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Decomposition of high-rank factorized unitary coupled-cluster operators
using ancilla and multiqubit controlled low-rank counterparts
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The factorized form of the unitary coupled-cluster (UCC) approximation is one of the most promising
methodologies to prepare trial states for strongly correlated systems within the variational quantum eigensolver
framework. The factorized form of the UCC Ansatz can be systematically applied to a reference state to generate
the desired entanglement. The difficulty associated with such an approach is the requirement of simultaneously
entangling a growing number of qubits, which quickly exceeds the hardware limitations of today’s quantum
machines. In particular, while circuits for singles and double excitations can be performed on current hardware,
higher-rank excitations require too many gate operations. In this work, we propose a set of schemes that trade off
using extra qubits for a reduced gate depth to decompose high-rank UCC excitation operators into significantly
lower depth circuits. These results will remain useful even when fault-tolerant machines are available to reduce
the overall state-preparation circuit depth.
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I. INTRODUCTION

Efficiently simulating quantum many-body systems on
quantum hardware is one of the major goals of quantum
computation, and many algorithms already exist [1–4] for
this problem. For weakly correlated systems seen in many
quantum chemistry systems, there is a hierarchy to the ampli-
tudes of the determinants in the expansion of the ground-state
wave function—low-rank excitations from the reference state
typically have larger amplitudes than higher-rank excitations.
But, generically, many determinants are still needed to achieve
chemical accuracy even with this hierarchy. When the number
of electrons and spin orbitals is small enough, the molecule
can be treated by exact diagonalization, which is called the full
configuration interaction [5] in the chemistry field. But very
few systems can be treated this way on classical computers
due to the exponential growth of the Hilbert space scaling
as O(2N ). Truncating the Hilbert space to include the most
important many-body basis states is called the configuration-
interaction (CI) method. But it suffers from not being size
consistent, which affects the accuracy when molecules are
stretched close to the dissociation limit. Instead, the coupled-
cluster (CC) method [6] provides high precision, is size
consistent, and is lean on memory usage because it does
not explicitly construct the wave function. The CC method
scales as O(N10) when including singles, doubles, triples, and
quadruples.

The variational quantum eigensolver (VQE) algorithm re-
lies on the variational principle of quantum mechanics to
estimate the ground-state energy of a molecule [7]. While the
VQE can be used for physical systems in condensed matter
and other fields of physics, the main application is in quantum
chemistry. Classical quantum chemistry methods boast high

accuracy but can be expensive. Thus, one active area of re-
search is in leveraging quantum technology to calculate the
ground-state energy of molecules.

Picking the proper wave-function Ansatz is one of the
more difficult challenges not only in using VQE for quantum
chemistry but also in other approaches in which a trial wave
function is needed [8]. The classical coupled-cluster approx-
imation applies an exponential operator to the reference state
(typically, the Hartree-Fock wave function). In conventional
CC calculations, one applies the coupled-cluster operator
as a similarity transformation of the Hamiltonian. Because
the Hamiltonian contains only single and two-particle in-
teractions, the power series expansion of the similarity
transformation truncates after at most fourfold nested com-
mutator terms, which proves to be efficient when carried
out on classical computers. However, most operations appli-
cable to quantum machines must be unitary. This suggests
using the unitary coupled-cluster (UCC) Ansatz [9,10], which
includes a sum of excitations minus deexcitations, to have
a unitary operator applied to the reference state. Unfortu-
nately, the similarity transformation of the Hamiltonian under
the UCC Ansatz does not truncate after a small number of
terms. Strategies used to evaluate it on classical computers
include truncating the series at a fixed order [9], expanding
the exponential operator in a power series and truncating
the series when higher-order terms no longer change the
wave function [11], and using an exact operator identity of
the factorized form of the UCC to allow the wave function
to be constructed in a tree structure [12]. If T̂ is the op-
erator that is exponentiated in the traditional CC approach
and applied to the reference state, i.e., |ψCC〉 = exp(T̂ ) |ψ0〉,
the corresponding UCC Ansatz is the unitary variant, given
by |ψUCC〉 = exp(T̂ − T̂ †) |ψ0〉. Note that the T̂ operator
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involves fermionic destruction operators for the real orbitals
(present in the reference state) and an equal number of
fermionic creation operators for the virtual operators (corre-
sponding to orbitals that can be occupied in the expansion of
the wave function). So the T̂ operator excites the reference
state. The operator T̂ † annihilates against the reference state,
but it can be nonzero when it acts on other determinants
in the expansion for the wave function. The standard way
to implement the UCC approximation is to exponentiate the
sum of all the different excitation and deexcitation operators
T̂ − T̂ † via

ÛUCC = eT̂ −T̂ † = e
∑

θabc···
i jk··· [Âabc···

i jk··· −(Âabc···
i jk··· )†], (1)

where we define the excitation operators as

Âabc···
i jk··· = â†

aâ†
bâ†

c · · · · · · âk â j âi. (2)

Here, a, b, c, . . . are the indices for the unoccupied (vir-
tual) spin orbitals, and i, j, k, . . . are the indices for the
occupied (real) spin orbitals, and we use the standard
second-quantization notation for the fermionic creation and
destruction operators; note that in each T̂ operator, all cre-
ation operators and all destruction operators are selected
from the virtual orbitals and the real orbitals, respectively,
and the opposite is true for the T̂ † operators; a particular
excitation-deexcitation operator in the summation appears
only once—we do this by requiring the indices to be ordered
a < b < c · · · and i < j < k · · · .

