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The 1925 revolution of matrix mechanics and how to celebrate
it in modern quantum mechanics classes®

J. Tran, L. Doughty,” and J. K. Freericks®

Department of Physics, Georgetown University, 37th and O Sts. NW, Washington, DC 20057

(Received 3 January 2024; accepted 21 September 2024)

In 1925, Heisenberg, Born, and Jordan developed matrix mechanics as a strategy to solve quantum-
mechanical problems. While finite-sized matrix formulations are commonly taught in quantum
instruction, following the logic and detailed steps of the original matrix mechanics has become a
lost art. In preparation for the 100th anniversary of the discovery of quantum mechanics, we
present a modernized discussion of how matrix mechanics is formulated, how it is used to solve
quantum-mechanical problems, and how it can be employed as the starting point for a postulate-
based formulation of quantum-mechanics instruction. We focus on the harmonic oscillator to
describe how quantum mechanics advanced from the Bohr—Sommerfeld quantization condition, to
matrix mechanics, to the current abstract ladder-operator approach. We also describe a number of
different activities that can be included in the quantum mechanics classroom to celebrate this
centennial. © 2025 Published under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/5.0195658

I. INTRODUCTION

Around the turn of the 20th century, atomic physics was in
disarray. There were theories from Lord Raleigh based on
vortices, orbital theories that involved huge numbers of elec-
trons, even for the smallest atoms, plum-pudding models,
and so on. Even spectroscopy had many mysteries including
the discovery by Pickering of apparent half-odd integer
quantum numbers for hydrogen in some blue stars. What
was needed was more experimental input. Soon after the
Rutherford experiment, Bohr emerged with his theory, and
although flawed, it ushered in a great period of enlighten-
ment over the ensuing decades for atomic theory.

Because classical mechanics, electromagnetism, and sta-
tistical mechanics were the main areas of physics around
1900, practitioners were experts in many of these fields. The
idea that emerged at that time was that quantum mechanics
was a restriction on the laws of motion for classical mechan-
ics. Ultimately, the notion of Bohr and Sommerfeld was that
adiabatic invariants are what is quantized. We will see how
this Bohr—Sommerfeld quantization rule (quantum condi-
tion) gets quantum mechanics right for some systems in a
“broad-brush” fashion, but needs to be corrected in some
way (contemporaries called it sharpening the quantum con-
dition). In addition, there was heavy use of Bohr’s corre-
spondence principle to ensure the smooth transition from
quantum mechanics to classical mechanics.

In this work, we do not take a historical approach to the
problem. Instead, we focus on the logic in a modern setting.
This is not to say that history is unimportant. It is. What we
want to emphasize is how to use the breakthrough ideas from
1925 in quantum instruction today. We will show that this is
not only feasible, but it also can make a postulate-based
approach to quantum mechanics more familiar and easier to
understand for the student.

There are many references that discuss the history of
matrix mechanics. We mention some of the notable ones
here, to provide readers with resources to learn more about
its rich history. There are two resources that do a fantastic
job of clearly explaining the philosophy that led to matrix
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mechanics and the details of how the theory works. They are
the first volume of Tomonaga’s quantum mechanics book'
and the written summary of Max Born’s lectures® in MIT
toward the end of 1925. In more recent textbooks, we wish
to highlight the discussions in Longair,’ Weinberg,* and
Golub and Lamoreaux,’ as being particularly thorough. The
article by Fedak and Prentiss® also provides a wonderful his-
torical and scientific account of how matrix mechanics
emerged. A more complete historical account can be found
in the study by Duncan and Janssen.” These materials pro-
vide a rather thorough reading list for those who wish to
examine the topic further.

We envision the work described here as being most appro-
priate to use with graduate students, who already have seen
quantum mechanics at least once before. Having some back-
ground knowledge makes it easier to put matrix mechanics
into the broader context of quantum mechanics.

