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Time-dependent driving of quantum systems has emerged as a powerful tool to engineer exotic phases
far from thermal equilibrium, but in the presence of many-body interactions it also leads to runaway
heating, so that generic systems are believed to heat up until they reach a featureless infinite-temperature
state. Understanding the mechanisms by which such a heat death can be slowed down or even avoided is a
major goal—one such mechanism is to drive toward an even distribution of electrons in momentum space.
Here we show how such a mechanism avoids runaway heating for an interacting charge-density-wave chain
with a macroscopic number of conserved quantities when driven by a strong dc electric field; minibands
with nontrivial distribution functions develop as the current is prematurely driven to zero. Moreover, when
approaching a zero-temperature resonance, the field strength can tune between positive, negative, or close-
to-infinite effective temperatures for each miniband. Our results suggest that nontrivial metastable
distribution functions should be realized in the prethermal regime of quantum systems coupled to slow
bosonic modes.
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The possibility to induce exotic nonequilibrium states
with time-dependent electromagnetic fields in solid-state
systems or in optical lattices has boosted the interest in
driven quantum matter [1]. A current focus has been on
Floquet systems, where a time-periodic drive can realize
novel topological phases [2,3] or time crystals [4–6].
Because time-dependent Hamiltonians break energy con-
servation, the presence of many-body interactions, like a
coupling to a bath or to phonons, inevitably leads to
incoherent scattering and modifies the relaxation mecha-
nisms of the electrons [7,8]. Under which circumstances the
looming heat death can be delayed [9–13] or even avoided
[14–16] in a driven many-particle system is an ongoing
research topic that is of immediate importance for the
experimental realization of novel out-of-equilibrium phases
[17,18]. For instance, the breakdown of ergodicity in the
many-body-localized phase [19] has been considered as a
microscopic process to avoid the heat death [14–16],
but also in disorder-free realizations with a macroscopic
number of conserved quantities [20]. We study the

nonequilibrium electron-phonon-coupled system, which
remains too difficult to be solved exactly (for long times
and large system sizes). Hence, one must make approxi-
mations that produce solutions in different limits. Here, we
examine the case where the electrons interact with static
phonons. This brings in limitations where heat is not
directly transferred between the electrons and phonons.
Nevertheless, any rapid processes occurring on electronic
timescales should remain robust because once heating in
the electronic system is quenched, adding energy exchange
between electrons and phonons cannot significantly change
the results.
In this Letter, we examine periodically driven systems

that do not heat up indefinitely and study the logical follow-
up questions: What does the steady state look like and how
is it reached as a function of time? To this end, we consider
a minimal interacting model where itinerant electrons on a
chain are coupled to adiabatic phonons. Starting from a
thermal state, we drive our system with a dc electric field,
representing the simplest realization of a Floquet system
(due to Bloch oscillations). This setup allows us to sample
the initial states with a classical Monte Carlo method and
reach the steady state on lattice sizes much larger than in
state-of-the-art exact-diagonalization studies. To character-
ize our final states, we look at the frequency-resolved
electron distribution function. In thermal equilibrium,
the occupation of states is governed by the Fermi-Dirac
distribution feqðωÞ ¼ 1=½expðβωÞ þ 1� and only depends
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on the inverse temperature β ¼ 1=kBT. The fluctuation-
dissipation theorem relates feqðωÞ to the ratio of lesser and
retarded single-particle Green’s functions (defined below).
In the same way, we define a nonequilibrium distribution
function f∞ðωÞ for the steady state. Only if our system
reaches a thermal state will f∞ðωÞ correspond to feqðωÞ
with a renormalized temperature. Our main results are
shown in Fig. 1. The steady-state spectral functions consist
of minibands centered at integer multiples of the electric
field (due to the Wannier-Stark ladder formation). For each
miniband, we find Fermi-Dirac-like distribution functions
with negative, positive, or zero slope corresponding to
positive, negative, or infinite effective temperatures, respec-
tively. The cases with nontrivial distribution functions are
highly nonequilibrium, because the distribution function
should be a single one for all minibands, not a different one
for each miniband; the midpoints of each miniband also
follow a separate distribution function. The proximity to the
heat-death scenario can be tuned by adjusting the elec-
tric field close to a zero-temperature resonance that lifts
Wannier-Stark localization. Away from these points,
our system never fully heats up to infinite temperature;
importantly, we identify the symmetrization of the gauge-
invariant momentum distribution function as the under-
lying mechanism to avoid the runaway heating.
To study the nontrivial properties of the steady state,