It is important to note that carrying out a UCC calculation
exactly using this method is challenging because quantum
circuits for the exponential of the sum of unitaries are com-
plicated [13]. The other method is to write down the Ansatz in
a factorized form, given by

Û ′
UCC =

∏
eθabc···

i jk··· [Âabc···
i jk··· −(Âabc···

i jk··· )†]. (3)

Unlike the case in which we exponentiate a sum of unitaries,
the factorized Ansatz is not uniquely determined because
many of the elementary factors do not commute, leading to
different results based on the ordering of the different fac-
tors. Despite this, the factorized form is still a promising
approach for applying the UCC Ansatz on noisy intermediate-
scale quantum (NISQ) machines. One reason is it can be
implemented with relatively simple circuits. Using the Jordan-
Wigner transformation [14,15], we convert the Â and Â† terms
into sums of products of Pauli strings; we can immediately
map the exponential of such operators into a gated circuit.
The circuit requires many controlled-NOT (CNOT) gate cas-
cades [16,17], which will lead to low-fidelity performance on
current quantum hardware. Reducing the CNOT count of the
factorized form of the UCC Ansatz could potentially allow for
the use of NISQ hardware for quantum chemistry calculations.

Traditional quantum chemistry focuses primarily on single
and double excitations in CC, but as the correlations grow, it
is anticipated that higher-rank excitations will be needed to
accurately represent the wave function. Within the classical
computational chemistry framework, work by Chen et al. [12]
created an algorithm using the factorized form of the UCC
that produces significantly better results for strongly corre-
lated systems and comparable results in terms of accuracy
for weakly correlated systems. In Ref. [18], Evangelista et al.
proved that the disentangled (factorized) UCC Ansatz is capa-

ble of generating arbitrary states. Reference [19] showed one
can create the exact ground-state wave function for a four-site
Hubbard ring (in its natural orbital basis) using a factorized
form of the UCC that requires one quadruple excitation and
eight double excitations. Although the circuit depth for such
a state-preparation procedure is comparatively low, the one
quadruple factor requires about half the gate counts for the
circuit (being about an order of magnitude more gates than
one doubles factor). In this work, we introduce a decompo-
sition method that greatly reduces the gate count of costly
high-rank UCC factors (such as the aforementioned quadruple
excitation) into lower-rank factors.

It is important to mention that the method proposed in this
paper is predicated on the fact that the fermion-to-qubit map-
ping used by the circuit from Ref. [18] is the Jordan-Wigner
encoding. It is not universally applicable to other encodings.
However, one should be able to generalize the approach given
here to other fermion encodings, if desired.

II. BACKGROUND

A. Classical coupled-cluster approach

A set of electronic excitation operators can be defined as
follows [20]:

T̂ =
N∑

i=1

T̂i. (4)

Explicitly, the first two ranks (orders) are

T̂1 =
∑

ia

θa
i â†

aâi =
∑

ia

θa
i Âa

i , (5)

T̂2 =
∑
i jab

θab
i j â†

aâ†
bâiâ j =

∑
i jab

θab
i j Âab

i j , (6)

where â†
a is the fermionic creation operator on virtual orbital

a and âi is the fermionic annihilation operator on real orbital i
and they obey the anticommutation relations as follows:

{âi, â j} = 0, {â†
i , â†

j} = 0, {âi, â†
j} = δi j, (7)

where {A, B} = AB + BA and δi j is the Kronecker delta func-
tion. Note that for T̂2 and higher-rank operators, different
ordering of the indices i jab can be used, but in this work, we
will be using only one ordering of the indices for each equiva-
lent term. A coupled-cluster with singles and doubles (CCSD)
wave function is given by an exponential of the excitations
acting on a reference state [Hartree-Fock (HF) solution],

|ψCCSD〉 = eT̂CCSD |ψ0〉 = eT̂1+T̂2 |ψ0〉. (8)

We compute the energy by first projecting the Schrodinger
equation H |ψCCSD〉 = E |ψCCSD〉 onto the HF reference 〈ψ0|:

E = 〈ψ0| e−T̂CCSD HeT̂CCSD |ψ0〉. (9)

We then project against a set of states {〈ψμ|} that covers the
entire space generated by T̂CCSD acting on the reference state
[6,20]. The problem is solved by solving a set of nonlinear
amplitude equations:

E = 〈ψ0| e−T̂CCSD HeT̂CCSD |ψ0〉, (10)

0 = 〈ψμ| e−T̂CCSD HeT̂CCSD |ψ0〉. (11)
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The cost of solving these equations scales as O(η2(N − η)4),
where η is the number of electrons and N is the number of spin
orbitals in the system. Note the number of amplitude equa-
tions is given by the number of amplitudes in the expansion of
the T̂ operator, which is a much smaller number than the total
number of determinants in the CC wave function.