II. BOHR-SOMMERFELD QUANTIZATION

As we mentioned in the introduction, the Bohr—Sommerfeld
quantization rule can be viewed as quantizing adiabatic invari-
ants from classical mechanics. Most of us today are not famil-
iar with adiabatic invariants, so we start with a short review of
the idea by following Crawford’s wonderful treatment.® We
consider a simple harmonic oscillator, with mass M and fre-
quency o, which has a frequency that changes slowly in time
(dw/dt # 0) due to a time varying spring constant. The energy
is the sum of the kinetic and potential energies and is given by
E = (1/2)M3* 4 (1/2)Ma?x>. 1t is not conserved in time,
because the frequency is changing. The time derivative of the
energy is given by

dE dw

ey Y £ M 2 . M 2 @ 1

7 XX + Mw~ xx + Mwx o (1)
What we mean by the frequency changing slowly is that we
can approximate x(f) ~ x( cos wt, with a constant w over one
period. Then X = —w’x during that periodic motion.
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Substituting this result into Eq. (1) shows that the time deriv-
ative of the energy becomes

dE  2PEdw
=== )
dt w dt

Here, PE = IMw?x? is the instantaneous potential energy.
Because the change in the frequency is so slow, we average
the derivative above over a period to find

dE  2(PE)dw
dE _2PE) do 5
dt w dt
with the angle brackets indicating an average over the period
of the classical motion. The next step requires us to use the
virial theorem. We start by differentiating the virial Mxx to
find

d
7 (Mxi) = Mx* 4+ Mxik = Mi* — Ma*x*
= 2KE — 2PE, 4)

where, again, we assume the acceleration is unchanged by the
change in the frequency with time over one period. Next, we
integrate this result over one period, assuming the frequency is
constant over the period. Because the motion is periodic, the
position x(7) and the velocity x(#) return to their initial values
after one period, and the integral vanishes. This tells us that
(KE) = (PE) and then E = (KE) + (PE) = 2(PE) = 2(KE).
Substituting into Eq. (2) gives us

d—E:d—w7 or E:C. (&)

E w w
In words, even though the frequency is changing in time, the
ratio of the total energy to the frequency remains constant, if
the change in the frequency with time is slow. This approxi-
mate conservation law is called an adiabatic invariant,g and
it played a large role in the early development of quantum
mechanics. The restriction placed on classical mechanics for
the quantum realm was to quantize the adiabatic invariant as
being equal to /in, where n is a nonnegative integer. Doing
this gives us the energy of a quantum harmonic oscillator sat-
isfying E = hiown, which is incorrect, because it misses an
additional quantum correction equal to /2. Nevertheless,
this was the prediction of Bohr—Sommerfeld quantiza-
tion.'"®"" To see the relationship with the standard
Bohr—Sommerfeld quantization, we consider the action inte-
grated over a period §pdg = fOT Mx?dt = 2(KE)T, where T
is the period of the oscillation. Using T = 27/®, we immedi-
ately find that § pdg = 2nE/w = hn, which is the standard
Bohr—Sommerfeld quantization rule.

Note that this discussion required the motion to be peri-
odic in order to apply the Bohr—Sommerfeld quantization
rule, or to apply the quantization rule by using an adiabatic
invariant. This focus on periodic orbits also motivated the
use of a Fourier series to describe the motion in these orbits,
because periodic motion can always be decomposed into the
fundamental frequency 27/T and its harmonics. Where this
quantization strategy suffered was cases where the orbits
were not periodic, and also when one had multiple adiabatic
invariants to quantize. It further could not be used to solve
all quantum problems.
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The mindset of these early quantum researchers was that
quantum mechanics arose as a restriction to the classical
motion. The Bohr—Sommerfeld quantization condition works
well for simple one-dimensional motion, but becomes more
challenging for more complicated systems, even though it
had the remarkable success of properly predicting the relativ-
istic energy levels of hydrogen, which was only verified in
quantum mechanics after the Dirac equation was discovered
and solved. The whole procedure had many flaws to it,
because it worked for some systems, but not for others—
however, when it worked, it worked beautifully. It clearly
needed to be revamped in some way to be able to describe
the systems that it failed on. This was first solved with the
advent of matrix mechanics in 1925.

