first demon-
strated their open-system quantum simulator38, current early-stage dis-
sipative simulations of quantum systems in the areas of quantum chemistry
and physics15,17,19–22,30,36,39 have been completed. Here, we implement a
Trotterized driven-dissipativemap, which involves the application of Kraus
operators at each time step20,30–33.Onaquantumcomputerwhere thenatural
operations are unitary, we implement the non-unitary gates by coupling to
an ancilla qubit which is subsequently reset; this produces a non-unitary
channel resulting in an eventual (mixed) state.

For our models, we choose two endpoints of the interacting Hubbard
model. The first endpoint (noninteracting lattice electrons) is a system of
free fermions in the presence of infinitely sized dissipative bath; the second
endpoint (interacting electrons on a single site) is the Hubbard atom. Note
that, in stark contrast to the closed system case, where free fermionicmodels
are exactly solvable, the addition of dissipation renders themodel to be non-
trivial. An exact solution for a metal with a constant density of states does
exist40, but it is not trivial to obtain; it requires using the Keldysh Green’s
function formalism to complete it. The choice of an (integrated out) infinite

bath is critical to avoid finite-size effect oscillations that arise from directly
simulating the reservoir22, which inhibits the stability of the fixed point.

We underscore that all of the steps that need to be implemented are the
same for a non-interacting system as for an interacting one. The main
differences are that (i) by working in the single particle basis, the Hilbert
space is much smaller for the non-interacting system, and (ii) that the
computational basis is the appropriate basis for the Kraus operators.
Interacting systems are primarily complicated by thenontrivial basis needed
for theKraus operators; when exactly integrating out a reservoir the number
ofKraus operators is givenby the square of theHilbert spacedimension, and
they map energy eigenstates to energy eigenstates, making this “straight-
forward” approach impossible to carry out on a quantum computer, except
for very small systems.Thus, althoughourdemonstrationdoesnot cover the
full range of systems, the approach can be extended more broadly once an
efficient representation for the Kraus operators is found, or other more
efficient algorithms are discovered which allow single-time steps to be
carried out with high enough fidelity.

The concrete details for how we determine the algorithms here are
given in theSupplementary Information.The specific systemswe studyhave
the benefit that the computational basis is a natural basis for the Kraus
operators, which allows their implementation to be quite efficient. In
addition, many of the Kraus operators are not needed to achieve the desired
time evolution. This is becausewe are not simulating a specific reservoir, but
instead are simulating a generic one. In the case of the Hubbard atom,
because we are going to a thermal state, and this state can be universally
prepared by any thermal reservoir, we can greatly reduce the number of
Kraus operators needed. In order to be be able to carry out this work, the
most efficient implementation of the open system is required in order to
have sufficient fidelity for each Trotter step.

Infinite 1D chain of driven-dissipative fermions
First, we examine the free fermion limit of aHubbardmodel in the presence
of a drivingfield and dissipative coupling to a bath. Electrons freelymove on
an infinite one-dimensional lattice via nearest-neighbor hopping (used as
our energy unit), with semi-infinite electronic thermal reservoirs (taken in
the wide-band limit) attached to each lattice site. A DC electric field of
strength E is applied by employing a linearly varying Peierls phase ϕ(t) =Ωt
(Ω= eEa, with e the electric charge and a the lattice spacing (we set ℏ and c to
one) in the lattice hopping parameter γh. The system Hamiltonian reads:

Ĥ ¼ �γh
X
i

eiφðtÞdyi diþ1 þ h: c: ð1Þ

where dyi =di are the creation/annihilation operator of the electrons. Each
lattice site is coupled to a reservoir by hopping term to one end of a semi-
infinite reservoir with Hamiltonian Ĥb ¼

P
iαωαc

y
iαciα, where c

y
i =ci are the

creation/annihilation operators for the bath, using a coupling term V̂ ¼
�g

P
iαðdyi ciα þ cyiαdiÞ:Here g is the bare hybridization amplitude, and α is

an index that runs over all the internal degrees of freedomof the bath, which
are taken to be infinite. As we show in the supplement, after integrating out
the bath, the properties of this coupling can be summarized in a parameterΓ
given by the square of the lattice-reservoir hoppingmultipliedby the density
of states of each reservoir.