we consider the 1D Holstein model ĤðtÞ ¼ ĤelðtÞ þ Ĥph

in an electric field. The electronic subsystem is
given by

ĤelðtÞ ¼−J
X

i

ðe−iϕðtÞĉ†i ĉiþ1þH:c:Þþ g
X

i

q̂i

�
n̂i−

1

2

�
:

ð1Þ

The first term describes the nearest-neighbor hopping of
spinless fermions with amplitude J where ĉ†i (ĉi) creates
(annihilates) an electron at site i. The time-dependent flux
ϕðtÞ ¼ −EtθðtÞ incorporates a constant electric field E that
is turned on at t ¼ 0. We use the temporal gauge where
ĤelðtÞ becomes a Floquet system with periodicity 2π=E
induced by the periodic band structure. In the second term,
the local electron density n̂i ¼ ĉ†i ĉi couples to the phonon
displacement q̂i. The phonon Hamiltonian reads Ĥph ¼P

i½ðK=2Þq̂2i þ ð1=2MÞp̂2
i � with stiffness constant K, mass

M, and momentum p̂i. We define the dimensionless
coupling λ ¼ g2=4KJ, set e ¼ ℏ ¼ c ¼ 1, and fix J ¼ 1
as the unit of energy. All results are for L ¼ 42 sites with
periodic boundary conditions.
In this Letter, we solve the real-time dynamics of ĤðtÞ

exactly in the adiabatic limit M → ∞ of zero phonon
frequency where the phonons lose their dynamics and are
unable to directly exchange energy with the electrons.
Then, the phonon displacements become classical variables
q⃗ ¼ fq1;…; qLg and their equilibrium distribution

Weq½q⃗� ¼
1

Z
e−βHph½q⃗�Zel½q⃗� ð2Þ

can be sampled using a Monte Carlo method [21,22]. Any
observable hÔðtÞi ¼ R

dq⃗Weq½q⃗�⟪ÔðtÞ⟫q⃗ of the interacting
system reduces to a weighted average over noninteracting
expectation values

⟪ÔðtÞ⟫q⃗ ¼
1

Zel½q⃗�
Trfe−βðĤel½q⃗�−μN̂ÞÔq⃗ðtÞg ð3Þ

for a fixed q⃗. Here, Zel ¼ Tr exp½−βðĤel − μN̂Þ� is the
partition function of the electronic subsystem with chemi-
cal potential μ and total electron number N̂. While the
phonons remain static, the electronic subsystem evolves
according to the Heisenberg equations of motion for
ĉ†i ðtÞ ¼ Û†ðt; t0Þĉ†i ðt0ÞÛðt; t0Þ. Because Ĥelðq⃗; tÞ is quad-
ratic, we only have to evolve the single-particle states using
a Trotter decomposition. For a constant field E, the time-
evolution operator Ûðt; t0Þ only needs to be calculated
within its period τ ¼ 2π=E. For our simulations, we use
the Trotter step Δt ¼ 2π=3360 ≈ 0.002 and calculate the
steady-state behavior at 1000τ. Note that, although the
adiabatic limit excludes inelastic electron-phonon scatter-
ing because displacements q⃗ are conserved, the thermal