Before moving to Sec. III, we make a comment about the
symbol M, which is overloaded in this paper. The capital let-
ter M is used to denote the mass, a bold capital letter M to
denote a matrix, and the lower case letter m is used as a label
for the index of a matrix.

III. MATRIX MECHANICS

The goal we have with this work is not to provide a histor-
ical account of how matrix mechanics works. Indeed, there
are many such accounts, including three recent ones.>>’
Instead, our focus is on translating the logic and beauty of
matrix mechanics into a more modern setting, where we can
use it in modern classroom discussion. As we describe
below, one can even start a discussion about how a classical
system is quantized by following a different set of postulates
than the standard ones used in most textbooks. We find this
approach to be more appealing because it provides a more
physical understanding for the origin of quantum mechanics.
The prerequisite is that one needs to have a firm grasp of
Hamiltonian mechanics to understand the details of the deri-
vations (although it is sufficient to just have a firm grasp of
the equations of motion, which can be motivated without
requiring a full course on intermediate classical mechanics).
In this light, we focus our effort on the original two articles
by Heisenberg'? and Born and Jordan.'> However, we trans-
late the older ideas (quantum mechanics is a restriction of
classical mechanics) to a more modern perspective (every-
thing is quantum and classical mechanics emerges via the
correspondence principle in specific limits).

In classical mechanics, periodic motion is described in
terms of the fundamental frequency w = 2n/T and its
harmonics nw, because all functions periodic in T can be
expanded by such a Fourier series. If this held in quantum
mechanics, then we would expect the transitions in atoms
(which are given by energy differences) to produce spectra
given by multiples of some fundamental frequency.
However, spectra are not organized in this way. The
Rydberg—Ritz combination principle phenomenologically
showed that the spectroscopic lines appeared at energy differ-
ences between two energy levels.'* Such a result is incompati-
ble with a Fourier series expansion and points to the need for
another approach that automatically enforces the combination
principle. We will next see how Heisenberg reformulated
kinematical ideas to naturally incorporate the Rydberg—Ritz
combination principle.

While Heisenberg was not aware of matrices (he called
them tableau in his first article), a matrix structure naturally
allows you to work with energy differences. Here is how.
Heisenberg introduced dynamical matrices that depended on
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time. By having the (m, ) matrix element depend on time as
exp(iognt), with @, = (E,, —E,)/h, we immediately
achieve the goal that the matrix elements oscillate as the
energy differences (in a modern language, we construct
the matrix elements of the operator via (m(z)|O|n()), with
|n(7)) an energy eigenstate that oscillates according to
the time-dependent Schrodinger equation via |n(7))
= exp(—iE,t/h)|n(0)) and with the state |n(0)) either deter-
mined via operator methods, or from the wavefunction solu-
tion to the time-independent Schrodinger equation—but
Heisenberg knew nothing about energy eigenstates and only
required this specific time dependence of the matrix ele-
ments). The key aspect of this choice that makes the
approach viable is if we look at the matrix that represents a
product of two operators, we form it by matrix multiplication
of the two dynamical matrices. Then, one can immediately
see that the (m,n) matrix elements of the product have the
same time dependence as each of the individual matrices, so
the time dependence is preserved under multiplication of the
matrices (this follows because ,; + @), = Wpy). It is
remarkable that Heisenberg rediscovered matrices and
matrix multiplications by trying to make a theory consistent
with the Rydberg—Ritz combination principle! (Note that
Heisenberg recognized that the spectra corresponded to the
case where E,, > E,, so he extended the matrix definition to
E,, < E, by requiring the matrices to be Hermitian.) Another
consequence of Heisenberg’s assumption is that a time-
independent Hamiltonian corresponds to a diagonal matrix
with the energies E, along the diagonal, as any other matrix
form would have time dependence, and the energies must be
governed by the Hamiltonian. Having made the decision to
introduce matrices as the dynamical variables for quantum
mechanics, one next needs to decide how to work with them.
One issue that arises is that matrix multiplication is not com-
mutative. What is the implication of this for the quantum
theory?