The infinite system is diagonalized by Fourier transforming to
momentum space. In this fashion, the dynamics of the infinite lattice is
addressed by solvingmany independent single-qubit systems, each ofwhich
depends on the specific value of the crystalline momentum k; in the steady
state, we construct the results for allmomenta from the results for any single
momentum by invoking gauge invariance. The key point is that a constant
DCelectricfield shifts themomentum linearly in time (whenwe employ the
Peierls substitution). This means that the results from differentmomentum
values can be found by simply shifting the time axis of the results for one
momentum (further details are presented in the Supplementary Informa-
tion). Hence, the properties of the infinite lattice can be determined by the
results for the time trace of just onemomentum. The time andmomentum-
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dependent Kraus operators (for the time step of duration Δt) are given by:

K0 ¼ dykdk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 ΓnF ½�ϵkðtÞ�Δt

p
e�iϵkðtÞΔt ð2Þ

þ dkd
y
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ΓnF ½ϵkðtÞ�Δt

p ð3Þ

K1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΓΔt nF ½ϵkðtÞ�

p
dyk ð4Þ

K2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΓΔt nF ½�ϵkðtÞ�

p
dk; ð5Þ

where dyk is the creation operator of a lattice electron with momentum k,
ϵk(t) is the time-dependent dispersion relation, Γ is the strength of the
coupling to the reservoir (here set to 0.1), and nF(x) = 1/(1 + eβx) is the
Fermi-Dirac distribution at the temperature of the reservoirs (here set
to β ¼ 1

kBT
¼ 5).

From the Kraus map given in Eq. (1) the quantum circuit can be
constructed10 and appears in Fig. 1d. Note that this particular circuit pro-
duces the correct time evolution for the diagonal elements of the density
matrix; if desired, off-diagonal elements can be obtained by rotating the
basis such that these are diagonal. The ∣0i gate in the circuit is a reset
operation which ideally sets the qubit to the ∣0i state. However, this
operation is not perfect on current hardware and the reset fidelity can be
improvedby applying it to a qubitmultiple times in succession (at the cost of
additional amplitude damping on the remaining qubits because the reset
operation takes by far the longest time to run compared to the rest of the
circuit). We run our circuit using one to four reset gates per Trotter step.
This data is used tobuild an effectivemodelof the error combining these two
effects,whichweuse to extrapolate away someof the errors.Details are given
in the Supplementary Information.

Figure 1a plots the results of running the circuit shown in 1d with a
single reset gate per Trotter step. The first 300 steps were run on one set of
qubits and the remaining 700 on a second set. These runs are robust both
with respect to the choice of qubits and with respect to the total time of the
run. The circuit for the 1000th step required 2000 CNOT gates and yet the
data showno sign of a decaying signal. Note that the transients have died off
after about 30Trotter steps. In panel (b), the raw datawith one to four resets
is shown for up to 400 Trotter steps. After processing the data via extra-
polating to the zero-reset-time limit and then correcting the result by
shifting and stretching as described in the SI, one can see that the post-
processed data (c) agrees with the exact results to high precision. This
simulation clearly shows the stability of driven-dissipative circuits on near-

term quantum computers, producing accurate time evolution far longer
than is currently possible with the quantum simulation of coherent
dynamics of electrons9.

Figure 2 shows the steady-state DC current response (averaged over
one oscillation) of the system to an applied electric field, and compared
against the ideal circuit and theoretical results from Lindblad techniques, as
described in ref. 10. We can see an interesting result has developed. The
Blochoscillations that are characteristic of free electrons in anelectricfield in
the presence of a heat bath in our model give rise to a net DC current. As a
function of external field, the current first increases as expected because
more energy is put into the system, but soon reaches a maximum and then
decays. The reason for this is illustrated by the inset of Fig. 2, which shows
that as the electric field is increased, there are more oscillations, and inte-
grated, these cancel out. One can see that the maximum current is char-
acterized by minimal transient oscillations.

That the transient region extends to longer times as the electric field is
increased has practical ramifications as well, requiring the simulation to run
further in time. Hence, the calculation requires a trade-off between Trotter
error (large time step size) and convergence error (steady state not yet
reached). Tominimize the total error, we chooseΔt empirically withΔt/τ ≈
0.022 + 0.031Ω (here, τ = 2π/Ω). At large driving fields it is clear that we
have not yet reached the steady state and oscillations in the DC current data
are observed even in the ideal case. At small driving fieldΔt ¼ Oð1=ΩÞ and
we incur large Trotter errors. Despite these limitations, the quantum
computer results match both the ideal circuit and the theoretical results
fairly accurately across the entire range of simulated field strengths.

Interacting orbital with magnetic field and baths
The second problem we simulate is the atomic limit of the dissipative
Hubbard model in an external magnetic field B, where the bath may be
either hotter or colder than the system. This system with maximum two
electrons is a strongly correlated electron problem, which can be simulated
with four qubits. The energy cost of double occupancy is given byU and the
magnetic field shifts the energy levels of the single-spin states up or down
with an energy splitting givenbyB,measured inunits of theBohrmagneton.
The Hamiltonian is

H ¼ Un"n# �
μ

2
ðn" þ n#Þ �

B
2
ðn" � n#Þ ð6Þ

where U is the on-site interaction strength, μ is the chemical potential, B is
the magnetic field in units of energy, and nα is the occupation number