It is convenient that the operator e−T̂CCSD HeT̂CCSD , also
known as the similarity-transformed Hamiltonian, is addi-
tively separable. Combined with the fact that the exponential
of the excitation eT̂CCSD is multiplicatively separable, the CCSD
Ansatz is size consistent. As mentioned previously, classical
coupled-cluster theory solves the lack of size consistency of
the truncated CI wave functions. Recall that the Hamiltonian
in the second quantization is

H =
∑

i j

hi j â
†
i â j + 1

2

∑
i jkl

gi jkl â
†
i â†

j âk âl , (12)

where hi j are the one-electron integrals and gi jkl are the two-
electron integrals, given by

hi j =
∫

dr1φ
∗
i (r1)

(
−1

2
∇2

r1
−

M∑
I=1

ZI

R1I

)
φ j (r1), (13)

gi jkl =
∫

dr1dr2φ
∗
i (r1)φ∗

j (r2)
1

r12
φk (r1)φl (r2). (14)

Here, M is the number of atoms in the system, ZI are atomic
numbers, R1I = |r1 − RI |, r12 = |r1 − r2|, and φ(r) are op-
timized single-particle spin orbitals such as those generated
by a HF calculation [21,22]. A general similarity-transformed
Hamiltonian can be expanded using the Hadamard lemma,
and it truncates after the fourth term 1

24 [[[[H, T ], T ], T ], T ]
due to the Hamiltonian having only one- and two-body inter-
action terms [6]. However, when acting on a multireference
state, which is often needed for strongly correlated systems
in order to be able to use a low-rank representation of the
many-body wave function, the calculational procedure often
becomes problematic.

B. Unitary coupled-cluster and disentangled UCC factors

The unitary variant of the CC method is defined as follows
[9,10]:

|ψUCC〉 = eT̂ −T̂ † |ψ0〉. (15)

The UCC method computes the energy using the variational
principle:

E = min
�θ

〈ψ0| e−(T̂ −T̂ † )HeT̂ −T̂ † |ψ0〉
〈ψUCC〉 ψUCC

, (16)

which requires us to work with the explicit wave function or
to determine the similarity transformation of the Hamiltonian.
This approach is always variational, is size consistent, and
often can be extended to multireference situations. However,
the Hadamard lemma expansion of its similarity-transformed
Hamiltonian no longer truncates after just four terms [23,24].
Although the UCC Ansätze are challenging to carry out on a
classical computer, a quantum computer can efficiently apply
a UCC operator in its factorized form [7,25].

Implementing the UCC Ansatz on a quantum machine
requires Trotterization as the excitation operators do not nec-
essarily commute:

eT̂ −T̂ † = e
∑

i θi (Âi−Â†
i ) ≈

( ∏
i

e
θi
n (Âi−Â†

i )

)n

, (17)

where θi is the amplitude associated with the excitation opera-
tors Âi and Â†

i . In the case where n = 1, we can write the UCC
Ansatz as

|ψ ′
UCC〉 =

∏
i

eθi (Âi−Â†
i )|ψ0〉, (18)

where a UCC factor then has the form eθi (Âi−Â†
i ). One can think

of this either as a crude approximation of the Trotter product
or as a factorized form of the UCC Ansatz. It is important to
note that this Ansatz is not unique—different orderings lead
to different wave functions when the reordered factors do not
commute with each other.

C. SU(2) identity for single UCC factors

A single UCC factor has a hidden SU(2) identity that
exactly determines the exponential of the operator [12,18,19].
The identity follows by simply calculating powers of the ex-
ponent. We first note that

(Â + Â†)2 = ÂÂ† + Â†Â

= n̂a1 n̂a2 · · · n̂an

(
1 − n̂i1

)(
1 − ni2

) · · · (1 − n̂in

)
+ (

1 − n̂a1

)(
1 − n̂a2

) · · · (1 − n̂an

)
n̂i1 n̂i2 · · · n̂in

(19)

because {i, j, k, . . . } and {a, b, c, . . . } are disjoint sets. Here,
n̂α = â†

α âα is the number operator for spin orbital α. The
cubed term can then be simplified to be

(Â + Â†)3 = ÂÂ†Â + Â†ÂÂ† = Â + Â†. (20)

This makes the power-series expansion of the exponential
simple: terms with odd powers are proportional to Â + Â†,
and terms with even powers are proportional to Eq. (19). We
just have to be careful with the zeroth-power term, which is
different. Hence, we have

eθ[Â
a1 ···an
i1 ···in −(Â

a1 ···an
i1 ···in )†]

= Î + sin θ
[
Âa1···an

i1···in − (
Âa1···an

i1···in
)†]

+ (cos θ − 1)
[
n̂a1 n̂a2 · · · n̂an

(
1 − n̂i1

)
× (

1 − ni2

) · · · (1 − n̂in

)
+ (

1 − n̂a1

)(
1 − n̂a2

) · · · (1 − n̂an

)
n̂i1 n̂i2 · · · n̂in

]
. (21)

This identity implies that when a single UCC factor acts on a
state that is neither excited by Â nor deexcited by Â†, the state
is unchanged by the operator. But when the single UCC factor
acts on a state that can be excited by Â or deexcited by Â†, the
result is a cosine multiplied by the original state plus a sine
multiplied by the excited (or deexcited) state. It is important
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TABLE I. Commutation table for all eight four-qubit Pauli
strings from Eq. (23). Integers in each entry count the number of
indices that anticommute.

