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Topological quantum phases of quantum ma-
terials are defined through their topological
invariants. These topological invariants are
quantities that characterize the global geomet-
rical properties of the quantum wave functions
and thus are immune to local noise. Here,
we present a strategy to measure topological
invariants on quantum computers. We show
that our strategy can be easily integrated with
the variational quantum eigensolver (VQE) so
that the topological properties of generic quan-
tum many-body states can be characterized on
current quantum hardware. We demonstrate
the robust nature of the method by measuring
topological invariants for both non-interacting
and interacting models, and map out interact-
ing quantum phase diagrams on quantum sim-
ulators and IBM quantum hardware.

1 introduction
Topological phases are characterized by nonlocal
topological invariants, which are by nature robust
against local perturbations [1–21]. This unique
property makes determining properties of topologi-
cal phases an ideal application of quantum computing
in the noise intermediate-scale quantum (NISQ) era,
where the noise levels are high. A significant amount
of work has been performed on realizing topologi-
cal phases and identifying different topological phases
qualitatively on quantum hardware [22–27]. Neverthe-
less, although the strategies for calculating topological
invariants are well-established in the condensed mat-
ter community, there have only been a few studies
employing quantum circuits to determine them [28–
31].

The difficulty in using NISQ hardware to measure
topological invariants stems from the inherent errors
due to the non-fault-tolerant quantum hardware; the
issues of noise are omnipresent within NISQ hard-
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Figure 1: Illustration of different topology of wave functions:
the pseudo-spin representation of the wave function of a chi-
ral p-wave superconductor in (a) the case of a topological
state and (b) the case of a trivial state. The pseudo-spin vec-
tor field for a particular ky (along the gray lines) determines
the Zak phase ϕ(ky), which has non-trivial (trivial) winding
for the topological (trivial) state. The central quantity here
is the overlap of the wave function after a small transport in
k-space denoted by Uδk(k), which can be measured by the
generic quantum circuit shown in (c).

ware calculations [32], and advanced error mitiga-
tion strategies often have to be deployed before even
semiquantitative results are obtained [33, 34]. These
strategies may not suffice; the quantitative results
may differ significantly from the exact results, regard-
less of error mitigation. Even to obtain qualitatively
correct results, limitation to a few qubits and low-
depth circuits [35, 36] is usually necessary to reduce
the influence of the gate errors in NISQ quantum com-
puters.

Here we develop quantum circuits—based on holon-
omy—that can measure topological invariants of mod-
els, and do so in a error-resistant (or even error-free)
manner. Our strategy is to construct a general quan-
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tum circuit to measure the parallel transport of wave
functions in the base space. This determines the con-
nection of the wave function bundle, which permits
the gauge-invariant calculation of topological invari-
ants. Importantly, by relying on global properties of
the wave function, an integer result can be obtained
without any rounding as long as the errors acquired
from the quantum hardware fall below a maximal
noise threshold.

We first demonstrate our strategy by calculating
different topological invariants for chiral p-wave su-
perconductors [37, 38], which works with a single-
particle wave function and an exact quantum circuit.
Then, to further validate the general application of
our strategy, we focus on the calculations of Chern
numbers and calculated them for a quantum Hall
state [39] where the wave functions are prepared vari-
ationally (via adaptive VQE). This demonstrates that
our approach is broadly applicable with an affordable
depth on NISQ hardware [40–44]. More importantly,
our strategy in combination with VQE even allows
us to correctly calculate Chern numbers for interact-
ing models, and we support this point by calculating
Chern numbers for the quantum Hall state [39] with
Hatsugai-Kohmoto type interactions [45–47] and an
interacting Chern insulator model [48, 49] on quantum
hardware and quantum simulators respectively. Strik-
ingly, the Chern numbers for various models (even
with interactions) can be calculated exactly on NISQ
machines without any error. We are not aware of any
other error-free measurements obtained from NISQ
hardware. Our results provide remarkable examples
of the robustness of determining topological proper-
ties on NISQ machines.

The paper is organized as follows. Our discussion
begins with the description of the general scheme to
measure a topological invariant in quantum hardware
in Sec. 2. The general quantum circuit and method to
realize the measurement of the topological invariants
are provided and discussed in this section. Following
this, we demonstrate the concrete applications of this
general scheme with detailed examples. In Sec. 3 we
consider a model of chiral p-wave topological super-
conductors, and we demonstrate how to construct the
exact quantum circuit to measure the assocated topo-
logical invariants for this model on real quantum hard-
ware, which includes the Chern number, the winding
of Zak phases and the ensemble geometric phase [50].
Within this context, in Sec. 3.2, we also discuss how
this formalism can be used to obtain a robust, integer-
valued Chern number without any rounding.

The exact circuits discussed in Sec. 3 can be con-
structed only when the model can be solved ex-
actly. To go beyond this limitation, we integrate our
measurement scheme with VQE, which allows us to
measure topological invariants for arbitrary quantum
states including interacting models. To this end, we
demonstrate this strategy with three examples: the

calculation of Chern numbers for the flux-2π/3 quan-
tum hall model in Sec. 4.1, the determination of the
interacting topological phase diagrams for the flux-
2π/3 quantum hall model with Hatsugai-Kohmoto
type interactions in Sec. 4.2, and the determination of
the interacting topological phase diagrams for an in-
teracting Chern insulator model in Sec. 4.3. In Sec. 5
we contextualize our results by discussing the differ-
ences from other existing proposals and the potential
for calculating topological invariants beyond the ca-
pability of classical computers with this method.

2 General scheme and quantum circuit
To measure the wave function topology in some pa-
rameter space, the central quantity is the holon-
omy in the wave function bundle, obtained by the
parallel transportation of the wave function along a
closed loop in the base space. Topological states have
non-trivial holonomy, while trivial states have trivial
holonomy (see Fig. 1). Parallel transport reveals a
local connection, which is determined from the over-
lap of wave functions 〈ΨΘ|ΨΘ+δΘ〉 at two neighboring
points Θ and Θ + δΘ in the base space. Therefore,
the key step to measure the holonomy is to determine
the local wave function overlap, which requires the
evolution of the wave function from |ΨΘ〉 to |ΨΘ+δΘ〉.
Once this is known, the overlap 〈ΨΘ|ΨΘ+δΘ〉 can be
evaluated by a Hadamard test (see Fig. 1 (c)) [51, 52].

To make the discussion in the above concrete, we
consider models defined in a two-dimensional space.
Because we are interested in bulk properties, periodic
boundary conditions are applied. Then the topologi-
cal information of the wave function is stored in the
two-dimensional (magnetic) Brillouin zones (BZs). To
implement the holonomy operation, the BZs are dis-
cretized into a Nx × Ny mesh with the mesh points
in the BZs denoted as k = (kx, ky). Then the local
connection at a particular mesh point k is character-
ized by the normalized overlap of the wave function
at k and its neighbors in the discretized BZ. We de-
note the normalized overlap at a particular point k as
Uδk(k) ≡ 〈Ψ(k)|Ψ(k+δk)〉/|〈Ψ(k)|Ψ(k+δk)〉|, where
δk = δkxx̂ or δk = δky ŷ with x̂ and ŷ the unit vectors
along the x- and y-directions. Once Uδk(k) for all the
mesh point in the BZ are measured, different kinds of
topological invariants can be constructed from them.
In this work, we will demonstrate the measurements
of three topological invariants: the Chern number, the
Zak phase, and the ensemble geometric phase.

2.1 Chern number
First, in a discretized 2D BZ the Chern number can
be expressed as [39]:

C = 1
2πi

∑
k

F(k), (1)
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where the local gauge field F(k) (or Berry curva-
ture) is defined from the normalized overlap Uδk(k)
within a plaquette formed by the neighboring four
mesh points:

F(k) = ln
[
Uδk̂x(k)Uδk̂y (k + δk̂x)

Uδk̂x(k + δk̂y)Uδk̂y (k)

]
. (2)

Here δk̂x = δkxx̂ (δk̂y = δky ŷ) denotes the grid
spacing of the discretized BZ along the x (y) direc-
tion. The above analysis indicates that Uδk(k) is in-
deed central in the measurement of Chern numbers
on quantum hardware. In Sec. 3.2, we will outline
how this formalism can be used to obtain a robust,
integer-valued Chern number without any rounding.

2.2 Zak phase
Another way to determine the topology of the wave-
function is to measure the winding of the Zak phase,
which is defined by parallel transport of the wavefunc-
tion in only one direction of the Brillouin zone. The
Zak phase measures the holomony of the wavefunc-
tion in one direction and can be written in terms of
normalized overlap Uδk̂x(k) as:

ϕ(ky) = ln
∏

k∈L(ky)

Uδkx(k), (3)

where L(ky) is the loop for a fixed ky along the kx-
direction. Then, as illustrated in Fig. 1(a) and (b),
the winding of the Zak phase along the ky-direction
is related to the Chern number as follows:

C = 1
2π

∮
dky

dϕ(ky)
dky

. (4)

2.3 Ensemble Geometric Phase
From the normalized overlap Uδk(k), we can even ob-
tain the topology of a mixed state density matrix ρ;
these may arise from a finite temperature or by be-
ing driven out of equilibrium. Here we focus on the
ensemble geometric phase ϕE [50] of a mixed state
in non-interacting systems without particle number
fluctuations. The ensemble geometric phase can be
viewed as a many-body generalization of Zak phase
and is defined as:

ϕE(ky) = =m
[
ln〈eiδkxX̂〉

]
, (5)

where 〈· · · 〉 = Tr[ρ̂ · · · ] with ρ̂ the density matrix of
the system, and X̂ =

∑
j x̂j is the many-body position

operator with x̂j the position operator for the jth
particle. In real space, the density matrix ρ̂ can be
expressed as:

ρ̂ = 1
Z

exp

−∑
i,j

â†iGi,j âj

 , (6)

where the matrix G is known as the ‘fictitious Hamil-
tonian’ relating with the Hamiltonian of the system
as G = βH. Due to the translational invariance, G is
diagonal in the Bloch basis, namely [50]:

G =
∑
k

Gk|k〉〈k|, (7)

where |k〉 denotes the Bloch basis. Gk is a non-
diagonal Hermitian matrix defined in band space (de-
noted by index s), with elements [Gk]s,s′ , and can be
diagonalized by a unitary transformation:

Bk = diags(βk,s) = U†kGkUk, (8)

where for the Hamiltonian with N energy bands Uk
is constructed from the n eigenvectors as:

Uk = (Ψ1(k),Ψ2(k), · · · ,ΨN (k)) . (9)

Eq. (8) explicitly indicates that the two important
quantities in the calculations of ensemble geometric
phase Bk and Uk are related to the coefficient matrix
Gk in the Bloch basis [50], namely Gk diagonalized
into Bk by the unitary matrix Uk.