Fig. 1 | (Color online) Electron density vs. time. a 1000 steps of time evolution on
ibmq_mumbai using one reset gate per Trotter step. Reported data has been cor-
rected for measurement errors. Statistical errors are at about the 1.5% level, smaller
than the size of the plotting symbol (so error bars are suppressed). Different shades of
blue represent different sets of qubits while the solid black line is the ideal result of
running the circuit.b 400 steps of time evolution onibmq_boeblingenusing one
to four reset gates in succession per Trotter step. Reported data has been corrected for

measurement errors. c Left panel shows a zoom in on one period of the data shown in
(b).Middle panel shows one period of data obtained by averaging together all periods
of steady-state data (step > 30). Right panel shows post-processed averaged data as
described in the technical details section. d Quantum circuit for one Trotter step of
time evolution. Here, θi ¼ 2sin�1

ffiffiffiffiffiffiffiffiffi
2ΓΔt
eβεiþ1

q
and ϕi ¼ 2sin�1

ffiffiffiffiffiffiffiffiffiffiffi
2ΓΔt

e�βεiþ1

q
where εi ¼

�2 cosðkþΩiΔtÞ is the dispersion relation at step i (at time t = iΔt), and we use
Γ = 0.1.
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operator for state ∣αi. B is chosen to have a sign such that energy is lowered
by the occupation of a single up electron.

We build our dissipative circuit by using Kraus operators that induce
transitions between computational basis states, which are the energy
eigenstates. These transitions are implemented bymapping the system state
to an ancilla register and rotating the system qubits controlled on the
ancilla10,38 (shown in Fig. 3a); the approach uses just the transitions that
correspond to a cycle through the states (depicted in Fig. 3b) Details are
given in the Supplementary Information. This circuit is iterated NT = 19
times to simulate NT Trotter steps of time evolution.

Figure 3 shows the transient evolution of the Hubbard atom from the
vacuum state (with no electrons) to a thermal state with filling n ≈ 0.83 at a
temperature T = U/2 in an external magnetic field B = U/4 using one reset
per Trotter step. We note the effect of finite temperature on the results.
Indeed the state parallel to the magnetic field (c) has the highest population
at steady state, but it remains below 1/2. The next highest population is the
state with one down electron (d), which although paying a cost of being
opposite the magnetic field, still is not causing a Coulomb interaction U.
Note the relatively large fluctuation to large population for the one down
electron as the filling is ramping up from vacuum state, partly a result of
noise, butmainly because (see the directionality of the arrows in Fig. 3b) this
state is filled first from the vacuum. The state with no electrons (e) is, of
course, the initial condition, so it shows occupancy 1 at step 0, but soon
drops to low occupancy, but not so low as the state with two electrons (f),
which suffers the energy cost U.

Thesedata are onlypost-processed formeasurement-error corrections.
The transient data lie close to the ideal circuit but show deviations due to
intrinsic errors in the hardware.Nevertheless, the steady state is reproduced
accurately for the fourdifferentpopulationsof the thermal state (c–f) and for
the thermal final density matrix (g-i). This further exemplifies the robust-
ness of these types of algorithms to noise and how errors in early time steps
are largely corrected in subsequent steps.

Discussion
In this work, we have demonstrated that the capabilities of near-term
quantum hardware for simulating open quantum systems are greater than
one might expect based on the state-of-the-art results in simulating closed
systems. By making use of the newly developed reset gates and mid-circuit
measurements, we have achieved dynamical simulations, with 1000 Trotter
steps using circuits of up to 2000 CNOT gates with minimal signal decay.

We interpret this success by viewing thedissipativedynamics as a dynamical
map with a fixed point; the hardware noise is not sufficient to overcome the
tendency of the map to drive the systems towards their respective fixed
points. It may perturb the fixed point but does not significantly modify its
character, which is what makes the process robust.

For the models discussed here, we observe that the dynamical map of
the evolution has a unique fixed point and that the fixed point is onlymildly
affected by the hardware noise and the Trotter time-step infidelity. This is
evidencedby the relatively good agreement between the ideal circuit and the
QC data shown in Figs. 1 and 3. In general, however, it may be that in other
scenarios thefixedpoint is sufficiently sensitive to theparticular effects of the
noise that the resulting evolution retains very little of the ideal circuit.
Similarly, we expect that as the noise getsworse, for examplewhen scaling to
larger systems, that the modification of the dynamical map becomes more
severe. We reserve these questions for future investigation. However, we do
note a simple empirical result; if a single Trotter step has sufficiently high
fidelity—i.e., the map of the open system combined with the intrinsic
decoherence of the quantum computer and the infidelity of the Trotter step
yields afixedpoint that is close enough to thefixedpoint of the original open
system—then the simulation is successful and can be accurately continued
to long times. This result is similar in nature to the well-known result for
error correction that the fidelity of the individual qubitsmust be sufficiently
high in order for it to be possible to carry out error correction. The analog
here is the sufficiently high fidelity of a single Trotter step.