FIG. 1. Steady-state spectral functions. Density of states,
occupation, and distribution function for electric field strengths
of (a) E ¼ 1.0, (b) E ¼ 2.0, and (c) E ¼ 3.0. Here, kBT ¼ 0.01,
L ¼ 42, λ ¼ 0.5.
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phonon average recovers elastic electron-phonon scattering
and therefore interaction effects.
We prepare our system in a thermal state with initial

temperature kBT and fix λ ¼ 0.5. The phonon distribution
Weq½q⃗� is entirely determined by kBT. At kBT ¼ 0, the
mean-field solution qi ¼ ð−1ÞiΔ=g is exact and leads to a
band insulator with a single-particle gap Δ ≈ 0.3404.
Translational symmetry is spontaneously broken by the
periodic lattice distortion which gives rise to charge-
density-wave order. Many-body interactions are gradually
incorporated with increasing kBT, as electrons start to
scatter elastically from thermally generated phonon dis-
placements. Already small fluctuations in the phonon fields
lead to a disordered phase, but the single-particle gap is
only fully filled in at kBT ≈ 0.1, where short-range charge-
density-wave correlations disappear. At higher temper-
atures, Weq½q⃗� eventually becomes a Gaussian with a
variance σ2∝kBT. For further details on the equilibrium
solution, see Ref. [22].
For a noninteracting system with a single band only, the

application of a dc electric field leads to Bloch oscillations
with periodicity 2π=E in time-evolved observables like
the electronic energy EelðtÞ ¼ hĤelðtÞi=L or the current
jðtÞ¼−J

P
ihie−iϕðtÞĉ†i ðtÞĉiþ1ðtÞþH:c:i=L. For our clean

two-band insulator at kBT ¼ 0, interband Zener tunneling
will also populate the initially unoccupied upper band. The
combination of Zener tunneling and Bragg reflections leads
to very irregular oscillations [23]. For any finite initial
temperature, the nonequilibrium dynamics is fundamen-
tally different: Then, a true steady state with constant
energy and zero current is reached, as we see from the
transient behavior of EelðtÞ and jðtÞ in Figs. 2(a) and
2(b), respectively. The damping of the average energy and
current results from the destructive interference between
oscillating solutions for different phonon configurations.
The gauge-invariant momentum distribution function [24]
nðk; tÞ ¼ hĉ†kþϕðtÞðtÞĉkþϕðtÞðtÞi in Fig. 2(c) shows how the

current vanishes before the system can reach an infinite-
temperature state. The momentum distribution becomes a
nontrivial even function of k in the long-time limit. This
points toward a restoration of time-reversal symmetry in the
steady state as the current is simultaneously quenched.
A comparison of Eel between initial and final states in
Fig. 2(d) reveals that heating effects are strongest at low
kBT where the steady state gets close to the infinite-
temperature result Eel ¼ 0. Surprisingly, a higher initial
temperature reduces the final energy and thereby the
effective temperature of the steady state; this is similar
to the inverse Mpemba effect [25]. In addition, the steady-
state occupation nðkÞ in Fig. 2(e) is close to a uniform
distribution at low kBT and reaches its strongest k depend-
ence around kBT ¼ 1. It appears that the proximity to
coherent bands at low kBT allows for stronger heating,
whereas localization effects due to phonon-induced

disorder steadily reduce the system’s ability to absorb
energy with increasing kBT. Note that Eel does not reach
zero for kBT → ∞, neither in equilibrium nor for the steady
state, because the variance of the phonon distribution scales
as kBT for large temperatures.
The spectral properties of the steady state can be inferred

from the retarded and lesser Green’s functions,

Gret
ij ðt; t0Þ ¼ −iΘðt − t0ÞhfĉiðtÞ; ĉ†jðt0Þgi; ð4Þ

G<
ijðt; t0Þ ¼ ihĉ†jðt0ÞĉiðtÞi: ð5Þ

Using the Wigner coordinates tav ¼ ðtþ t0Þ=2 and trel ¼
t − t0, we define the Fourier transform Gα

locðtav;ωÞ ¼R
dtreleiðωþiηÞtrel P

i G
α
iiðtav þ trel=2; tav − trel=2Þ=L of the

local Green’s functions. Then, the density of states be-
comes Aðtav;ωÞ ¼ −ImGret