The straightforward calculation shows that the en-
semble geometry phase can be expressed in terms of
Gk, Bk and Uk:

ϕE(ky) = =m [ln det (1 +MT )] , (10)

where:

MT = (−1)NL+1
∏

k∈L(ky)

e−BkU†k+δkxx̂Uk. (11)

Here NL is the number of grid points along the loop
L(ky). In the evaluation of MT , the important com-

ponent is the product U†k+δkxx̂Uk. From the defini-
tion of Uk given by Eq. (9), we can easily identify

that U†k+δkxx̂Uk is the generalization of the normal-
ized overlap, which includes the parallel transports
not only of the intraband wavefunction but also of
the interband one.

3 Exactly solvable model: chiral p-
wave superconductor
For our first example, we consider a model for two-
dimensional chiral p-wave superconductors [37, 38],
which can be tuned through several trivial and topo-
logical phases. This model has the Hamiltonian den-
sity at momentum point k

H(k) =∆(sin kyσx + sin kxσy)− E(k)σz, (12)

where E(k) = t(cos kx+cos ky)+µ with t and µ denot-
ing the hopping strength and the chemical potential
in the normal state, respectively, and ∆ is the su-
perconducting gap; the Hamiltonian is the integral of
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Figure 2: Robust measurement of Chern numbers of chiral p-wave superconductors: (a) Detailed circuit to perform single-
particle wave function preparation; (b) Detailed circuit to perform wave function evolution; In the panels (a) and (b), U3(k)
(U†

3 (k)) is a general single-qubit operator specified by three angles determined at the momentum point k for a given µ, ‘X’ is a
Pauli-X gate, • denotes a control, and ⊕ denotes a NOT gate. (c) Topological phase diagram for chiral p-wave superconductors
determined by the measured Chern numbers on IBMQ-Toronto; (d) Mistake ratio of Chern number measurements from noisy
simulations by assuming that the two-qubit gate error ε2 is 10x the one-qubit gate error ε1; (e) The structure of local gauge
field F̃ (k) defined by Eq. (34); The red arrows correspond to plus signs in front of the terms, while the blue arrows correspond
to the minus signs. (f) the summation of F̃ (k) over the BZ leads to a perfect cancellation: the orange highlighted parts show
the cancellations happening at an x, a y and a boundary bond; (g)-(i) Integer-valued field n(k) extracted from the data points
denoted by blue stars in (c) (• denotes n = 1, ◦ denotes n = −1 and the empty box is for n = 0). The overlap Uδk(k)
measured by both IBMQ-Toronto and noisy simulations was obtained with N = 5120 shots.

this density over all k. We set t = ∆ = 1 so that the
different phases are tuned by µ only. The topological
quantum critical points occur when the energy levels
of the two bands touch at some point in k-space. As
shown in Fig. 2, this model exhibits 4 different phases
separated by 3 topological quantum critical points at
µc = {−2, 0, 2}. The trivial phases with C = 0 occur
for |µ| > 2; when |µ| < 2, C = sign(µ).

To measure the topological invariants of this model,
we need to explicitly construct the quantum circuit to
measure the normalized overlap Uδk(k) and its gen-

eralization U†k+δkxx̂Uk. Because this model can be
solved exactly, we can construct the exact circuit. In
the following, we outline how to measure the nor-
malized overlap of a wave function at neighboring
momentum-space mesh points by the Hadamard test.

3.1 Construction of the exact circuit to mea-
sure the normalized overlap

First we denote the prepared state as |Ψ〉 = |0〉⊗ |ψ〉,
where |0〉 is the initial state of the ancilla and |ψ〉 is
the wave function at one of the mesh points in the BZ.
We apply the Hardmard gate to the ancilla, resulting

in the following product state:

|Ψ〉 = 1√
2
|0〉 ⊗ |ψ〉+ 1√

2
|1〉 ⊗ |ψ〉. (13)

Then, we apply the controlled U operation, where U
relates the wave functions at the neighboring mesh
points. After applying the operation, the state is in
an entangled superposition given by

|Ψ〉 = 1√
2
|0〉 ⊗ |ψ〉+ 1√

2
|1〉 ⊗ U|ψ〉. (14)

Finally, we projectively measure the expectation val-
ues of σx ⊗ I and σy ⊗ I, which give the real and
imaginary parts of the overlap:

〈Ψ|σx ⊗ I|Ψ〉 = <e〈ψ|U|ψ〉, (15)

and
〈Ψ|σy ⊗ I|Ψ〉 = =m〈ψ|U|ψ〉. (16)

To complete the description of the algorithm, we
have two more steps: first, we need to determine what
the initial state |ψ〉 is that we will use and how we
prepare it by a quantum circuit and second, we need
to determine the unitary operator U that evolves the
wave function between neighboring mesh points and
how we can realize it as a quantum circuit. We answer
these two questions next.
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3.1.1 Preparation of the initial wave function

We begin from the Hamiltonian density given by
Eq. (12). The full Hamiltonian can be written as:

H =
∑
k

(
c†k ck

)
H(k)

(
ck
c†k

)
, (17)

where H(k) is given by Eq. (12), and the BZ is de-
fined by kx ∈ [−π, π] and ky ∈ [−π, π]. H(k) has the
eigenvalues:

E± = ±
√(

sin2 ky + sin2 kx
)

+ [(cos kx + cos ky) + µ]2,
(18)

where we used explicitly ∆ = t = 1. We find that
the gap between the two energy bands closes at (kx =
0, ky = 0) for µ = −2, at (kx = ±π, ky = ±π) for µ =
2, and at (kx = ±π, ky = ∓π) for µ = 0. These gap
closing points separate different topological phases.

We define angles θ(k) and ϕ(k), determined at each
momentum point, via:

cos θ = (cos kx + cos ky) + µ

E+
, (19)

and

cosϕ = sin ky√(
sin2 ky + sin2 kx

) , (20)

so that the corresponding eigenvectors of E± can be
written as:

Ψ+(k) =
(

cos θ2
sin θ

2e
−iϕ

)
, Ψ−(k) =

(
− sin θ

2e
iϕ

cos θ2

)
.

(21)
This eigensolution indicates that:

diag (E+(k), E−(k)) = U†(k)H(k)U(k), (22)

where U(k) is a special case of Eq. (9):

U(k) =
(

Ψ+(k) Ψ−(k)
)

(23)

We denote this diagonal representation formed by the
energy eigenstates ofH(k) as the band representation,
and the corresponding annihilation operators for the
E+ and E− bands are denoted by fk and f†k. They

are related to the original ck and c†k via(
fk
f†k

)
= U†(k)

(
ck
c†k

)
. (24)

The topological invariant is calculated from the
wave function in the Brillouin zone. We begin
from the diagonalized band representation: the ini-
tial states are either |0f1f†〉 for the lower band or
|1f0f†〉 for the upper band. The wave function can be

constructed by the operators c†k and ck acting on the

vacuum. The relation between (fk, f†k) and (ck, c†k) is
clear from Eq. (24), or more explicitly{

c†k = cos θ2f
†
k − sin θ

2e
−iϕfk,

ck = sin θ
2e
iϕf†k + cos θ2fk.

(25)

Hence, the following relation can be found that relates
the two representations:

|0c0c†〉
|1c0c†〉
|0c1c†〉
|1c1c†〉

 = V (θ, ϕ)


|0f0f†〉
|1f0f†〉
|0f1f†〉
|1f1f†〉

 , (26)

where the transformation matrix V is given by:

V (θ, ϕ) =


1 0 0 0
0 cos θ2 − sin θ

2e
−iϕ 0

0 sin θ
2e
iϕ cos θ2 0

0 0 0 1

 . (27)

From this relation, we know that the state |ψ〉 is ob-
tained by applying V on either |1f0f†〉 for the upper
band or |0f1f†〉 for the lower band. In the language
of QISKIT [53], this operation can be realized by two
CNOT gates and a controlled-U3 gate:

V (θ, ϕ) = CNOT[q1, q0]
× CU3[q0, q1](ϑ = θ, λ = −ϕ, φ = ϕ)
× CNOT[q1, q0], (28)

where the first qubit in the bracket is the control qubit
and the second one is the target qubit. The matrix
form of CU3[q0, q1](ϑ, λ, φ) is:

CU3[q0, q1](ϑ, λ, φ) =


1 0 0 0
0 cos ϑ2 0 − sin ϑ

2 e
iλ

0 0 1 0
0 eiφ sin ϑ

2 0 ei(λ+φ) cos ϑ2

 .

(29)
CU3[q0, q1](ϑ, λ, φ) is realized by a general single-
qubit operator U3 under the control of an ancilla.
In particular, the operator U3, appearing in Fig. 2,
can be written in terms of θ(k) and ϕ(k) defined by
Eq. (19) and (20):

U3(ϑ = θ, λ = −ϕ, φ = ϕ) =
(

cos ϑ2 − sin ϑ
2 e
iλ

eiφ sin ϑ
2 ei(λ+φ) cos ϑ2

)
.

(30)

Figure 3: The realization of the controlled-controlled-unitary
gate by two-qubit gates, where W fulfills the condition:
W 2 = U .