{l, k,

j, i} XXY X Y XYY XYYY XXXY Y XXX XY XX YYY X YY XY

XXY X 0 2 2 2 2 2 2 4
Y XYY 2 0 2 2 2 4 2 2
XYYY 2 2 0 2 4 2 2 2
XXXY 2 2 2 0 2 2 4 2
Y XXX 2 2 4 2 0 2 2 2
XY XX 2 4 2 2 2 0 2 2
YYY X 2 2 2 4 2 2 0 2
YY XY 4 2 2 2 2 2 2 0

to note that the identity, Eq. (21), holds for any rank of the
UCC factor.

D. Exactness of the factorized UCC circuits

In this section, we will show that the circuit for a UCC
doubles factor is exact. The UCC doubles in the factorized
form serve as the cornerstone of this study as we aim to
decompose the high-rank operators into ones that contain
primarily doubles terms.

The factorized form of the double excitation is written as

Û (θ ) = exp

[
θi jkl

2
(â†

i â†
j âk âl − â†

l â†
k â j âi )

]
. (22)

Here, we define the factorized UCC double excitation using
the half angle θi jkl/2 because this facilitates the correct rota-
tion operators Uθ used in the quantum circuits in later sections.
As discussed before, the product of these factors forms a
subspace of the full Hilbert space. Although nonunique, if
multiplied in a specific order, the product of these factors can
be used to create very accurate trial wave functions [18,19]. To
implement the UCC factors presented by Eq. (22) on quantum
hardware while fully capturing the anticommutation relations
shown in Eq. (7), we choose to apply the Jordan-Wigner (JW)
transformation to write the fermionic operators in terms of
Pauli strings [14,15,26]:

exp

[
θi jkl

2
(â†

i â†
j âk âl − â†

l â†
k â j âi )

]

= exp

[
iθi jkl

16

k−1⊗
a=l+1

Za

i−1⊗
b= j+1

Zb × (XlXkYjXi + YlXkYjYi

+ XlYkYjYi + Xl XkXjYi − YlXkXjXi − XlYkXjXi

− YlYkYjXi − YlYkXjYi )

]
. (23)

Equation (23) is obtained by applying the JW transformation
to Eq. (22) with the conventions ân = 1

2 (X + iY ) ⊗ Z⊗N−n−1

and â†
n = 1

2 (X − iY ) ⊗ Z⊗N−n−1, where X , Y , and Z are the
Pauli matrices and 0 � n � N − 1, with N being the number
of qubits. The qubit state |0〉 has no electrons, and |1〉 has
one electron; it is conventional to have the |0〉 state be the

l|0〉
...|0〉
k|0〉

...

j|1〉
...|1〉
i|1〉

U1

U2

U3

U4 Uθ

U†
1

U†
2

U†
3

U†
4

FIG. 1. Doubles UCC circuit as discussed in Refs. [16,17]. For a
general doubles operator, the circuit must be applied eight times, with
different combinations of U gates each time. The U -gate choices are
summarized in Table III. The dashed CNOT gates are part of a CNOT

cascade.

up-spin state and |1〉 to be the down-spin state, yielding the
conventions we use for the raising and lowering operators.

In Table I, we show that the number of anticommuting
indices between the Pauli strings in Eq. (23) is always even,
which implies every Pauli string commutes with every other
Pauli string. This means that the exponential of the sum of the
eight Pauli strings can be rewritten as eight products of the
exponential of each Pauli string. The ordering of the exponen-
tial factors is unimportant because they all commute with each
other. Below we provide a proof of this conclusion.

Theorem 1. Consider two Pauli strings acting on the same
set of qubits,

PA =
N⊗

i=1

Ai, PB =
N⊗

i=1

Bi, (24)

where Ai, Bi ∈ {X,Y, Z, I}. PA and PB commute iff Ai and Bi

anticommute on an even number of indices.
Proof. Pauli matrices that do not commute anticommute.

Therefore, we can write explicitly

PAPB =
N⊗

i=1

AiBi =
N⊗

i=1

{
BiAi if [Ai, Bi] = 0,

−BiAi if [Ai, Bi] �= 0.
(25)

The two factors Ai and Bi commute if they are both the same
Pauli operator or if one of them is the identity; otherwise, they
anticommute. In order for PAPB to equal PBPA, there must be
an even number of cases where [Ai, Bi] �= 0 because (−1)2n =
1. Therefore, PA and PB commute iff Ai and Bi anticommute
on an even number of indices. �

TABLE II. The parity is the value on qubit d after the CNOT

cascade is applied.

a b c d Parity a b c d Parity

0 0 0 0 0 0 0 0 1 1
0 0 1 0 1 0 0 1 1 0
0 1 0 0 1 0 1 0 1 0
0 1 1 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 0
1 0 1 0 0 1 0 1 1 1
1 1 0 0 0 1 1 0 1 1
1 1 1 0 1 1 1 1 1 0
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a

b

c

d Uθ

FIG. 2. Example of a circuit implementing exp{−i θ

2 Za ⊗ Zb ⊗
Zc ⊗ Zd} for four qubits.

Since the subterms of the UCC doubles operator all com-
mute, the circuit shown in Fig. 1, which implements Eq. (23),
is exact. In fact, a general UCC factor of order n will have
22n−1 terms after the JW transformation multiplying strings of
Pauli Z operators, among which numbers of Pauli X and Y
operators are always odd, making numbers of anticommuting
indices always even, and thus, all the strings that contain X
and Y commute with one another [17].