These conclusions bring up an important question—under what cir-
cumstanceswill the perturbation of the fixedpoint be small and controllable
so the quantum simulationwill be successful?We are not able to answer this
question here, andwe believe it is an important question for the community
to address given the results we have found, which indicate rather broad
robustness. In order for these types of problems to be solved on quantum
computers knowing which systems will be successful and which ones will
fail is obviously an important area for future work.

The community is searching for nontrivial problems that can be solved
on quantum computers that show an advantage over classical computers.
While our work has not yet achieved this goal, it does show that this class of
problems is a potential path towards achieving this goal. Aside from our
demonstration here, another reason is that the non-equilibriummany-body
problemdoesnot have efficient algorithms to solve it on classical computers.
The algorithms that do exist usually are restricted to either very small-size
systems or to short times.Here,we show that on a quantumcomputer, there

Fig. 2 | (Color online) DC current versus electric
field strength. Comparison of the DC response at a
given field strength as computed (see technical
details section) using: (i) the Lindblad master
equation (black circles), (ii) the ideal circuit (red
squares), and (iii) the measured data from
ibmq_boeblingen (blue triangles). All circuits
for the current were run for 50Trotter steps each due
to total quantum computer time available, leading to
a trade-off between Trotter error and convergence
error. Δt was chosen empirically such that Δt/τ is
linear inΩ. Convergence to the steady-state current
is shown in the inset with the solid dots representing
tmax for that run.

https://doi.org/10.1038/s41534-025-00964-8 Article

npj Quantum Information |           (2025) 11:10 4

www.nature.com/npjqi


may not be a short-time restriction, and this is a very important result for
using them to simulate nontrivial systems.

Methods
All data were taken using superconducting quantum computers made
available by IBM, either ibmq_mumbai (Figs. 1a and 3) or ibmq_boe-
blingen (Figs. 1b, c and 2).ibmq_boeblingen is a 20-qubit quantum
device and ibmq_mumbai is 27-qubit device. These two devices were
chosen because they were among the first with reset gates available. The
reported error rates were used to select sets (~5–10) of candidate qubits on
which a limited number of Trotter steps were run. Results from these were
thenused to select thefinal qubits onwhich the full job(s)would be run.Raw
shot counts were processed usingQiskit Ignis’41 built-inmeasurement error

mitigation protocol. This prepares and immediately measures each com-
putational basis state giving a confusion matrix, which is inverted and
applied to the raw shot counts to yield the mitigated shot counts. For each
data point shown in the figures, we used 1000 shots.

This work pushed current near-term quantum computers to their
limits. This created some unique issues when trying to run these extremely
deep circuits. We encountered buffer overflow errors after running a large
number of our larger circuits indicating we had overflowed the device’s
capacity to record more measurement data. This is why we limited our DC
current data to 50 Trotter steps per unique set of parameter values. We
avoided this limit when taking data for Fig. 1b by breaking our jobs into
smaller chunks, but this meant long queue times, which would have been
prohibitive to get thedata inFig. 2.Thedata inFig. 1awereobtained through

Fig. 3 | (Color online) Thermalized Hubbard model in the single-site limit, with
magneticfield. aCircuit for a single Trotter step of time evolution. The rotation angles
Θ are given in terms of transition probabilities γ, which are derived from the detailed
balance condition as depicted in (b) and described in SI. Θi;j ¼ 2sin�1ð ffiffiffiffiffiffi

γi;j
p Þ and

γi;j / eβεi , where εi is the energy of state ∣ii. c–f Results showing the populations of

each of the four possible occupation states versus Trotter step for the ideal case (red
squares), measurement-error mitigated data from ibmq_mumbai (blue circles), and
the theoretical thermal population (dashed black line). g–i Full tomography of the
density matrix at selected time steps.
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exclusive access to ibmq_mumbai, which allowed us to break our circuits
into individual jobs without worrying about queue times. Nevertheless, we
still overflowed thebuffer around step300, forcingus to change to anewpair
of qubits with a fresh buffer. Finally, we began to exceed the limits of the
system generating the driving microwave pulses at around 1000 Trotter
steps, which is why this is the upper limit for Fig. 1a.

For the full tomography results in Fig. 3, we made use of the “state_-
tomography_circuits” function and “StateTomographyFitter” class built
intoQiskit Ignis. The “state_tomography_circuits” creates a list of 3n circuits
which carries out the desired quantum circuit and thenmeasure in theX,Y,
and Z bases. These results are then fed into the “StateTomographyFitter.fit”
function in order to reconstruct the full quantum state.

Data availability
The data for the figures are available here (https://doi.org/10.5061/dryad.
cc2fqz6ff).

Code availability
The code to produce the figures is available from the authors upon request.
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