3.1.2 Relating wave functions at neighboring mesh
points

From the discussion in the last subsection, we see that
the state at a particular point k in the BZ can be pre-
pared by V (θk, ϕk). Therefore, the operation trans-
forming the wave function from k to k′ is

V(k′;k) = V (θk′ , ϕk′)V †(θk, ϕk). (31)
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To measure the overlap of the wave function, we use
the Hadamard test with an ancilla qubit controlling
the application of V(k′;k) on the other two qubits.
This means that the equation above is modified to

CV(k′;k) = CV(θk′ , ϕk′)CV†(θk, ϕk). (32)

The extra letter C indicates that the two-qubit uni-
tary operation is controlled by an ancilla qubit. For
each CV operation, we can realize it by extending the
two-qubit gate in Eq. (29) as follows:

CV(θ, ϕ) = CCX[q0, q2, q1]
× CCU3[q0, q1, q2](ϑ = θ, λ = −ϕ, φ = ϕ)
× CCX[q0, q2, q1], (33)

where the first two qubits in the bracket are the con-
trolled qubits and the last one is the target qubit. The
CCX is the well-known Toffoli gate, so we just need to
construct the CCU3 gate. This can be accomplished
by the circuit shown in Fig. 3. Using these compo-
nents, the quantum circuits for the chiral p-wave su-
perconductors shown in Fig. 2(a) and (b) in the main
text can be completed. Using these components, the
quantum circuit to measure each overlap for the chi-
ral p-wave superconducting model has a depth of 25
including 58 CNOT gates on IBMQ machines.

3.2 Calculating the Chern number
Following the detailed construction procedures stated
in the last subsection, the general circuit given in
Fig. 1(c) with the wave function preparation and evo-
lution components is explicitly realized as shown in
Fig. 2(a) and (b). In our measurements we use a uni-
form discretization of the BZ into 8× 8 mesh points,
beyond the minimal discretization constrained by the
admissibility condition [39]. After measuring the nor-
malized overlap Uδk(k) associated with each bond
connecting neighboring mesh points in the BZ, the
Chern number can be extracted by using Eq. (1). We
first demonstrate the measurement of the Chern num-
ber on the IBMQ-Toronto machine, focusing on the
regions near the topological critical points, which are
typically most sensitive to noise. Fig. 2(c) shows the
exact results for the Chern number C as a function
of µ in the black curves and the results from IBMQ-
Toronto as circles. Remarkably, we observe that the
Chern number measured on the quantum computer is
error-free.

The robustness of the measurement of Chern num-
bers on quantum hardware can be understood by in-
troducing another local gauge field F̃(k):

F̃(k) =
[
lnUδk̂x(k)− lnUδk̂x(k + δk̂y)

]
+
[
lnUδk̂y (k + δk̂x)− lnUδk̂y (k)

]
. (34)

It relates to F(k) defined in Eq.(2) as F(k) = F̃(k)+
i2πn(k), where n(k) denotes an integer-value field to

guarantee F(k) ∈ [−π, π]. The structure of F̃(k)
defined on the plaquette formed by the neighboring
mesh points is shown in Fig. 2(e). The logarithm of
the normalized overlap associated to the bond shared
by two neighboring plaquettes will contribute oppo-
sitely to F̃ defined on the two plaquettes. Thus, when
we sum F̃ over the BZ, a perfect cancellation occurs
as illustrated in Fig. 2(f), which leads to:

C =
∑
k

n(k). (35)

The perfect cancellation of F̃ over the BZ indicates
that the individual errors of Uδk(k) will always be re-
moved upon the summation, which means that the
measurement is entirely immune to the separated lo-
cal noise. The integer-value field n(k) can be ex-
tracted correctly in each plaquette, as long as F̃ can
be measured with an affordable error smaller than
2π, which provides another protection of the mea-
surements on quantum hardware. As a self-consistent
check, we extract n(k) for three typical µ values (de-
noted by the blue stars in Fig. 2(c)), and show them
in Fig. 2(g)-(i). The summation of n(k) is indeed
consistent with the measured Chern number shown
in Fig. 2(c).

Moreover, The relationship between the two local
gauge fields F(k) and F̃(k) indicates that the expres-
sion of Chern numbers given by Eq. (1) is identical to
Eq. (35). This identity guarantees that Chern num-
bers calculated from the measured wave function over-
laps by quantum circuits proposed in Fig. 1 are inte-
gers by definition, namely the sum of integers is still
an integer.

Of course, if the hardware noise gets sufficiently
large, this approach must break down. To investigate
how the measurement result is affected by the ma-
chine noise, we perform noisy simulations on classical
computer with depolarizing errors [54, 55] introduced
to the single-qubit and two-qubit gates (see Appendix
A for more details). For IBM machines, the typical
two-qubit gate error ε2 is about one order of magni-
tude larger than the single-qubit gate error ε1. In our
simulations, we set ε2 = 10ε1 and successively tune
ε1 from ε1 = 0.005 to 0.015 with a step size of 0.001.
For each ε1, 10 trials were performed. We define the
mistake ratio of the measurements as the percentage
of incorrect C values. The results of the noisy simula-
tions are shown in Fig. 2(d). As expected, larger gate
error leads to larger mistake ratios; however, the mea-
sured Chern number is error-free when ε1 ≤ 0.008.

Here we need to emphasize that the threshold ε1 is
determined with only 10 trials, so it is not very accu-
rate. A better way to determine the threshold is to
gradually increase the trial numbers to find a satu-
rated threshold value. In Appendix B, we have done
such analysis and found that the threshold saturates
at ε1 = 0.006. However, this result does not affect the
above discussion.
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In our strategy, the integer field n(k) is extracted
from the the difference between F (k) and F̃ (k). The
counting statistic errors, such as shot noises, are not
guaranteed to be eliminated. One might expect that
the influence of shot noise errors would affect the ac-
curacy of the calculation of Chern numbers, when the
system is close to a topological critical point, where
the admissibility is much easier to break. However,
our extensive noisy simulations demonstrated that
even when the system is very close to a topological
critical point, i.e. |µ− µc| = 0.0001, the threshold ε1
determined from noisy simulations does not change
(see Appendix C for more details). Therefore, the
noisy simulations indicates that shot noise does not
play any practical roles in correctly calculating Chern
numbers with the strategies proposed here.

3.3 Measuring the winding of the Zak phase
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Figure 4: Qualitative robustness of Zak phase on NISQ ma-
chines: the winding of Zak phase ϕ(ky) along ky measured
by IBMQ-Toronto: (a) topological phase with µ = 1.9; (b)
trivial phase with µ = 2.1. For the comparison, the wind-
ing of the Zak phase was measured by noise simulations and
shown in (c) for µ = 1.9 and (d) for µ = 2.1. In the noise
simulations, the gate noises were chosen to be ε1 = 0.008
and ε2 = 0.08. Each overlap Uδk(k) measured by IBMQ-
Toronto and noise simulations were obtained by N = 5120
shots, and NL = 8 grids point were used for each loop L(ky)
to obtain Zak phase.

Next, we illustrate the calculation of the Zak phase,
which does not enjoy a similar level of robustness. To
measure the Zak phase associated to a particular ky,
we need to measure the normalized overlap Uδk̂x(k)
along the mesh points along the x-direction by us-
ing the quantum circuit shown in Fig. 2(a) and (b).
Then through Eq. (3) the Zak phase for the partic-
ular ky can be obtained. In Fig. 4(a) and (b), the
Zak phases ϕ(ky) obtained from 5 independent simu-
lations on IBMQ-Toronto were plotted as functions of
ky for a typical topological state (with µ = 1.9) and
a typical trivial state (µ = 2.1) respectively. Here
the results from quantum machines do not fall ex-
actly on the exact results (the blue curves), but the
results from quantum computers do capture the main

features of the two topologically distinct phases. In
particular, for the topological state, a sharp change
at the high-symmetry point ky = π (see Fig. 4(a)) is
identified and signifies the non-trivial winding of the
Zak phase along ky, while this sharp change is absent
for the trivial phase as illustrated in Fig. 4(b). For
the comparison, we also performed noise simulations
by setting ε1 = 0.008 and ε2 = 10ε1 for the two states
studied in Fig. 4(a) and (b). The results for 5 indepen-
dent simulations for the topological state with µ = 1.9
were plotted in Fig. 4(c), and the results for the triv-
ial state with µ = 2.1 were in Fig. 4(d). It can be
clearly observed that the noise simulation results are
quite similar with those from IBMQ-Toronto. These
results from both IBMQ-Toronto and noise simula-
tions suggest that the topology of wavefunctions can
be successfully identified by measuring the winding
of Zak phases; however, the error cancellation mech-
anism that occurs for the Chern number no longer
applies here.

3.4 Measuring the ensemble geometry phase
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Figure 5: Qualitative robustness of ensemble geometric phase
illustrated by noise simulations: (a) the winding of ensemble
geometric phase ϕE(ky) along ky for (a) topological phase
with µ = 1.9 and (b) trivial phase with µ = 2.1. The number
of grid points for the loop L(ky) is NL = 8 and the inverse
temperature β = 2.1. In this simulation, the gate noises were
chosen to be ε1 = 0.008 and ε2 = 0.08, and N = 5120 shots
were used to obtain each element of U†

k+δkxx̂Uk.

As we have emphasized in the general discussion
provided in Sec. 2, the measurement of the ensem-
ble geometric phase requires us to not only measure
the intraband normalized overlaps but also the inter-
band normalized overlaps (see Appendix D for de-
tails). Once we obtain these normalized overlaps,
we can calculate the ensemble geometric phase from
Eq. (10). We demonstrate the measurement of en-
semble geometric phase by noise simulations, which,
as we show in Fig. 2 and Fig. 4, can have faithful re-
sults compatible with those from real quantum hard-
ware. The winding of the ensemble geometric phase
for the topological phase with µ = 1.9 and for the
trivial phase with µ = 2.1 is shown in Fig. 5(a) and
(b) respectively. Indeed the results are similar to the
that of Zak phase; and as we have argued in the above,
the two phases with different topology can be quali-
tatively distinguished.
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4 Variationally prepared states
For generic (interacting) quantum states, finding the
exact circuits to prepare and evolve the wave func-
tion is a difficult task. However, given the robustness
of the topological invariant, it is possible to replace
the exact circuits (or wave functions) by approximate
ones. Here we use adaptive VQE [44] to approximate
the wave function preparation and evolution circuits.
With this technique combined with our strategy, the
topological invariant for arbitrary models, even inter-
acting ones, can be calculated with quantum hard-
ware. Considering that VQE methods in principle
can be scaled to calculate large systems beyond the
capability of classical computers, we expect that our
strategy with VQE can allow for the calculation of
topological invariants of these more complex models.