In 1925, the Born—Sommerfeld quantization rules were
believed to be correct, so Heisenberg used them to shed
light on the canonical commutation relation between these
position and momentum matrices. However, it was awk-
ward to formulate matrices into an integral that leads to the
action. Instead, Heisenberg decided to differentiate the inte-
grated Bohr—Sommerfeld quantization condition to find the
new quantum condition. Since the quantization condition
depends on integers, he needed to generalize the idea of dif-
ferentiating integer-valued objects. The hint he had for this
was the Born correspondence principle, worked out in
1924, which replaces derivatives of integer-valued objects
by finite differences.'®> Using this approach, he was able to
establish that the commutation relation between position q
and momentum p matrices had diagonal matrix elements
equal to iA.

“Differentiating” the Bohr—Sommerfeld quantization rule
makes the commutator [q, p], here thought of in terms of
infinite-dimensional matrices q and p, of primary importance
(especially because it was derived from the venerated
Bohr—Sommerfeld quantization rules). Heisenberg showed
that the new (or as he said sharpened) quantum condition
required all diagonal matrix elements of [q, p] to be equal to
ii.'2 Soon thereafter, Born and Jordan showed that the
matrix is diagonal."

However, one does not need to base the reasoning for the
quantum theory on the flawed Bohr—Sommerfeld quantiza-
tion condition. Instead, we proceed via two modernized
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postulates: (1) the dynamical quantities of position and
momentum are described by Hermitian matrices, with a har-
monic time dependence given by the energy differences
between energy levels (Heisenberg’s breakthrough postulate)
and (2) the classical Hamiltonian equations of motion con-
tinue to hold for the quantum objects as matrices
(Ehrenfest’s theorem). The first postulate enforces the
Rydberg—Ritz combination principle from spectroscopy,
while the second can be viewed as being the correspondence
principle, assuming we can find a way to ultimately link
these matrices to classical calculations.

One can now determine the canonical commutation rela-
tion by simply using postulate (2), in that the classical equa-
tions of motion hold for these quantum matrices. The first
step is to show that the commutator is a constant in time (as
originally shown by Born and Jordan). We find

d . .

1 d

because momentum commutes with itself and position com-
mutes with functions of position. (One might ask, How do
we take the derivative in the second term? The easiest way
to do this is to think of taking the derivative as we would in
classical mechanics and substituting the matrices into the
expression after the derivatives have been taken.) Next,
because of the time-dependent structure of the matrices,
where the matrix elements vary harmonically as e/, we
have that the time derivative of the matrix element is given
by M, = i0,;;nMmn. Now, because the Hamiltonian matrix
is diagonal and equal to E,;0,,,, the Heisenberg equation of
motion for generic matrices is given by

d ] Em - En ]
_an = iwmann = l( )an = :

dt 7 h [H, M|

)

We next apply the Heisenberg equation of motion to the com-
mutator of position with momentum, which says the time
derivative of the commutator is equal to (i/7%i)[H, [q, p]], or
because we are working in the basis where the Hamiltonian
matrix is diagonal, we find the mn matrix element to be

d L (B — Ey)
0= P, =5 M @p)],, =7

mn

[q7 p}mn'
®)

Hence, when m # n, we immediately learn that the commu-
tator matrix element vanishes, so it is a diagonal matrix
(at least in the basis where H is diagonal; we will later see it
remains diagonal in all bases). Note that there is a tacit
assumption here that the spectrum of the problem is nonde-
generate. We know this is true for one-dimensional prob-
lems, in general, so one should focus this discussion on
one-dimensional problems (on the infinite one-dimensional
domain). For the diagonal matrix elements, Heisenberg,
Born, and Jordan wused the differentiation of the
Bohr—Sommerfeld quantization rule to infer that the diagonal
elements are all equal to i4#. However, that requires accep-
tance of Bohr—Sommerfeld quantization as the true quantum
condition. Taking a more modern viewpoint, we can find the

Tran, Doughty, and Freericks 16

€2:10:81 G20z AInr €2



diagonal elements by modifying an argument Herbert Green
used to determine them.'® We first examine the relationship
between momentum and position via