locðtav;ωÞ=π and the occupation
A<ðtav;ωÞ ¼ ImG<

locðtav;ωÞ=2π. The steady-state spectra
are shown in Fig. 1 for kBT ¼ 0.01. Their ratio defines the
nonequilibrium distribution function,

f∞ðωÞ ¼
A<ðtav → ∞;ωÞ
Aðtav → ∞;ωÞ ; ð6Þ

FIG. 2. Transient nonequilibrium dynamics: (a) Electronic
energy and (b) current as a function of time for different initial
temperatures. The dashed line in (a) represents the time average
of EelðtÞ at kBT ¼ 0. (c) Gauge-invariant momentum distribution
function at kBT ¼ 0.05. (d) Comparison of the equilibrium and
steady-state electronic energies as a function of temperature.
(e) Steady-state momentum distribution function for different
temperatures. The labels in (a) also apply to (b) and (e). Here,
E ¼ 1.0, L ¼ 42, λ ¼ 0.5.
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which can be interpreted as a generalized nonequilibrium
fluctuation-dissipation theorem in the long-time limit.
We can understand the main spectral features in

Fig. 1 from the zero-temperature limit. Because of the
doubling of the unit cell by the Peierls distortion, the energy
spectrum of the steady state in Fig. 3(a) consists of two
interpenetrating Wannier-Stark ladders with a level spacing
of E each. The color coding of the energy levels corre-
sponds to f∞ðωÞ, which we calculate using Floquet theory.
Because the zero-temperature Green’s functions do not
decay with time, we average the spectra over tav; in this
way, steady-state observables are defined consistently
at kBT ¼ 0 and kBT > 0. We obtain f∞ðϵν þmEÞ ¼
ð2=LÞPphn̂pνðt ¼ 0Þi for ϵ1;2 ∈ ½−E=2; E=2�, indepen-
dent of m ∈ Z. Here, n̂pνðt ¼ 0Þ is the number operator
in the Floquet basis with momentum p ∈ ½0; πÞ. Hence,
f∞ðωÞ is given by the overlap of the Floquet states with the
initially occupied states. Within each Floquet energy
window in Fig. 3(a), we find intervals of E where the
lower (upper) band has a higher f∞ corresponding to an
effective positive (negative) temperature per miniband in
Fig. 1(a) [Fig. 1(b)]. The two regimes are separated by a
level crossing in the zone center as well as an avoided level
crossing at the zone boundary. Zener tunneling at the
avoided crossings lifts the Wannier-Stark localization and
leads to an equal occupation of the two levels correspond-
ing to an effective infinite temperature in Fig. 1(c). At these
resonances, the time-averaged gauge-invariant momentum
distribution function n∞ðkÞ is exactly 1=2 for all k, as
shown in Fig. 3(b) and proved in the Supplemental Material
[26]. When 1=E is tuned off resonance, n∞ðkÞ increasingly

gains structure with each resonance that is crossed.
Resonance-induced delocalization is a well-known feature
of coupled Wannier-Stark ladders [23,33] and has been
observed experimentally, e.g., in semiconductor super-
lattices [34].
By introducing thermal fluctuations into the Floquet

system via a nonzero initial kBT, we can explain the
spectral properties of Fig. 1. The phonon disorder lifts
the L=2-fold degeneracy of each Floquet level such that the
delta peaks in the spectra get broadened. Then, we can
obtain f∞ðωÞ on a continuous interval around the original
levels as long as the spectral weight is not too small. We
study the effect of the initial temperature on f∞ðωÞ in
greater detail in Fig. 4. While the distributions per mini-
band mainly get smeared out for positive effective temper-
atures in Fig. 4(a), increasing phonon fluctuations reverse
the negative-temperature distributions as a function of kBT
in Fig. 4(b). The flat distributions in Fig. 4(c) remain rather
flat for a broad range of kBT. Moreover, the phonon
fluctuations lift the degeneracy of f∞ðωÞ between the
different Floquet zones such that the focal points of each
miniband follow an overall distribution function. As kBT
increases, the latter slowly transforms into a Fermi-
Dirac-like distribution with an effective temperature that
decreases. Above kBT ≈ 1.0, f∞ðωÞ is close to the initial
thermal distribution and its effective temperature increases
again, as suggested by the steady-state energy in Fig. 2(d).
We can interpret the interplay between initial temper-