E. The conventional quantum circuits

This section will show how one can construct the circuits
for each UCC factor. The standard circuit for a single UCC
doubles factor was derived in Refs. [16,17] and is shown
in Fig. 1. As shown in Sec. II D, the Pauli strings in the
exponentials commute. Therefore, a UCC factor can be rewrit-
ten as a product of exponentials of Pauli strings. The circuit
for the UCC factors follows a prescription similar to that
in [27]. Nielsen and Chuang provide a strategy for creat-
ing circuits of the form exp{−i θ

2 Z1Z2 · · · Zn}. By using basis
transformations, one can construct a circuit for any generic
Pauli string. UCC factors will use the same strategy. To con-
struct the circuit, one can start with the circuit for evaluating
exp{−i θ

2 Z1Z1 · · · Zn} and then apply basis transformations to
evaluate the exponential of any Pauli string.

The circuit to evaluate exp{−i θ
2 Z1Z2 · · · Zn} requires a

CNOT cascade, a Uθ gate applied to the last qubit, and then
a reversed CNOT cascade. The CNOT cascade calculates the
parity of the circuit (see Table II). After the first CNOT cascade,
the last qubit in the cascade will be |0〉 if the overall parity
was even and |1〉 if the parity was odd. The Uθ gate applied
on the last qubit will give a phase of exp{−iθ/2} if the parity
is even and a phase of exp{+iθ/2} if the parity is odd. The
following CNOT cascade is applied to cancel out the first CNOT

cascade, causing the qubits to revert to their original value,
now with a resulting overall application of an exponentiated
Pauli string. Figure 2 shows an example implementation of
exp{−i θ

2 Z1Z2Z3Z4}.

a

b

c

d H Uθ H

FIG. 3. Example of a circuit implementing exp{−i θ

2 Za ⊗ Zb ⊗
Zc ⊗ Xd} for four qubits. To apply the X on a different qubit,
Hadamard gates can be sandwiched around the respective qubits.

TABLE III. Eight different subcircuits that must be run sequen-
tially to apply a UCC doubles factor to a wave function. Realizations
of the generic unitary operators Ui in terms of Hadamard operators
and rotations of π/2 about the x axis for each subcircuit used in the
UCC doubles circuit are given in Fig. 1. The H gate converts the
basis to the x basis in order to calculate the exponential of X . The
Rx (− π

2 ) gate converts the basis to the y basis in order to calculate
the exponential of Y . When running an exponential of Z , no basis
transformation is needed. Since the relevant operators all commute,
the subcircuits can be run in any order, but all eight need to appear
exactly once to complete the full circuit.

Subcircuit U1 U2 U3 U4

1 H H Rx (− π

2 ) H

2 Rx (− π

2 ) H Rx (− π

2 ) Rx (− π

2 )

3 H Rx (− π

2 ) Rx (− π

2 ) Rx (− π

2 )

4 H H H Rx (− π

2 )

5 Rx (− π

2 ) H H H

6 H Rx (− π

2 ) H H

7 Rx (− π

2 ) Rx (− π

2 ) Rx (− π

2 ) H

8 Rx (− π

2 ) Rx (− π

2 ) H Rx (− π

2 )

In order to evaluate a generic Pauli string consisting of Z ,
X , and Y , a basis transformation can be applied before the
CNOT cascades such that the effective Pauli string is that of
only Z’s. If the ith gate in the Pauli string is an X , a Hadamard
gate is sandwiched around the CNOT cascade on the ith qubit.
This leads to the effective exponential containing a Z since
HXH = Z . Similarly, if an exponentiated Y gate is applied,
an Rx(−π

2 ) gate is sandwiched around the CNOT cascade. Fig-
ure 3 shows an example circuit to apply exp{−i θ

2 Z1Z2Z3X4}.
In this example, since the last Pauli in the exponentiated string
is an X , a Hadamard gate is applied before and after in order
to transform the basis and effectively make the circuit an
exponential of Z’s.

In applying the UCC Ansatz, circuits such as that in
Fig. 1 must be rerun multiple times after applying all of the
22n−1 different basis transformations [17]. A general factor-
ized doubles UCC operator can be rewritten as Eq. (23) and
implemented exactly by the circuit shown in Fig. 1 (see also
Table III).

F. Control-gate identities

In order to implement some of the more complicated UCC
factors needed for the decomposition method, we must break
down the general control unitaries into standard gates. To
get an accurate gate count of CNOTs, we use the method in
Ref. [28].

Figure 4 shows the breakdown of a singly controlled uni-
tary. A singly controlled unitary gate can be broken down into
three single-qubit gates and two CNOT gates.

U
=

A B C

FIG. 4. Decomposition of a singly controlled unitary gate [28].
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U

=

A B C

FIG. 5. Decomposition of a doubly controlled unitary gate [28].

Figure 5 shows the breakdown of a general doubly con-
trolled unitary. A doubly controlled unitary can be broken
down into three singly controlled unitaries and two CNOTs.
Thus, in total, a doubly controlled unitary gate requires eight
CNOT gates and nine unitaries.

III. DECOMPOSITION METHOD

We start by discussing the general schematic for the triple
and quadruple excitations. We then show how one could use
these schemes to generate higher-rank excitations.