We first demonstrate our strategy by calculating
the Chern number for a two-particle state in a proto-
type topological model, the flux 2π/3 quantum Hall
model. As above, the Chern numbers can be calcu-
lated accurately on the present quantum hardware
without any error. Then we introduce a Hatsugai-
Kohmoto interaction, whose properties are actively
studied recently in strongly correlated models [45, 47]
demonstrating that our strategy even works when
the system is interacting. Our results show that the
Chern number for the interacting model can still be
accurately calculated on IBM’s quantum hardware.

Finally, to further demonstrate the generality of our
strategy, we applied it to calculate Chern numbers for
interacting models on a real-space lattice. In this case,
the calculation is be performed in a finite-size cluster
in real space with twist-angle boundary conditions.
The calculations of Chern numbers for a 4-site in-
teracting Chern insulator is demonstrated with noisy
quantum simulators [53].

4.1 Calculating Chern numbers for a two-
particle Quantum Hall State
We present the calculation of Chern numbers for the
two-particle ground state of the flux-2π/3 fermionic
quantum Hall model. The other topological invariants
can be also straightforwardly measured by following
the same procedures provided in Sec. 3, and we do
not show them here.

After choosing the hopping strength as the energy
unit, the Hamiltonian of the system is given by [39]:

H = −
∑
x,y

(
c†x+1,ycx,y + e−iΦxc†x,y+1cx,y

)
+ h.c.,

(36)
where cx,y (c†x,y) is the fermionic annihilation (cre-
ation) operator on site (x, y). The magnetic flux per
plaquette is set to be Φ = 2π/3 so that this model
can be simulated with 3 qubits and the magnetic BZ
is defined with kx ∈ [0, 2π/3] and ky ∈ [0, 2π]. For this
particular model, the ground state wave function can

1e-2

(d) (e) (f)

(a) (b)

(c)

Figure 6: Robust measurement of the Chern number via
adaptive VQE for the two-body ground state of the flux-
2π/3 quantum Hall model: (a) the approximated circuit to
prepare the wave function at k via adaptive VQE; (b) the ap-
proximated circuit generated by adaptive VQE to evolve the
wave function from k to k+δk; (c) the approximate circuit to
measure the normalized overlap Uδk(k) via adaptive VQE. In
this implementation, the circuit to evolve the wave function
is done by direct projective measurements. The calculated
integer-valued field n(k) in the discretized magnetic BZ on
IBMQ-Montreal are shown in (d) and (e) for ∆E = 0.2 and
∆E = 0.3 respectively; (f) Mistake ratio of Chern number
measurements from noisy simulations versus the single-qubit
gate error ε1 for ∆ = 0.2 and ∆ = 0.3, respectively. In all
cases, N = 8196 shots were used to obtain the normalized
overlap Uδk(k).

be prepared by a generalized factorized unitary cou-
pled cluster ansatz that is truncated at single-particle
excitations/de-excitations [44, 56, 57]. The operator
pool for the adaptive VQE [44] simply includes all
possible operators generating single excitations.

To calculate the Chern number we first transform
the Hamiltonian into the momentum space by intro-
ducing a magnetic BZ:

H =
∑
k

Ψ†kH(k)Ψk, (37)

where Ψk = (ck;1, ck;2, ck;3)T is the annihilation op-
erator for the fermions at the three effective orbitals,
and the Hamiltonian density is

H(k) = −

 2 cos ky 1 e−i3kx

1 2 cos(ky + 2π
3 ) 1

ei3kx 1 2 cos(ky + 4π
3 )

 .

(38)

To prepare the wave function at particular momen-
tum point k, classically we just need to diagonal-
ize the above Hamiltonian and occupy the two low-
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est eigenstates. To complete such a task in quan-
tum computers, we need to find an efficient way to
construct the corresponding quantum circuits. Even
if the mathematics is straightforward, to generically
construct the quantum circuits for a system with size
larger than 3 qubits, we resort to VQE methods [40–
44, 56–58]. To use adaptive VQE to prepare the two-
body ground state, we choose the initial state as the
two-body ground state for the Hamiltonian given in
Eq. (38) with only the diagonal components. By us-
ing the conservation of particle number of the model,
the initial state can be easily obtained by applying
two X gates onto the two qubits, which represents the
two lower energy eigenstates. Then we restore the
off-diagonal components of the Hamiltonian and im-
plement the standard adaptive VQE steps to prepare
the two-body ground state of the Hamiltonian speci-
fied by Eq. (38). The corresponding circuit for these
procedures is illustrated in Fig. 6(a). The implemen-
tation details are discussed in the literature [44] and
can also be found in Appendix E.1.

To evolve the wave function from k to k + δk, we
similarly begin with the approximate wave function
at k (obtained by the adaptive VQE described in the
above) and then implement another adaptive VQE
that minimizes the expectation values of the Hamil-
tonian density H(k + δk). The resulted circuit ob-
tained by these processes is shown in Fig. 6(b). For
both variational procedures, we used a convergence
criterion of ε = 0.01.

A crucial observation is that due to the continu-
ity of the wave function, the difference between the
wave functions at two neighboring points is small, so
the VQE corresponding to the wave function evolu-
tion can be completed with only a few operators from
the pool (typically . 3). Given the fact that the sin-
gle excitation can be written as the sum of two Pauli
strings P ∈ {I, σx, σy, σz}⊗3, the quantum circuit to
measure Uδk(k) can be further simplified by replac-
ing the Hadamard test by direct projective measure-
ments [59], as shown in Fig. 6(c) (see Appendix F for
details). Such replacements can reduce the depth of
the circuit significantly at the cost of increasing the
number of circuits by a factor of ∼ 10.

To control the circuit depth, and to have a mea-
sure of how far away the approximate wave functions
are from the optimal ones, we introduce a threshold
∆E, different from the convergence criterion ε. We
truncate the adaptive VQE circuit when the expec-
tation value of the target Hamiltonian is within ∆E
of the optimal one (see Appendix E.2 for more de-
tails). It allows for a controllable balance of wave
function accuracy and circuit depth. In Fig. 6(d) and
(e), we show the measured n(k) on IBMQ-Montreal
within the magnetic BZ for ∆E = 0.2 and ∆E = 0.3,
respectively. By summing n(k) over the whole mag-
netic BZ, we found that the Chern number of the two-
body ground state is −1, which is consistent with the

known result [39]. We repeated the measurements an-
other 4 times on IBMQ-Montreal for both ∆E = 0.2
and ∆E = 0.3, and obtained the same value(s). The
detailed results for other measurements can be found
in Appendix H.

We also perform noisy simulations to determine
how the measured results are affected by the machine
noise. As described in the last section, we introduce
the depolarizing errors to both single-qubit gates and
two-qubit gates with ε2 = 10ε1. The mistake ratio is
plotted as a function of ε1 and shown for ∆E = 0.2
and ∆E = 0.3 in Fig. 6(f). For ∆E = 0.3, we found
that the error in measurements begins to appear only
when ε1 ≥ 0.009, while for ∆E = 0.2, the error in
measurements begins to appear at a smaller value
ε1 ≥ 0.007. These results illustrate the crucial role
of ∆E in achieving error-free measurements. If ∆E
is too large, the true ground state is not well approx-
imated. On the other hand, if ∆E is too small, the
circuit depth becomes so large that the errors in the
implementation of the circuit go beyond the tolerance
of the topological protection, i.e. the error in the mea-
surement of F̃ is beyond 2π.

We need to emphasize that the parameter ∆E in-
troduced here is to characterize the energy difference
between the true ground state and the truncated state
that we used to calculate Chern numbers for this par-
ticular model. It is equivalent to introduce a larger
convergence criterion ε, but in that case we will not
know how far away the truncated states used for cal-
culating Chern numbers are from the true ground
states. One should view ∆E as similar to infidelity
of the ground state, which is not readily available on
a quantum computer, because we do not know what
the true ground-state is, in general.

4.2 Determining the topological phase dia-
gram for the flux-2π/3 Quantum Hall model
with a Hatsugai-Kohmoto interaction
To demonstrate that our strategy works for interact-
ing models, we introduce a Hatsugai-Kohmoto inter-
action to the flux-2π/3 Quantum Hall model. The
Hatsugai-Kohmoto interaction is an interaction be-
tween two particles at the same momentum point
[45, 47], and here we introduce such an interaction
for the particles at the orbitals 1 and 2:

Hint = U
∑
k

nk;1nk;2, (39)

where nk;i = c†k;ick;i with the orbital index i = 1, 2.
As we have discussed in the last section, the non-

interacting limit of the model (the U = 0 case), the
two-body ground state of the model is topological
with a Chern number C = −1. The introduction of
the Hatsugai-Kohmoto interaction results in a quan-
tum phase transition from a topological phase with
C = 1 to a trivial phase with C = 0, which can be
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Figure 7: Calculations of the Chern number via adaptive VQE
for the two-body ground state in the flux-2π/3 quantum Hall
model with a Hatsugai-Kohmoto interaction: (a) the Chern
number C of the model as a function of interaction strength
U , from which a clear topological phase transition is induced
by the Hatsugai-Kohmoto interaction between orbital 1 and
2. (b) The calculated integer-valued field n(k) distribution in
the discretized magnetic BZ obtained from IBMQ-Montreal
for the U = 7/3 case. In all the calculations, N = 8000 were
used to obtain the wave function overlaps.

seen from the plot of the Chern number as a function
of the interaction strength U shown in Fig. 7(a).

Similar to the last subsection, we adopt adaptive
VQE to calculate the Chern number on quantum
hardware. First we notice that the model has three
orbitals, so according to the unitary coupled clus-
ter ansatz double-excitation operators do not exist
(for fermionic systems, double-excitation operators
appear when the system has four or more qubits).
Therefore, the operator pool for the present calcula-
tions is the same with the last section, and the only
difference is that in the optimization we need to add
the new interaction term specified by Eq. (39).