M M [ p? ]
P q lh[ ,q] i [2M+V(q),q

= ~5;(Pla:p] + a4, P]P) €))

after using the Leibniz product rule for the commutator
(valid for operators and matrices). Now, we recall that [q, p]
is a diagonal matrix, and we let ¢, denote its mth diagonal
matrix element. Looking at the matrix elements in Eq. (9),
we find

ihpmn = (Cm + c’l)pmn (10)

N =

valid for all m and n. Note that one cannot conclude that the
canonical commutation relation is proportional to the iden-
tity matrix at this point, as there are many possible solutions
to this equation. For example, one choice is indeed c,, = if,
so the commutator is proportional to the identity matrix. But
other choices may be possible too. If p,,, # 0 only when m
is odd and n is even and vice versa (as happens in the har-
monic oscillator, for example), one could choose ¢y, = 2ih
and c¢y,+1 = 0. Nevertheless, it is only the solution propor-
tional to the identity matrix that works, because the result
must hold for all possible Hamiltonians. As we change from
one Hamiltonian to another, the basis changes for which the
Hamiltonian is diagonal. The canonical commutation rela-
tion must still be a diagonal matrix in this new basis (because
our proof that it is a diagonal matrix did not depend on the

Poisson bracket
quantization
rule

v

form of the potential energy). The only matrix that maintains
the same diagonal form regardless of the basis change is the
identity matrix. So, the only possible choice for the solution
is that the commutator is proportional to the identity because
the commutator is a diagonal matrix for all possible
Hamiltonians.

You might ask, is this an independent derivation of the
canonical commutation relation? Unfortunately, it is not
without using postulate (2)—the Ehrenfest theorem—that
the expectation values of the classical equations of motion
hold for the quantum system, when position and momentum
are expressed in terms of dynamical matrices. These
Ehrenfest relations are usually derived by using the canoni-
cal commutation relation within a standard quantum treat-
ment of this problem. Here, we instead postulate that the
classical equations of motion hold for these dynamical matri-
ces. This is how there is an underlying postulate hidden
within this “derivation.” However, this postulate might be
more physical and meaningful than directly postulating the
canonical commutation relation, as is commonly done in
quantum instruction. We believe it is interesting to share this
alternative point of view with students, especially in the
anniversary year of the discovery of quantum mechanics.
We display the correspondence graphically in Fig. 1.
Postulate-based approaches are common in instruction and
appear in many textbooks but are often scattered through the
text, rather than emphasized. One exception is Gillespie’s
book, which is entirely about postulates.'” Interestingly, in
most postulate formulations, the canonical commutation
relation is not listed as a separate postulate, although it
appears in a postulated form, either from postulating the rep-
resentation of momentum as an operator or through Dirac’s
quantization rules with respect to the Poisson bracket.

Canonical i Hermitian
commutation 9 Hilbert 9 State 9 operators
relation space vector are observables|

Measurement .
9 yields 9 Born rule 9 Collapse 9 Unitary
eigenvalues postulate dynamics

Rayleigh-Ritz
combination
principle
¢ Matrices
represent
- operators
Heisenberg inpa vector

matrix
representation $ space
Canonical T
commutation 9 coo
relation space

[Correspondenc a

principle

(0

Quantum-
classical
correspondence

Fig. 1. Comparison of conventional (top) and matrix-mechanics (bottom) based formalism for quantum mechanics. In the conventional approach (top row), the
canonical commutation relation is either postulated or proposed as a quantization rule from Poisson brackets. Then we postulate to work in a Hilbert space,
with state vectors describing the physical system and Hermitian operators corresponding to observables. Next the measurement hypothesis describes how the
result of any shot of an experiment is given by an eigenvalue of the corresponding operator, with the Born rule providing the probability that it will occur. The
wavefunction is then collapsed onto the measured state. Finally, dynamics are unitary, governed by the time-dependent Schrodinger equation. These postulates
have virtually no physical motivation. Our proposed revision (bottom row) starts from the Rayleigh—Ritz correspondence principle, which motivates describing
the system with matrices, and the correspondence principle, which can be used to derive the canonical commutation relation by employing the Hamilton equa-
tions of motions to the matrices. Since matrices represent operators in some abstract vector space, we then pivot to working in that abstract space, following