The general principle for this method is as follows. In
order to use mainly singles and doubles in the decomposition,
we introduce ancilla orbitals. These are nonphysical orbitals
that act as placeholders. We effectively create higher-rank
excitations by exciting these ancilla orbitals and then applying
another excitation to place them back into the correct orbitals.
This is done in a way such that states that are not affected
by the higher-rank excitations will remain unaffected after the
full procedure is complete.

A. Quadruple excitations

We present a schematic to create a quadruple excitation us-
ing two ancilla. Our goal is to apply an operator equivalent to
Âwxyz

abcd . Without loss of generality, we assume that our starting
state is a general state of the following form:

|	〉 = ξ1 |abcd〉 + ξ2 |abφ1φ2〉 + ξ3 |cdφ3φ4〉 + ξ4|wxyz〉.
(26)

Here, a, b, c, d,w, x, y, and z are occupied orbitals, and φi

can be any arbitrary orbital that is not a, b, c, d,w, x, y, or
z. ξi is the coefficient associated with each state. We omit

states for which the UCC factor acts like the identity and
which are not touched by the operators used to construct the
quadruple excitation. Note that a general state can have many
terms of the form given in Eq. (26) as a linear superposition
over different φi with different coefficients. But because the
procedure we use is linear, those other terms will be taken care
of in the circuit, so we do not need to include them explicitly
in our analysis.

We illustrate the procedure graphically in Fig. 6. A UCC
quadruple operator with angle θ should transform the wave
function |	〉 as follows:

eθ[Âwxyz
abcd −(Âwxyz

abcd )†]|	〉
= cos θξ1 |abcd〉 + sin θξ1 |wxyz〉 + ξ2 |abφ1φ2〉

+ ξ3 |cdφ3φ4〉 + cos θξ4 |wxyz〉 − sin θξ4|abcd〉. (27)

The change in sign of the last term arises because it is a
deexcitation.

The quadruple excitation requires four doubles and one
double-qubit controlled UCC double operation. Table IV
shows the operations used to create a quadruple excitation
Âwxyz

abcd . The leftmost column indicates what our target orbitals
are and what they become.

Starting from our initial state, we first apply a standard dou-
bles UCC operator that transforms ab → wη1 with θ = π/2.
This operator will take the occupied |ab〉 and mix it with
|wη1〉; it does not deexcite any state because the η1 qubit is
initially in the zero state. For example, when applied to the
state |abcd〉,

e
π
2 (Â

wη1
ab −(Â

wη1
ab )† )ξ1 |abcd〉

= cos
π

2
ξ1 |abcd〉 + sin

π

2
ξ1 |wη1cd〉 = ξ1|wη1cd〉.

(28)

After this operator is applied, the states |abcd〉 and |abφ1φ2〉
will be changed. Hence, after this operation, the initial state in

FIG. 6. Diagram for the quadruples decomposition scheme. The target states of the UCC quadruples are colored in green and blue. The
four shelved states are placed on the right of the diagram. Shelved states are the ones that are not supposed to be affected by the quadruple
operation, and the decomposition procedure manages to keep them intact. The states in parentheses are virtual, serving as placeholders to
better illustrate some operations. Dashed lines represent full π/2 rotations, whereas solid lines represent rotations with generic angles. The
coefficients c and s are cosine and sine functions of said angles from Eq. (21).
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TABLE IV. Schematic for the quadruple decomposition algo-
rithm. c and s in the second and last columns represent cos θ and
sin θ , respectively. The angles with which the four UCC doubles
apply to the wave functions are all π/2, whereas the angle of the
doubly controlled UCC double operator is a generic one, θ .

State |abcd〉 |abφ1φ2〉 |cdφ3φ4〉 |wxyz〉
ab → wη1 |wη1cd〉 |wη1φ1φ2〉 |cdφ3φ4〉 |wxyz〉
cd → yη2 |wη1yη2〉 |wη1φ1φ2〉 |yη2φ3φ4〉 |wxyz〉
Cwyη1η2 → xz c |wη1yη2〉

+s |wxyz〉
|wη1φ1φ2〉 |yη2φ3φ4〉 c |wxyz〉

−s |wη1yη2〉
yη2 → cd c |wη1cd〉

+s |wxyz〉
|wη1φ1φ2〉 |cdφ3φ4〉 c |wxyz〉

−s |wη1cd〉
wη1 → ab c |abcd〉

+s |wxyz〉
|abφ1φ2〉 |cdφ3φ4〉 c |wxyz〉

−s |abcd〉

Eq. (26) is transformed into the following:

|	〉 → ξ1 |wη1cd〉 + ξ2 |wη1φ1φ2〉
+ ξ3 |cdφ3φ4〉 + ξ4|wxyz〉. (29)

See the top line of Fig. 6 for a summary of this first step. Next,
another standard doubles UCC operator transforms cd → yη2

with θ = π/2. This will change the state |wη1cd〉 to |wη1yη2〉
and the state |cdφ3φ4〉 to |yη2φ3φ4〉; again, there is no deex-
citation because the η2 qubit is initially in the zero state. The
resulting transformed state is

|	〉 → ξ1 |wη1yη2〉 + ξ2 |wη1φ1φ2〉
+ ξ3 |yη2φ3φ4〉 + ξ4|wxyz〉. (30)