ature and electric field in terms of competing localization

FIG. 3. Steady-state distribution functions for zero initial
temperature. (a) The two quasienergies per Floquet energy
window show (anti)crossings as a function of inverse field.
The color coding corresponds to the spectral distribution function
f∞ðωÞ. (b) The momentum distribution function n∞ðkÞ becomes
flat when f∞ðϵνÞ ¼ 1=2. Dashed lines indicate the parameters
chosen in Figs. 1 and 4. Here λ ¼ 0.5. FIG. 4. Steady-state distribution functions for different initial

temperatures and electric field strengths of (a) E ¼ 1.0,
(b) E ¼ 2.0, and (c) E ¼ 3.0. Here, L ¼ 42 and λ ¼ 0.5.
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mechanisms. At high temperatures, the strong Gaussian
phonon disorder promotes Anderson localization. Then, the
application of an electric field enhances the localization
length [35], which only leads to small heating when
approaching the steady state. Hence, f∞ðωÞ becomes flatter
with increasing E, as we see in Fig. 4 for kBT ¼ 1. Only if
E is strong enough compared to the phonon disorder
do signatures of Wannier-Stark localization appear, as its
localization length is proportional to 1=E [36]. There-
fore, the steady-state features at kBT ≪ 1 are governed by
the Floquet solution. While each Floquet zone is populated
equally at kBT ¼ 0, the nontrivial overall distribution for
kBT > 0 seems to be a partial memory effect of feqðωÞ. We
saw that heating effects are strongest at low kBT, where the
system becomes a coherent band insulator. Although
observables at zero temperature never decay toward a true
steady state, a time average over all t > 0 is consistent with
the steady-state results at kBT → 0, as shown in Fig. 4 for
f∞ðωÞ, in Fig. 2(a) for Eel, or in Fig. 2(e) for n∞ðkÞ (for
further data, see the Supplemental Material [26]). The
higher absorption of heat at low kBT is thus determined by
an easier ability for the system to equally occupy all
electronic states as time proceeds.
In conclusion, we demonstrated for a simple interacting

model of itinerant electrons coupled to adiabatic phonons
that the application of a dc electric field does not lead to a
featureless infinite-temperature state, unless the system is
tuned to a zero-temperature resonance. Instead, the heating
of the electronic subsystem stops as the current is pre-
maturely driven to zero due to the symmetrization of the
momentum distribution function. We obtain strongly non-
equilibrium steady states with Fermi-Dirac-like distribution
functions for each Floquet miniband. These distribution
functions can be tuned by the strength of the electric field,
from positive to negative effective temperatures.
It remains open how quantum lattice fluctuations further

affect these findings. The adiabatic phonon limit is special
in the sense that electrons can only scatter elastically off the
static phonon displacements. Inelastic scattering becomes
important at timescales proportional to the inverse phonon
frequency; for earlier times, the dynamics will be deter-
mined by the adiabatic phonon limit. For typical charge-
density-wave systems, the phonons are (by several orders
of magnitude) slower than the electrons. Therefore, the
electron dynamics in Fig. 2 has already reached a steady
state for all but the lowest temperatures before realistic
phonon dynamics can set in; once the current is driven to
zero via the symmetrized momentum distribution, it is
unclear what could destroy this for later times. Therefore,
we expect the nonequilibrium distribution functions found
in this Letter to still occur for low phonon frequencies and
high kBT [37], at least in a long-lived transient regime,
where elastic scattering is the dominant mechanism.
Although we have identified the symmetrization of the
gauge-invariant momentum distribution function in a

special setup, it will be worth studying how this mechanism
affects heating in more complicated driven electron
systems.
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