the standard progression thereafter.
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One of the challenges of the matrix mechanics approach is
that because we work in a basis where the Hamiltonian is
diagonal, we need to use the other information we have to
concretely construct the Hamiltonian matrix (how to go
beyond this is touched upon in the “Drei-Mann Arbeit”
paper'®). This can only be done for the harmonic oscillator
and angular momentum eigenstates. The angular momentum
case is discussed in many textbooks as the operator method
to find states of definite angular momentum. We focus here
on the harmonic oscillator solution because it is done differ-
ently from how we see it in modern textbooks.

The harmonic oscillator Hamiltonian satisfies

1 Ma?
H=_—p’+—¢. 11
P T4 1D
The equation of motion becomes M{ = —Mw?’q, or

(w?, — ©*)q,,, = 0. Hence, whenever q,, # 0, we must

have w,,, = =w. Use “0” to label the lowest energy level
and “1” for the state that it is coupled to. Then wy; = —w
# 0, so qg, # 0 only for n =1 (recall the energies are non-
degenerate). The next step we have is to rewrite the canoni-
cal commutation relation in terms of the matrices, using
p = Mq. This gives

(9,P],, = iM > (O — Oy, = 7. (12)
!

Choose m = n to find that

lMZ(CO[m - w"VLl)|qml|2 = lh7
/
or

h

2

Oull* = =57 (13)
Z " 2M

From this, we learn that |qy,|> = /i/2M® because only the
01 matrix element is nonzero. This means for the 0 column

and row, all elements of q vanish except qg =
e\ /l/2M» and then Hermiticity tells us that
Q9 = €"\/h/2Mo. Similar result holds for p, with py, =
—ie '\ /EM® /2 and p,, = ie"”'\/liMw /2. So, we can use
these two results to now calculate the 00 matrix element of
H. We find

HOO =—+4+—=-ho. (14)

This is the well-known result for the ground-state energy of
the harmonic oscillator. Since all higher energies are incre-
mented by Zw, we immediately find that E, = hw(n +%)
We can fill in the remaining matrix elements for the position
and momentum matrices, but we do not go through this exer-
cise here.

In the modern language, we have

(m(0)|p|n(2)), (15)

where |n) satisfies H|n) = E,|n) and the time-dependent
state is |n(7)) = exp(—iE,t/T)|n). From this, you can imme-
diately see we capture the proper time dependence, the

Qi = (m(1)|¢|n(7)) and p,,, =

18 Am. J. Phys., Vol. 93, No. 1, January 2025

Hermiticity, and the other properties that Heisenberg postu-
lated. Furthermore, we also know that the requirement that
the Hamiltonian matrix be diagonal can be relaxed—we can
compute the position and momentum matrices in any basis,
and from them, we can compute the Hamiltonian matrix.
Then, we simply have to diagonalize the Hamiltonian matrix
to determine the energy eigenstates and eigenvalues. The
challenge is that this is difficult to carry out for infinite
dimensional matrices. Nevertheless, this was still viewed as
a valid way of solving these problems. Tomonaga’s text'
describes this procedure in detail in the final section of
Chapter 5. Alternatively, we can truncate the matrix (by
removing the high-energy contributions) to make it finite and
diagonalize it numerically. This is a common way to approx-
imately solve the Schrodinger equation.

We want to reiterate that there is no wavefunction in this
approach, or even quantum eigenstate, just dynamical matrices. It
is amazing that one can solve any problem with such restrictions,
and this is in many respects the beauty of matrix mechanics.

IV. LADDER OPERATORS

Many of you might be puzzling at this point—where are
the ladder operators? They emerged a bit later. The first we
found of them is in a 1928 pag)er by Jordan and Pauli, which
focused on quantizing light."” There, the conventional rais-
ing and lowering operators are defined but are thought of as
infinite-dimensional matrices. While the way they are used
in solving the harmonic oscillator is familiar to all, we briefly
discuss how this development enters into the matrix mechan-
ics context, especially because these early approaches are
different from how we currently do this.