This result is summarized in the second line of Fig. 6.
The operator labeled Cwyη1η2 → xz is a doubly controlled

UCC double operator. If the orbitals wy are present, then we
take η1η2 and apply the UCC operator to take it to a linear
superposition of xz and η1η2. The operator has a general angle
θ and yields

eθ[Âxz
η1η2

−(Âxz
η1η2

)†](ξ1 |wη1yη2〉 + ξ4 |wxyz〉)

= cos θξ1 |wη1yη2〉 + sin θξ1 |wxyz〉
+ cos θξ4 |wxyz〉 − sin θξ4 |wη1yη2〉 (31)

when acting on the two states that are transformed by it. The
negative sign arises because that term is a deexcitation. The

TABLE V. A seemingly working scheme that tries to decompose
the UCC quadruple operator with the aid of two ancilla qubits, η1

and η2. Steps 1, 2, 4, and 5 are associated with angle θ = π/2. The
angle used in step 3 is arbitrary.

Step Operation

1 ab → wη1

2 cd → yη2

3 η1η2 → xz
4 yη2 → cd
5 wη1 → ab

TABLE VI. States of the wave function |	tr〉 transformed by
operators from Table V. It is noticeable here that the state |acxz〉
will be affected by the critical step η1η2 → xz due to the fact that
the UCC excitation operator is also a UCC deexcitation operator,
and the resulting state will not be corrected back into |acxz〉 either.
Therefore, the scheme shown in Table V fails when |xzφ1φ2〉 is
present.

State |abcd〉 |acxz〉 |abyx〉 |cdwz〉 |wxyz〉
ab → wη1 |wη1cd〉 |acxz〉 |wη1yx〉 |cdwy〉 |wxyz〉
cd → yη2 |wη1yη2〉 |acxz〉 |wη1yx〉 |yη2wz〉 |wxyz〉
η1η2 → xz c |wη1yη2〉

+s |wxyz〉
c |acxz〉

−s |acη1η2〉
|wη1yx〉 |yη2wz〉 c |wxyz〉

−s |wη1yη2〉
yη2 → cd c |wη1cd〉

+s |wxyz〉
c |acxz〉

−s |acη1η2〉
|wη1yx〉 |cdwz〉 c |wxyz〉

−s |wη1cd〉
wη1 → ab c |abcd〉

+s |wxyz〉
c |acxz〉

−s |acη1η2〉
|abyx〉 |cdwz〉 c |wxyz〉

−s |abcd〉

result after this step is

|	〉 → cos θξ1 |wη1yη2〉 + sin θξ1 |wxyz〉
+ ξ2 |wη1φ1φ2〉 + ξ3 |yη2φ3φ4〉
+ cos θξ4 |wxyz〉 − sin θξ4|wη1yη2〉. (32)

We have added in trigonometric factors, which multiply what-
ever the original coefficients were. This operation is depicted
in the third line of Fig. 6.

The next two doubles act as corrections. They will remove
the ancilla orbitals from the states. The double UCC that takes
yη2 → cd with θ = π/2 changes |yη2φ3φ4〉 to |cdφ3φ4〉 and
− |wη1yη2〉 → − |wη1cd〉. The state after this step is

|	〉 → cos θξ1 |wη1cd〉 + sin θξ1 |wxyz〉
+ ξ2 |wη1φ1φ2〉 + ξ3 |cdφ3φ4〉
+ cos θξ4 |wxyz〉 − sin θξ4|wη1cd〉; (33)

see the second to last line of Fig. 6. Finally, the very last
double takes wη1 → ab with θ = π/2. This takes the state
|wη1φ1φ2〉 to |abφ1φ2〉 and − |wη1cd〉 to − |abcd〉. The final

TABLE VII. Schematic for the triple-decomposition algorithm.
c and s in the second and last columns represent cos θ and sin θ ,
respectively. The angles with which the four UCC doubles apply
to the wave functions are all π/2, whereas the angle of the doubly
controlled UCC double operator is θ .

State |abc〉 |abφ1〉 |cdφ2φ3〉 |wxy〉
ab → wη1 |wη1c〉 |wη1φ1〉 |cφ2φ3〉 |wxy〉
c → η2 |wη1η2〉 |wη1φ1〉 |η2φ2φ3〉 |wxy〉
Cwη1η2 → xy c |wη1η2〉

+s |wxy〉
|wη1φ1〉 |η2φ3〉 c |wxy〉

−s |wη1η2〉
η2 → c c |wη1c〉

+s |wxy〉
|wη1φ1〉 |cφ2φ3〉 c |wxy〉

−s |wη1c〉
wη1 → ab c |abc〉

+s |wxy〉
|abφ1〉 |cφ2φ3〉 c |wxy〉

−s |abc〉
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TABLE VIII. Schematic for the quintuple decomposition algo-
rithm. c and s in the second and last columns represent cos θ and
sin θ , respectively. The angles with which the four UCC doubles
apply to the wave functions are all π/2, whereas the angle of the
doubly controlled UCC double operator is θ .