We continue to use projective measurements to re-
place the evolution circuit as shown in Fig. 6(c), which
can efficiently reduce the circuit depth for small sys-
tems. In the present optimization, we simply intro-
duce a larger convergence criterion ε = 0.1 and do not
characterize how far away the prepared state is from
the true ground state. With the concrete quantum
circuits, we use them to calculate the Chern number
for this interaction model. The results from quantum
simulators were shown as the orange open circles in
Fig. 7(a), which perfectly coincide with the exact val-
ues. At around the transition point, we performed the
calculation of the Chern number with real quantum
hardware IBMQ-Montreal; the results are shown as
red stars in Fig. 7(a). Again, the real machine data
perfectly falls onto the exact values without doing any
error corrections.

The correct calculations of the Chern numbers on
real hardware for this interacting model demonstrate
that our holonomy strategy, combined with VQE, al-
lows us to correctly determine the topological invari-
ant for generic quantum states. The typical depth of

quantum circuits for the calculations of Chern num-
bers for the flux-2π/3 Quantum Hall model (both
with and without interactions) is ∼ 25 and the num-
ber of CNOT gates is ∼ 30. It is remarkable that
quantum circuits with this depth obtain an exact mea-
surement for any system quantity, and this is entirely
due to the robustness of wavefunction topology to
mild deformations.

4.3 Determining the topological phase dia-
gram for interacting Chern insulators
The integration of our strategy for measuring topolog-
ical invariants via holonomy with VQE enables a move
towards more complex interacting models. This com-
bination provides an immediate tool to prepare and
characterize interacting topological states on quan-
tum computers. In this subsection, we will demon-
strate how to calculate the topological invariants for
an interacting model; we will map out the quantum
phase diagram of the interacting Chern insulators by
using our holonomy strategy with VQE.

We consider a model constructed on a square lattice
with each unit cell containing two sublattices. We
denote the two sublattices as the A and B sites. Then
the Hamiltonian for a non-interacting Chern insulator
can be written as [48]:

HCI = −t
∑
i

(
ψ†i
σz − iσx

2 ψi+x̂ + ψ†i
σz − iσy

2 ψi+ŷ

)
− t
∑
i

(
ψ†i
σz + iσx

2 ψi−x̂ + ψ†i
σz + iσy

2 ψi−ŷ

)
+M

∑
i

ψ†iσzψi, (40)

where ψi = (ci,A, ci,B)T with ci,A and ci,B the anni-
hilation operators for the sites A and B in the unit
cell i. Here we assume that the interaction happens
for the particles within a unit cell:

Hint = U
∑
i

ni,Ani,B , (41)

where ni,α = c†i,αci,α is the occupation number oper-
ator for the site α in the unit cell i.

In the following explicit example, we studied the
model constructed on a finite-size lattice with two unit
cells denoted by i = 1 and i = 2 [see Fig. 8(a)]. To
calculate Chern numbers of the interacting model, we
need to introduce twisted boundary conditions for the
x and y directions, which can be imposed by intro-
ducing hopping phases across the boundaries of the
finite-size lattice [2]; we denote these by φx and φy
in Fig. 8(a). With the twist boundary conditions, the
Hamiltonian describing the system can be explicitly
written into the sum of two components:

Htot(φx, φy) = Hbulk +Hbdy(φx, φy), (42)
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where the phase factors φx and φy denotes the twist
angle specifying the boundary conditions, and Hbulk

and Hbdy are given explicitly as:

Hbulk =− t
[
ψ†1 (σz − iσx)ψ2 + h.c.

]
+M

∑
i=1,2

ψ†iσzψi

+ U
∑
i

ni,Ani,B , (43)

and

Hbdy =− t

2

[
e−iφxψ†1 (σz − iσx)ψ2 + h.c.

]
− t

2

[
e−iφyψ†1 (σz − iσy)ψ1 + h.c.

]
− t

2

[
e−iφyψ†2 (σz − iσy)ψ2 + h.c.

]
. (44)

The parameter space made by the twist angles φ =
(φx, φy) plays the same role as a Brillouin zone, and
to use the holonomy strategy we need to discretize
the space into a Nx × Ny mesh, with the distance
between neighboring points denoted as δφx in the
x direction or δφy in the y direction. Following
the holonomy strategy, once we obtained the wave
functions at two neighboring points in the parameter
space, we can similarly define the normalized overlap
Uδφ(φ) = 〈Ψ(φ)|Ψ(φ+δφ)〉/|〈Ψ(φ)|Ψ(φ+δφ)〉| with
δφ = δφxx̂ or δφ = δφy ŷ. Then the Berry curvature
in the twist-angle space can be defined similarly as:

F(φ) = ln
[
Uδφ̂x(φ)Uδφ̂y (φ+ δφ̂x)

Uδφ̂x(φ+ δφ̂y)Uδφ̂y (φ)

]
. (45)

With the Berry curvature in hand, the Chern number
can be calculated by summing over the Berry curva-
ture at each discretized mesh point in the twist-angle
space, similar to Eq. (1). Fig. 8(b) shows the phase
diagram obtained from classical calculation, where we
observe a narrowing of the topological region as a
function of interaction strength.

To prepare the ground state wave functions at each
φ, we use the adaptive VQE algorithm based on the
unitary coupled cluster theory. However, different
from the example of quantum Hall states shown in
Sec. 4.1, to account for the effects of the interac-
tion double excitation operators are necessary. We
thus truncate the operator pool at this level (for the
details of the operator pool for this model see Ap-
pendix G) [56]. As in the above, each normalized
wave function overlap can be calculated by using the
general circuit shown in Fig. 1(c) with the wave func-
tion preparation part and the wave function evolution
part realized by adaptive VQE algorithm and projec-
tive measurements as shown in Fig. 6(c).

In Fig. 8(c), we compare the results obtained from
quantum simulators and those from exact diagonal-
ization along the white dashed line (with M = 0.5) in
Fig. 8(b). The consistency of the two results indicates
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Figure 8: Calculations of the Chern number via adaptive
VQE for the interacting Chern insulator model: (a) the lattice
configuration of the 4-site interacting Chern insulator model
(containing two unit cells) with the interaction U applied
to the fermions within the same unit cell; (b) the interacting
quantum phase diagram of the model on the M -U parameter
plane determined by the exact diagonalization method; (c)
the calculated Chern number along the white dashed line in
(b), on which the results obtained from quantum simulator
are consistent with the exact diagonalization results; (d) the
mistake ratio as a function of the depolarizing single-qubit
error rate ε1 determined by n = 10 noisy simulations with
the two-qubit error rate ε2 = 10ε1. For the calculations
on quantum simulator and noisy simulator, N = 3072 were
used to obtain the wave function overlaps. The convergence
parameter is ε = 0.002 because of the small excitation energy
gap in this model.

that our strategy correctly calculates Chern numbers
even for interacting models on quantum computers.

Finally, we performed noisy simulations to deter-
mine the error-free threshold for the calculation of
the Chern numbers of this model. We still set the
depolarizing single-qubit error ε1 as 10 times of the
two-qubit error ε2, and for each ε1 10 trials were per-
formed. The noisy simulations determine the error-
free threshold for the Chern number calculations for
this model is ε1 = 0.005, as indicated by the red
dashed line in Fig. 8(d). The decrease of the error-
free threshold is due to two reasons. First, this model
has a very small excitation energy gap and requires
more iteration steps to capture the necessary features
of ground state. Second the double-excitation oper-
ators are needed to achieve good convergence, and
as we show in Appendix G, the circuit depth for one
double-excitation operator would is 40 CNOTs, which
is much longer than that of a single-excitation opera-
tor.
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5 Discussion and Remarks
We end by comparing our method with the recently
proposed scheme [60] to measure the many-body
Chern number by randomized measurements. In
Ref. [60], the many-body Chern number is inferred
from the winding of the measured expectation of the
SWAP operator applied to the two copies of the wave
function after ‘surgery’, while our method can mea-
sure the Chern number directly avoiding the difficul-
ties in inferring winding (see the discussion of mea-
suring the winding of Zak phase). Though similar to
[60], the demonstrations of our strategy for interact-
ing models are performed on quantum hardware or
quantum simulator, and, more importantly, the inter-
acting model studied in our work has explicitly in-
cluded interaction terms, which, however, is implicit
as the hardcore assumptions in [60].

In our work, we have explicitly demonstrated that
our strategy allows the calculations of topological in-
variants in general as long as the state can be prepared
by an UCC-based adaptive VQE algorithm [44]. In
fact our strategy can be also easily incorporated with
other VQE algorithms, i.e. the qubit coupled clus-
ter version [61] or VQE algorithms based on subspace
expansion [62]. In this sense, whether our strategy
can perform calculations beyond the ability of classi-
cal computers depends on the further development of
VQE algorithms. Unfortunately, at the present stage,
the VQE algorithms still need a large number of multi-
qubit gates and fails on real hardware for large-size
problems, unless the error rates on quantum hardware
can be significantly improved [63]. How to develop
an efficient VQE algorithm, which could perform cal-
culations beyond the ability of classical computers,
is an active research field and beyond the focus of
the present work, but the present work demonstrate a
prototype that our strategy can be incorporated with
more advanced VQE algorithms to solve problems be-
yond classical computers in the future.

In conclusion, by showing the error-free calculations
of Chern numbers for both non-interacting models
and interacting models on IBM machines, we demon-
strated how the topological properties of wave func-
tions can be robustly measured by quantum comput-
ers in this NISQ era. The proposed strategy and its
integration with VQE can provide a powerful tool to
investigate various topologically ordered systems on
current quantum hardware.
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A Noise model simulations
In our noise simulations, we adopt a minimal noise
model incorporating only the depolarizing noise for
the single-qubit and two-qubit gates, which is a widely
used method to incorporate quantum errors [54, 55].
This quantum depolarizing noise for the n-qubit gate
operation can be written as:

∆λ(ρ) = (1− λ) ρ+ λTr [ρ] I2n , (46)

where λ is the depolarization error parameter, n is the
number of qubits, and ρ can be regarded as the den-
sity matrix corresponding to the operation. This de-
polarizing noise model has been included in the noise
model module of qiskit [53], and we used this module
directly for our noise simulations.

However, in real quantum hardware there are still
other kinds of error, such as the readout error and
thermal relaxation error. By the direct comparison
with the calibration data shown in Table 1, 2, and 3,
we can observe that the parameters we used in noise
simulations are much larger than the calibration data
of gate errors. In this sense, our noise model accounts
for errors beyond those in the calibration, and thus
is an effective model to test how the machine noise
affects the measurement of topological invariants.