The first extensive discussion of how to use ladder opera-
tors is by Born and Jordan in their 1930 textbook Elementare
Quantenmechanik.*® Their strategy is to convert the coupled
first-order classical differential equations (q = p/M and
p = —Mw?q) into two decoupled first-order differential equa-
tions by defining b = C(p — iMwq) and b’ = C(p + iMaq).
These matrices satisfy the uncoupled differential equations
b= —iwbandb' = iwb'. They choose C so that [b,b'] = 1;
that is, C = 1/+v/hAiMw. Next, keeping track of the order of
the matrices, they calculate the products of these operators to
find that

7 . R
H:hwbbT—Tw:hwb'b+Tw. (16)

To complete the solution of the problem, they explicitly
compute the matrices for b and b, with each having only at
most one nonzero matrix element in each row and column.
Then, they can construct the Hamiltonian matrix H from the
expressions in Eq. (16) and find that the energies of the har-
monic oscillator are given by hw(n + 1/2).

There is another solution to this problem worked out in
1930 by Dirac in his textbook Principles of Quantum
Mechaznics,21 which was released after Born and Jordan’s
book. Dirac forms raising and lowering matrices for a dimen-
sionless Hamiltonian given by P? + Q?, with [Q,P] = i. He
defines A= P+iQ)(P—-iQ) and by examining
AP+iQ) = (P+iQ)(A +2), a form of an intertwining
relation, he performs expansions of this relation in terms of
eigenstates of A and is able to reason that the eigenvalues of
A are 0, 2, 4, ... and hence of P? +Q2 are 1, 3, 5, .... He
does use the stepping up and down the spectra and the fact
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that the lowest eigenvalue must be nonnegative in his discus-
sion. He also computes explicit matrices for the ladder
operators.

We only get to the modern treatment of this problem in
the third edition of Dirac’s book,22 from 1947, and Schiff’s
1949 textbook.?® This is because both of these approaches
required Schrodinger’s results for the factorization method,
which constructed the energy eigenstates in terms of raising
operators acting on the ground state.>* Their presentations
had influence from Rojansky’s 1938 book as well, which
outlines about half of the abstract argument.>

V. CLASSROOM ACTIVITIES

We envision two ways of bringing this material into a sin-
gle lecture in a quantum mechanics class. The first is to use
this approach to describe quantum postulates in a more
meaningful way. By linking the sharp lines in atomic spectra
to the Rydberg—Ritz combination principle, one motivates
using matrices, because they naturally have, and preserve,
the harmonic time dependence that is consistent with this
principle. One can argue that the electron in the atom oscil-
lates at the frequency derived from the energy differences of
the two energy levels, which then creates a photon from the
oscillating electric field. Then, using the correspondence
principle to bring in the Ehrenfest equations of motion and
justifying using them due to the correspondence principle is
also natural. Having a diagonal Hamiltonian matrix also fol-
lows for time-independent problems, because otherwise the
Hamiltonian has explicit time dependence. This then allows
one to derive the canonical commutation relation once we
recognize that it is a diagonal matrix for all Hamiltonians.
Then, to get to the rest of the quantum postulates, one shows
how picking states in a Hilbert space (or Gelfand triple, if
you want to be more rigorous), and abstract operators that
map states to states, allows you to show how the matrices are
constructed, and thereby complete the introduction of quan-
tum ideas (one needs to also discuss measurement and the
Born rule, of course). The second way, if done after instruc-
tion has started, is to motivate the matrices by working with
time-dependent energy eigenstates, and then showing how
they lead to the canonical commutation relation, so that if
one uses the postulates as stated above, we could have intro-
duced quantum mechanics this way. Once these initial ideas
are covered, showing how to solve the harmonic oscillator
this way is the other valuable topic to discuss.

The remainder of the suggestions are problems one can
use to help students have contact with the early quantum
mechanics ideas, especially with how they led to matrix
mechanics.

One interesting problem from the early days of quantum
mechanics is to analyze the Pickering—Fowler lines contro-
versy. An astronomer, Pickering, found hydrogen-like lines
with half-odd integer quantum numbers in a small class of
hot blue stars. Fowler performed spectroscopy on earth and
found they only occurred when he had helium as well as
hydrogen in the experiment. A good problem is to have stu-
dents use reduced mass in the analysis of actual measured
spectra (just as Bohr did?®) to see whether the Balmer series
with half-odd integer quantum numbers, or singly ionized
helium with integer quantum numbers fits the data better.
This also brings in the idea that high-precision measurements
often have impact beyond just the measurement itself. It is
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believed that this analysis is what convinced Einstein that
the Bohr model must be correct.

Another good exercise is to have students derive the adia-
batic invariant for the classical harmonic oscillator, and see
why having that be quantized makes sense, as being the most
“constant” object in classical mechanics. It has the benefit of
requiring very little calculus to complete.

An interesting problem is to derive the energy eigenvalues
for an anharmonic oscillator as Heisenberg did in his original
paper. This would be given to students post instruction, espe-
cially if perturbation theory has already been covered. One
could have the students do it the modern way with perturba-
tion theory or the Heisenberg way with matrix mechanics.

Using the wavefunctions of energy eigenstates, one can
ask students to solve for the position or momentum matrices
for the harmonic oscillator, and for other solvable models,
such as the particle in a box.

Finally, rather than just saying that raising and lowering
operators are an ingenious trick that Dirac thought up, take
the students through the rich history. It all starts with
Heisenberg'” and Born and Jordan,'? who showed how to
solve the harmonic oscillator using matrix mechanics. Then
Schrédinger showed how to solve it using wavefunctions.*’
Next, Jordan and Pauli'’ introduce the ladder operators.
Then Born and Jordan,20 followed by Dirac,21 included a
matrix mechanics discussion in their original textbooks
(although the methods each used are not the current standard
methods). Even though these results can be interpreted as
working with abstract operators, one can clearly see in both
cases they were working with infinite-dimensional matrices
(as they actually wrote down the matrices explicitly in both
books). It was Rojansky’s book? in 1938 that first discussed
using this approach in terms of abstract operators, and
finally, in 1940, Schrodinger*® showed how to create the
energy eigenstates directly from the operators when he
developed the factorization method. This then started appear-
ing in textbooks in a modern way after the Second World
War starting with Dirac’s third edition®? and Schiff’s
textbook.?

VI. SUMMARY AND CONCLUSIONS

While matrix mechanics has tremendous beauty in its
arguments, it is unknown how to generalize it to solve all
problems, even numerically. To do so, one would need to
essentially guess the form of the infinite-dimensional posi-
tion and momentum matrices in the energy eigenstate basis
in order to construct the general solution. Since this is essen-
tially impossible, the number of problems that can be solved
this way were limited to the harmonic oscillator and the
angular momentum eigenvectors. When an alternative
method emerged (wavefunctions and the Schrodinger equa-
tion), which had the added benefit of having a pictorial repre-
sentation for the solutions, matrix mechanics was replaced
by the Schrodinger approach.

A more interesting question is, Why didn’t matrix
mechanics morph into working directly with abstract opera-
tors, as we routinely do now for the harmonic oscillator and
angular momentum? Indeed, Pauli’s solution of hydrogen
moved precisely in this direction, as his work should be
viewed as working with abstract operators instead of matri-
ces. Sadly, it seems that the issue was that extending the
approach to other problems took another 15years for
Schrodinger to figure it out, so there was nothing available to
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allow further development at that time. Once the new
approach was found, the wave equation was so deeply
entrenched it could not be moved.

We hope that readers agree that this material has an intrin-
sic beauty to it and a clear logic that begs for it to be intro-
duced in a meaningful way into quantum instruction, even if
it is not going to be used extensively. We believe that
rethinking how to organize quantum postulates to allow the
matrix mechanics story to be told is probably the best way to
do so. Matrix mechanics remains important within quantum
mechanics and is currently honored with our use of “matrix
element” to describe (n|O|m) and with the naming of the
S-matrix in quantum field theory and the T-matrix in many-
body physics, amongst other examples of the usage. With
this work, we hope it can be honored even more!
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