B The true error-free threshold for the
calculation of Chern numbers in the chi-
ral p-wave superconducting model
In Fig. 2 of the main text, we have performed noisy
simulations to determine the error-free threshold in
the presence of depolarizing errors. The data pre-
sented in that figure was obtained by 10 trials, which
might be not large enough to determine the true error-
free threshold. In this appendix, we further determine
the true error-free threshold by increasing the trial
numbers. The simulation results were summarized in
Fig. 9. We found that the error-free threshold de-
creases and converges to ε1 = 0.006 (see Fig. 9). For
the case with ε1 = 0.006, we found that no error hap-
pens even with 100 trials, which is shown in Fig. 9.
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Figure 9: Determining the true error-free threshold: (a) the
mistake ratio as a function of trial numbers for three different
error rates; (b) the average of 100 trials of noisy simulation
results for ε1 = 0.006. In the calculations, we still assume the
single-qubit error rate ε1 is 10 times of two-qubit error rate
ε2 so that the calculations are controlled by the single-qubit
error rates.

C The noisy simulations close to criti-
cal points
To examine the influence of shot noise, we performed
noisy simulations for the systems close to the topolog-
ical critical points of the chiral p-wave superconduct-
ing model, where the admissibility is much easier to
break.

The same with the assumptions used in the main
text, we assumed that the two-qubit error ε2 is 10
times of the single-qubit error ε1. We first determined
the error-free threshold, when the systems are close
to the critical point µc = 0. The calculations were
performed by verifying the single-qubit error from

ε1 = 0.005 to ε1 = 0.015 with a step 0.001. The
parameter controlling the system µ, was tuned from
µ = −0.0101 to µ = −0.0001 with a step length 0.001.
From Fig. 10(a) we found that the error-free thresh-
old does not change, when the system get closer to
the critical points.

From the discussion in Appendix B, we know that
with the increasing number of repeated noisy simu-
lation, the error-free threshold reduces and seems to
stabilize at ε1 = 0.006, when the number of repeated
calculations is larger than 50. To further verify the
possible influence of shot noise, we set ε1 = 0.006 and
repeat the calculations 50 times for each µ close to all
the three critical points of the model µc = {−2, 0, 2}.
The results were shown in Fig. 10(b), (c) and (d). We
found that even when |µ− µc| = 0.0001, no error can
be found (since the average of 50 calculations gives
the correct Chern number without any deviations).

D Use of the extra Toffoli gate in the
interband evolution circuit in Fig. 2(b)
The interband evolution appears in the calculations
of the topological invariant for mixed states, i.e. the
ensemble geometric phase discussed in the main text.
Explicitly, when we use Eq. (10) to calculate the en-
semble geometric phase, the central quantity is MT

defined in Eq. (11). According to Eq. (11), the wave
function overlap is now given by the inner product
of the wave functions for all the energy bands in the
Bloch basis (see [50] for more details), which can be
written explicitly in the matrix form as:

U†k+δkxx̂Uk =


Ψ†1(k + δkxx̂)Ψ1(k) Ψ†1(k + δkxx̂)Ψ2(k) · · · Ψ†1(k + δkxx̂)ΨN (k)
Ψ†2(k + δkxx̂)Ψ1(k) Ψ†2(k + δkxx̂)Ψ2(k) · · · Ψ†2(k + δkxx̂)ΨN (k)

...
...

. . .
...

Ψ†N (k + δkxx̂)Ψ1(k) Ψ†N (k + δkxx̂)Ψ2(k) · · · Ψ†N (k + δkxx̂)ΨN (k)

 , (47)

where the diagonal elements of the matrix are imple-
mented by the intraband evolution operations, while
the off-diagonal elements indicate the evolution be-
tween different bands and will be implemented by the
interband evolution operations.

To find the interband evolution, we begin with the
wave function at the momentum point k for one of
the bands Ψα(k), and the interband evolution cir-
cuit is to transform the state to Ψᾱ(k + δk). Re-
call that the present model is a two-band model, and
ᾱ = +/− when α = −/+. To realize the transfor-
mation, we first evolve the wave function back the to
band space by implementing V †α (k) (see the discus-
sion around Eq. (26)). In the band space, the lower

band wave function is simply
(

0 1
)T

and the up-

per band wave function is
(

1 0
)T

. Therefore, to

transform between the two bands, we need to imple-
ment a SWAP gate. Finally we just need to implement
Vᾱ(k + δk) to obtained the desired state.

Using the decomposition of the SWAP gate into
CNOT gates,

SWAP[q0, q1] = CNOT[q1, q0]CNOT[q0, q1]CNOT[q1, q0],
(48)

we find:

V †α (k)SWAP[q0, q1]Vᾱ(k + δk)
=CNOT[q1, q0]CU3[q0, q1](θ−k,−ϕ−k, ϕ−k)CNOT[q0, q1]
×CU3[q0, q1](θk+δk,−ϕk+δk, ϕk+δk)CNOT[q1, q0].

(49)

To implement the Hadamard test, we just need to use
an ancilla to control all the operations given in the
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above equations. The expression can be represented by the quantum circuit shown in Fig. 2(b).

E The implementation of adaptive VQE for the quantum Hall model
To motivate the variational ansatz, we can further write the Hamiltonian as:

H =
∑
k

[
−2 cos kyc†k;1ck;1 − 2 cos(ky + 2π/3)c†k;2ck;2 − 2 cos(ky + 4π/3)c†k;3ck;3

]
−
∑
k

[(
c†k;1ck;2 + c†k;2ck;1

)
+
(
c†k;2ck;3 + c†k;3ck;2

)
+
(
e−i3kxc†k;1ck;3 + ei3kxc†k;3ck;1

)]
, (50)

where the first line on the right hand side contains the
‘on-site’ terms determining the Hartree-Fock ground
state for k, and the second line contains all possible
terms generating single excitations from the Hartree-
Fock ground state. Here the magnetic BZ is defined
with kx ∈ [0, 2π/3] and ky ∈ [0, 2π]. Of note is the
last term in the second line, which is different from
the conventional hopping. It can be regarded as a
‘spin-orbit’ fashion and gives rising to the non-trivial
topology of the model.

For this model, there are three bands, and a
straightforward calculation shows that the Chern
numbers associated with them are 1, −2, 1 from the
low energy to high energy bands. Therefore, one can
easily identify that the Chern number of the two-
body ground state of this model has a Chern num-
ber 1 − 2 = −1. Because we have set the hopping
strength as the energy unit, the exciation gap above
the two-body ground state is ∼ 2 for this model.

E.1 The procedures for implementing the
adaptive VQE in the quantum Hall model
Adaptive VQE is a hybrid quantum-classical algo-
rithm; the evaluation of expectation values are car-
ried out on quantum hardware, and the optimization
is performed on classical computers.

E.1.1 Determining the operator pool in the adaptive
VQE

This particular model contains only hopping terms,
so it can be straightforwardly solved by generaliz-
ing the factorized form of the unitary coupled clus-
ter (UCC) theory (truncated at single excitations).
We choose the operator pool of the adaptive VQE to
include all the possible operations generating single
excitations/de-excitations, constrained by the Hamil-
tonian. In fermionic language, these operators are:

O1 = c†k;1ck;2 − c†k;2ck;1,

O2 = c†k;2ck;3 − c†k;3ck;2,

O3 = c†k;3ck;1 − c†k;1ck;3,

O4 = i
(
c†k;3ck;1 + c†k;1ck;3

)
,

(51)

Figure 10: Noise simulations of the calculations of Chern
numbers at around critical points: (a) the mistake ratios of
Chern number measurement from the noise simulations. The
calculations were performed at 10 evenly distributed points
from µ = −0.0101 to µ = −0.0001. For each error rates
and µ, 10 calculations were performed. (b) the mean val-
ues of Chern numbers calculated at around the critical point
µc = −2 with 50 repeated calculations for ε1 = 0.006.
The calculations were performed from µ = −2.0101 to
µ = −1.9901 with a step 0.001. (c) the mean values of
Chern numbers calculated at around the critical point µc = 0
with 50 repeated calculations for ε1 = 0.006. The calcula-
tions were performed from µ = −0.0101 to µ = 0.0099 with
a step 0.001; (d) the mean values of Chern numbers calcu-
lated at around the critical point µc = 2 with 50 repeated
calculations for ε1 = 0.006. The calculations were performed
from µ = 1.9901 to µ = 2.0101 with a step 0.001.

where ck;n with n = 1, 2, 3 denotes the annihila-
tion operator for the state in the orbital n with
momentum k. So, the operator pool is given by
P = {O1,O2,O3,O4}. The Jordan-Wigner transfor-
mation can be used to map them to qubit represen-
tations:


O1 = i

(
σ0

3 ⊗ σx2 ⊗ σx1 + σ0
3 ⊗ σ

y
2 ⊗ σ

y
1
)
/2,

O2 = i
(
σx3 ⊗ σx2 ⊗ σ0

1 + σy3 ⊗ σ
y
2 ⊗ σ0

1
)
/2,

O3 = i (σx3 ⊗ σz2 ⊗ σx1 + σy3 ⊗ σz2 ⊗ σ
y
1 ) /2,

O4 = − (σx3 ⊗ σz2 ⊗ σ
y
1 − σ

y
3 ⊗ σz2 ⊗ σx1 ) /2,

(52)
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Figure 11: The flow diagram for the implementation of adaptive VQE.

where σαk indicates the α−th Pauli matrix acting on
the k-th orbital (α = 0 is the identity).

Note that the choice of the operator pool is differ-
ent from the conventional UCC theory in the following
ways: 1. in the conventional UCC theory, the single-
excitations are generated by the hopping between an
occupied orbital and an empty orbital, but here we
include all the hopping operations; and 2. O4 is not
included in the conventional UCC theory. The rea-
sons for these differences are the following: first the
occupied orbitals changes when we sweep the whole
magnetic BZ, so a universal operator pool should in-
clude all the hopping terms, and the issue of the en-
largement of the pool at each momentum point can
be naturally solved by the adaptive VQE, which al-
ways chooses the most efficient operators in the pool
to prepare the ground state wave function; secondly,
the non-trivial topology of the model is due to the
‘spin-orbit’ like hopping at the boundary of the mag-
netic BZ, so introducing O4 naturally accounts for
this term.

With these components, an arbitrary wave function
of the model can be generated by the following ansatz
[44]:

|Ψtarget〉 =
∏
α

eλαOα |Ψinitial〉, (53)

where |Ψinitial〉 denotes an initial wave function,
|Ψtarget〉 is the target wave function, Oα ∈ P can
be repeatedly appear in the ansatz, and λα is a real
parameter to be determined in the optimization.

E.1.2 Choosing a proper operator from the pool

In the adaptive VQE [44], the key step is to find the
best operator from the pool, to optimize the present
wave function. This task can be done by the measure-

ments of the expectation values of the commutators
between the Hamiltonian density H and operators in
the pool Oα ∈ P. Suppose that the present wave
function is given by |ψ〉. Then the expectations of the
commutators are

∂E

∂λα
= 〈ψ| [H,Oα] |ψ〉. (54)

Suppose that |〈ψ| [H,Oα0 ] |ψ〉| is the largest of all the
commutators. Then it indicates that Oα0 currently
leads to the steepest decent from the present expec-
tation energy E = 〈ψ|H|ψ〉. Therefore, Oα0 is the
best operator to be used in the optimization.

E.1.3 Adaptive VQE procedure

The aim of the adaptive VQE is to find an ap-
proximate operator, which can transform the initial
Hartree-Fock ground state wave function determined
by the first line of Eq. (50), to the approximate
ground-state wave function. If we suppose that the
approximate operator can be found after N iterations
of adaptive VQE, it means that the exact operator
preparing the true ground state wave function can be
approximated by:

Uex ≈ eλNOαN eλN−1OαN−1 · · · eλ1Oα1 , (55)

where λn with n ∈ {1, 2, · · · , N} is a real parameter,
and Oαn is an operator in the operator pool P =
{O1,O2,O3,O4}. Note that operators are allowed to
repeat.

With the determination of the operator pool and
the method to determine the best operators from the
pool, we can implement the adaptive VQE explicitly,
as summarized in Fig. 11 and illustrated in ref.[44]:
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Figure 12: The comparison between the exact two-body
ground state energy and the optimized energy by adaptive
VQE. In the calculation, the criteria to stop the adaptive VQE
is the same with that used in main text, which is ε = 0.01.
The difference between the exact ground state energy and
the optimized energy is smaller than 0.03. Here the energy
unit is the hopping strength of the model.

1. We begin with the Hartree-Fock ground state
determined by the first line in Eq. (50), which
is denoted by |ψHF 〉, and then we calcu-
late: 〈ψHF | [H,O1] |ψHF 〉, 〈ψHF | [H,O2] |ψHF 〉,
〈ψHF | [H,O3] |ψHF 〉, and 〈ψHF | [H,O4] |ψHF 〉 to
determine the maximum gradient (see Eq. (54)).

2. Based on the expectation values evaluated in step
1, we can find the operator Oα1 ∈ P, which
makes |〈ψHF | [H,Oα1 ] |ψHF 〉| maximal;

3. Then the unitary operator is updated to Uex =
eλ

(1)
1 Oα1 with λ

(1)
1 determined by minimizing:

〈ψHF |eλ
(1)
1 O

†
α1Heλ

(1)
1 Oα1 |ψHF 〉; (56)

4. The wave function is updated to |ψα1〉 =
eλ

(1)
1 Oα1 |ψHF 〉, and the expectation energy of the

system with respect to the wave function is given
by Eα1 = 〈ψα1 |H|ψα1〉;

5. We evaluate 〈ψα1 | [H,O1] |ψα1〉,
〈ψα1 | [H,O2] |ψα1〉, 〈ψα1 | [H,O3] |ψα1〉, and
〈ψα1 | [H,O4] |ψα1〉;

6. Based on the expectation values evaluated in step
5, we can find the operator Oα2 ∈ P, which
makes |〈ψα1 | [H,Oα2 ] |ψα1〉| maximal;

7. The unitary operator is updated to Uex =
eλ

(2)
2 Oα2 eλ

(2)
1 Oα1 , with λ

(2)
1 and λ

(2)
2 determined

by minimizing:

〈ψHF |eλ
(2)
1 O

†
α1 eλ

(2)
2 O

†
α2Heλ

(2)
2 Oα2 eλ

(2)
1 Oα1 |ψHF 〉;

(57)

8. The wave function is updated to |ψα2〉 =
eλ

(2)
2 Oα2 eλ

(2)
1 Oα1 |ψHF 〉, and the energy expecta-

tion of the system with respect to the approxi-
mate wave function is Eα2 = 〈ψα2 |H|ψα2〉.

9. We calculate |Eα2−Eα1 | and, if it is smaller than
the convergence criteria ε, the exact unitary op-
erator is approximated by:

Uex = eλ
(2)
2 Oα2 eλ

(2)
1 Oα1 . (58)

10. Otherwise, we repeat the steps from 5 to 9, until
|EαM − EαM−1 | < ε. The exact unitary operator
is then

Uex = eλ
(M)
M
OαM eλ

(M)
M−1OαM−1 · · · eλ

(M)
1 Oα1 . (59)

Typically, a small enough ε ensures good conver-
gence to the true ground state. To illustrate this
point, we used the quantum simulator provided by
qiskit [53] to implement the adaptive VQE for the
quantum Hall model. In particular, the magnetic
BZ is discretized into 3 × 12 mesh points, and we
performed adaptive VQE for each mometum point.
In Fig. 12 we plot the optimized ground state en-
ergy versus the true ground state energy by using
ε = 0.01, and the smaller difference between the opti-
mized ground state energy and the true ground state
energy (< 0.03) indicates that good approximations
are achieved.

E.2 Truncating the optimization sequence
Now based on the adaptive VQE described in the
above, the approximate unitary operator, which can
transform the Hartree-Fock ground state to the ap-
proximated ground state, is given by:

Uex = eλ
(M)
M
OαM eλ

(M)
M−1OαM−1 · · · eλ

(M)
1 Oα1 . (60)

However, this state preparation usually is too deep for
NISQ machines. Fortunately, the robustness of the
Chern number allows us to do a further truncation.

Note that with the full sequence with Uex given by
Eq. (60), the ground state is approximated by:

|GS(M)〉 = eλ
(M)
M
OαM eλ

(M)
M−1OαM−1 · · · eλ

(M)
1 Oα1 |ψHF 〉.

(61)
If we choose a small ε (i.e. ε = 0.01), we found
that EαM = 〈GSM |H|GSM 〉 is very close to the true
ground state energy EGS .

On the other hand, in the process of implementing
the adaptive VQE described in the last subsection,
at the end of each iteration step we can obtain an
expectation energy of the system with respect to the
approximate wave function at the given iteration. For
example, the expectation energy Eαn corresponds to
the wave function

eλ
(n)
n Oαn eλ

(n)
n−1Oαn−1 · · · eλ

(n)
1 Oα1 |ψHF 〉. (62)

We write these expectation energies obtained in
the adaptive VQE as an array: (Eα1 , Eα2 , · · · , EαM ).
From the adaptive VQE [44], we know that if we can
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Figure 13: The illustration of the sequence truncation un-
der the condition ∆Eαn−1 > ∆E and ∆Eαn < ∆E. The
iterations in red boxes are dropped under the condition.

iterate the optimization infinitely, the prepared state
should ideally be identical to the true ground state
(although this might fail, as the adaptive VQE is not
guaranteed to produce the ground state after an in-
finite number of steps, or it could reach the ground
state with a finite number of steps, since the ground
state can be formed exactly from a finite number of
UCC factors). Moreover, the expectation energy with
respect to the wave function obtained after each it-
eration decreases (hopefully all the way to the true
ground state energy). In this sense, how the expecta-
tion energy converges to the true ground state energy
reflects how the prepared wave function converges to
the true ground state wave function. Based on this
observation, we can further define:

∆ = (Eα1 − EαM , Eα2 − EαM , · · · , EαM − EαM )
= (∆Eα1 ,∆Eα2 , · · · , 0) . (63)

Note that ∆Eαn ≈ Eαn − EGS , so the nth element
in ∆, ∆Eαn , characterizes how far away the wave
function obtained after the nth iteration is from the
true ground state wave function.

Then based on the array ∆, we can have a con-
trolled way to truncate the full sequence with Uex. For
example, we can choose a ∆E so that ∆Eαn−1 > ∆E
and ∆Eαn < ∆E. It means that if we use:

|GStrun〉 = eλ
(n)
n Oαn eλ

(n)
n−1Oαn−1 · · · eλ

(n)
1 Oα1 |ψHF 〉,

(64)
the prepared ground state energy would be larger than
the true ground state energy by a value ∼ ∆E. The
truncation procedure is illustrated in Fig. 13. Typ-
ically, ∆E should be much smaller than the excia-
tion gap above the ground state to guarantee the true
ground state can be properly prepared. In the calcula-
tions shown in the main text, ∆E = 0.2 and ∆E = 0.3
are much smaller than the exciation gap of the model,
which is ∼ 2.

As we have discussed in the main text, the purpose

of the truncation is to reduce the depth of the quan-
tum circuits so that we could run it on the present
quantum hardware. The truncation can be done in
two ways in the main text: one is to introduce a trun-
cation parameter ∆E; the other is to increase the con-
vergence parameter ε. The advantage of introducing
a truncation parameter is that the parameter ∆E is
a good measure of how far away the truncated states
used for the calculation of topological invariant are
from the true ground states. For the flux-2π/3 quan-
tum hall model, which we have studied in Sec. 4.1
of the main text, the operation numbers required for
each momentum points in the magnetic Brillouin zone
for different truncation parameter ∆E are shown in
Fig. 14.
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Figure 14: The operator number changes due to the intro-
duction of truncation parameter ∆E. In the calculation the
convergence parameter ε = 0.01, which is the setting in the
main text.

F Projective measurement to replace
the Hadamard test
To have a motivation to introduce projective measure-
ments, let us first rewrite the wave function overlap
into the following form:

〈Ψ(k)|Ψ(k+ δk)〉 = 〈Ψ(k)|U(k+ δk,k)|Ψ(k)〉, (65)

where the operator U(k+ δk,k) transforms the wave
function at the momentum point k to the wave func-
tion at the momentum point k + δk, namely:

U(k + δk,k)|Ψ(k)〉 = |Ψ(k + δk)〉. (66)

The new expression of wave function overlaps indi-
cates that except for the calculations of wave func-
tion overlaps from the Hadamard test algorithm, we
can also calculate them by measuring the expectation
values of the operator U(k + δk,k). The expression
of the operator U(k + δk,k) can be determined by
the adaptive VQE algorithm and can be expressed in
general in terms of the operators in the operator pools
for the corresponding VQE:

U(k + δk,k) ≈ eλNOαN eλN−1OαN−1 · · · eλ1Oα1 , (67)
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where Oαi is an operator in the operator pool of the
adaptive VQE, and λi is the coefficient. The adap-
tive VQE algorithm is used to determine the orders
of the operators in the above expression and also the
coefficient.

From Appendix E and G, one can easily identify
that the operator Oαi can be expressed as a linear
combination of a series Pauli strings. Explicitly, for
a system containing N qubits, the operator can be
expressed as Oαi =

∑
j Pj , where Pj = ⊗Nn σαnn with

αn = x, y, z, 0. More importantly, one can prove that
the Pauli strings in the sum commute with each other
[59]. Therefore, we have:

eλiOαi =
∏
j

eλiPj =
∏
j

(cosλi + i sinλiPj) . (68)

Inserting Eq. (68) into the expression of U(k+ δk,k)
given in Eq. (67), one can find the operator U(k +
δk,k) can be written as the linear combination of
Pauli strings:

U(k + δk,k) =
M∑
j

cjPj . (69)

We can easily find that the number of terms in the
summation in Eq. (69) is bounded by 4N − 1 with N
is the number of qubits (4 is due to the fact that for
each qubit there are 4 different Pauli matrices acting
on it). Obviously, such a method can not be scaled
to large systems, but for small size systems it works
well and can be used to reduce circuit depths.

In our calculations for small size systems, we can
easily determine the coefficients in front of Pj in
Eq. (69) with a classical algorithm. After correctly
measuring the expectation values of Pj by using the
wave function at momentum point k on quantum
computers, we can straightforwardly calculate:

〈Ψ(k)|Ψ(k + δk)〉 = 〈Ψ(k)|U(k + δk,k)|Ψ(k)〉

=
∑
j

cj〈Ψ(k)|Pj |Ψ(k)〉. (70)

G The operator pool for the interact-
ing Chern insulator model

The operator pool for the interacting Chern insulator
model constructed on the two unit cells is still con-
structed based on the unitary coupled cluster theory,
but the caution here is that to account for the effect
of interaction, double excitation operators must be in-
cluded. Based on the Hamiltonian in Eq. (42), the
operators generating single excitations/de-excitations

are given by:



O1 = c†k;1ck;2 − c†k;2ck;1,

O2 = c†k;1ck;3 − c†k;3ck;1,

O3 = c†k;1ck;4 − c†k;4ck;1,

O4 = c†k;2ck;3 − c†k;3ck;2,

O5 = c†k;2ck;4 − c†k;4ck;2,

O6 = c†k;3ck;4 − c†k;4ck;3,

O7 = i(c†k;1ck;2 + c†k;2ck;1),
O8 = i(c†k;1ck;3 + c†k;3ck;1),
O9 = i(c†k;1ck;4 + c†k;4ck;1),
O10 = i(c†k;2ck;3 + c†k;3ck;2),
O11 = i(c†k;2ck;4 + c†k;4ck;2),
O12 = i(c†k;3ck;4 + c†k;4ck;3),

(71)

where the first 6 terms are the operators obtained by
the conventional unitary coupled cluster theory, and
the last 6 terms are introduced to take into account
the spin-orbit coupling terms. These terms can be
written as Pauli strings similar to Eq. (52) by us-
ing the Jordan-Wigner transformation, and we do not
write them down explicitly here.

The operators generating double excitations/de-
excitations are obtained directly by following the uni-
tary coupled cluster theory:



O13 = (c†k;1ck;2c
†
k;3ck;4 − c†k;4ck;3c

†
k;2ck;1),

O14 = (c†k;1ck;3c
†
k;2ck;4 − c†k;4ck;2c

†
k;3ck;1),

O15 = (c†k;1ck;4c
†
k;2ck;3 − c†k;3ck;2c

†
k;4ck;1),

O16 = (c†k;1ck;2c
†
k;4ck;3 − c†k;3ck;4c

†
k;2ck;1),

O17 = (c†k;1ck;3c
†
k;4ck;2 − c†k;2ck;4c

†
k;3ck;1),

O18 = (c†k;1ck;4c
†
k;3ck;2 − c†k;2ck;3c

†
k;4ck;1).

(72)

To write these operators in terms of Pauli strings, we
need to use the fact that:

c†ncn+m = 1
4 (XXn;n+m + Y Yn;n+m)

+ i

4 (XYn;n+m − Y Xn;n+m) , (73)

where the subscripts are ordered along the Jordan-
Wigner string, XXn;n+m, Y Yn;n+m, XYn;n+m and
Y Xn;n+m are Pauli strings and have the following ex-
plicit expressions:


XXn;n+m = σxn

∏
n<j<n+m σ

z
jσ

x
n+m,

Y Yn;n+m = σyn
∏
n<j<n+m σ

z
jσ

y
n+m,

XYn;n+m = σxn
∏
n<j<n+m σ

z
jσ

y
n+m,

Y Xn;n+m = σyn
∏
n<j<n+m σ

z
jσ

x
n+m.

(74)
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Therefore, we have generically:

c†ncmc
†
i cj − c

†
jcic

†
mcn = i

8 (XXn;mXYi;j −XXn;mY Xi;j)

+ i

8 (Y Yn;mXYi;j − Y Yn;mY Xi;j)

+ i

8 (XYn;mXXi;j +XYn;mY Yi;j)

− i

8 (Y Xn;mXXi;j + Y Xn;mY Yi;j) .
(75)

For the interacting Chern insulator model considered
in the main text, the quantum circuits representing
the 8 terms in Eq. (75) have the similar structures,
details of which were provided in [63]. The circuit
depth for each of them is 5, so the depth for an oper-
ator generating double excitations/de-excitations will
be 40.

H Calibration data and other measure-
ments from quantum hardware
H.1 Calibration data of IBMQ-Toronto
The measured Chern numbers shown in Fig. 2 were
obtained on IBMQ-Toronto. The quantum calcula-
tions were repeated two times on 08/03/2020 and
10/16/2020. The calibration data for the relevant
qubits where the calculations were carried out are
summarized in Table 1 and Table 2.

qubit
gate Id U1 U2 U3 qubit

gate CX

1 1.64× 10−4 0 1.64× 10−4 3.27× 10−4 [1,4] 9.36× 10−3

4 3.07× 10−4 0 3.07× 10−4 6.14× 10−4 [4,7] 1.16× 10−2

7 4.49× 10−4 0 3.07× 10−4 8.98× 10−4

Table 1: The calibration error data on 08/03/2020, for the
gates operated on qubits 1, 4 and 7 on IBMQ-Toronto.

qubit
gate Id U1 U2 U3 qubit

gate CX

0 3.18× 10−4 0 3.18× 10−4 6.35× 10−4 [0,1] 6.71× 10−3

1 1.86× 10−4 0 1.86× 10−4 3.72× 10−4 [1,4] 9.13× 10−3

4 2.06× 10−4 0 2.06× 10−4 4.13× 10−4

Table 2: The calibration error data on 10/16/2020, for the
gates operated on qubits 0, 1 and 4 on IBMQ-Toronto.

H.2 Calibration data on IBMQ-Montreal and
other measurements on this machine
The measured Chern number shown in Fig. 6 of the
main text was obtained on IBMQ-Montreal. The cal-
ibration data for the machine, when the calculations
were carried out, is summarized in Table 3 below for
the qubits on which the calculations were performed.

The measurements of the Chern number of the two-
body ground state of the quantum Hall model was re-
peated 5 times for ∆E = 0.2 and ∆E = 0.3 on IBMQ-
Montreal, respectively. For the ∆E = 0.2 cases, 4

qubit
gate Id RZ SX X qubit

gate CX

8 2.23× 10−4 0 2.23× 10−4 2.23× 10−4 [8,11] 7.19× 10−3

11 1.98× 10−4 0 1.98× 10−4 1.98× 10−4 [11,14] 6.33× 10−3

14 2.90× 10−4 0 2.90× 10−4 2.90× 10−4

Table 3: The calibration error data on 05/28/2021, for the
gates operated on qubits 8, 11 and 14 on IBMQ-Montreal.

out of 5 measurements have the same distribution of
the integer-valued field n(k) in the magnetic BZ as
that shown in Fig. 3(d), and the remaining one mea-
surement has the distribution of the integer-valued
field n(k) the same with that shown in Fig. 3(e). For
the ∆ = 0.3 case, 4 out of 5 measurements have the
same distribution of the integer-valued field n(k) in
the magnetic BZ as that shown in Fig. 3(e), and the
remaining one measurement shows the same distribu-
tion of the integer-valued field n(k) with that shown
in Fig. 3(d).

H.3 Calibration data on IBMQ-Montreal for
the calculation of interacting models
The measured Chern number shown in Fig. 7 of the
main text was obtained on IBMQ-Montreal, and the
calculation were repeated twice. The calibration data
for the machine, when the calculations were carried
out, is summarized in Table 4 below for the qubits on
which the calculations were performed.

qubit
gate Id RZ SX X qubit

gate CX

0 5.53× 10−4 0 5.53× 10−4 5.53× 10−4 [0,1] 1.83× 10−2

1 7.43× 10−4 0 7.43× 10−4 7.43× 10−4 [1,4] 1.86× 10−2

4 3.97× 10−4 0 3.97× 10−4 3.97× 10−4

Table 4: The calibration error data on 07/06/2021, for the
gates operated on qubits 0, 1 and 4 on IBMQ-Montreal.
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