State |abcde〉 |abφ1φ2φ3〉 |cdeφ4φ5〉 |vwxyz〉
ab → vη1 |vη1cde〉 |vη1φ1φ2φ3〉 |cdeφ4φ5〉 |vwxyz〉
cde → xyη2 |vη1xyη2〉 |vη1φ1φ2φ3〉 |xyη2φ4φ5〉 |vwxyz〉
Cvxyη1η2 → wz c |vη1xyη2〉

+s |vwxyz〉
|vη1φ1φ2φ3〉 |xyη2φ4φ5〉 c |vwxyz〉

−s |vη1xyη2〉
xyη2 → cde c |vη1cde〉

+s |vwxyz〉
|vη1φ1φ2φ3〉 |cdeφ4φ5〉 c |vwxyz〉

−s |vη1cde〉
vη1 → ab c |abcde〉

+s |vwxyz〉
|abφ1φ2φ3〉 |cdeφ4φ5〉 c |vwxyz〉

−s |abcde〉

state is therefore

|	〉 → cos θξ1 |abcd〉 + sin θξ1 |wxyz〉 + ξ2 |abφ1φ2〉
+ ξ3 |cdφ3φ4〉 + cos θξ4 |wxyz〉 − sin θξ4|abcd〉,

(34)

which is identical to our goal, Eq. (27); see the last line of
Fig. 6 for more details.

We went through this derivation assuming there was only
one term of the form |abφ1φ2〉 in the expansion. But, of
course, there can be many such terms. However, since this
term gets “shelved” to a state that sits out of all the remaining
UCC terms except for the last one, it should be clear that
adding additional terms of this form simply shelves those
additional terms (in linear superposition) and then brings them
back. So this approach works for an arbitrary linear combi-
nation of terms of the form |abφ1φ2〉. A similar conclusion
can be reached for the terms of the form |cdφ3φ4〉 (with them
being brought back in the second to last step).

Next, we will show that each and every step of the
algorithm is necessary to successfully decompose a UCC
quadruple operator.

One might assume that it is possible to break down the
quad with two doubles. For example, naively applying a dou-
ble that takes ab → wx and cd → yz would take |abcd〉 →
|wxyz〉. This approach will fail even if only |abcd〉 or |wxyz〉
are present in the wave function. Suppose we have an ini-
tial wave function |	〉 = ξ1 |abcd〉 + ξ2 |wxyz〉, where ξ 2

1 +

ξ 2
2 = 1 and ξ1, ξ2 ∈ R. The first step ab → wx acting on the

wavefunction |	〉 yields

|	〉 → cos θξ1 |abcd〉 + sin θξ1 |wxcd〉 cos θξ2 |wxyz〉
− sin θξ2|abyz〉. (35)

The second step cd → yz yields

|	〉 → cos2 θξ1 |abcd〉 + sin θ cos θξ1 |abyz〉
+ cos θ sin θξ1 |wxcd〉 + sin2 θξ1 |wxyz〉
+ cos2 θξ2 |wxyz〉 − cos θ sin θξ2 |wxcd〉
− cos θ sin θξ2 |abyz〉 + sin2 θξ2|abcd〉. (36)

Recall that the goal here is to replicate the operation

|	〉 → cos θξ1 |abcd〉 + sin θξ1 |wxyz〉
+ cos θξ2 |wxyz〉 − sin θξ2|abcd〉, (37)

which the naive method fails to do.
We introduce the ancilla orbitals to circumvent such an

issue. First, let us examine the scheme as shown in Table V.
Although sometimes successful at delivering the correct

resulting wave functions, this method breaks down if states
|xzφ1φ2〉 are present, where φi are arbitrary orbitals. For ex-
ample, assume we have a wave function |	tr〉 = ξ1 |abcd〉 +
ξ2 |acxz〉 + ξ3 |abyx〉 + ξ4 |cdwz〉 + ξ5 |wxyz〉; the intermedi-
ate states obtained from using the scheme presented in Table V
are shown in Table VI. Hence, a doubly controlled UCC dou-
ble operation with the two control qubits placed onto orbitals
w and y is used to make sure that only the state |wxyz〉 will be
affected by the double η1η2 → xz.

B. Other rank excitations

Like the quadruple excitation, the triple excitation involves
five operations. We follow an architecture for the triples
similar to that for the quadruple excitations. It involves two
doubles, two singles, and one singly controlled double.

Table VII summarizes the operations needed to apply the
triple Âwxy

abc . Note that a traditional way of implementing a
UCC triple operator uses fewer two-qubit gates than this
method for N � 18; however, the gate count for CNOT gates
present in the traditional circuit will quickly outnumber that in
our circuit. Another direction to approach the triples is to use
Givens rotations together with control gates and SWAP gates
[29]. However, for large systems consisting of a large number

TABLE IX. Schematic for the 2-4 sextuple decomposition algorithm. c and s in the second and last columns represent cos θ and sin θ ,
respectively. The angles with which the four UCC doubles apply to the wave functions are all π/2, whereas the angle of the doubly controlled
UCC double operator is θ .

State |abcde f 〉 |abφ1φ2φ3φ4〉 |cde f φ5φ6〉 |uvwxyz〉
ab → uη1 |uη1cde f 〉 |uη1φ1φ2φ3φ4〉 |cde f φ5φ6〉 |uvwxyz〉
cde f → wxyη2 |uη1wxyη2〉 |uη1φ1φ2φ3φ4〉 |wxyη2φ5φ6〉 |uvwxyz〉
Cuwxyη1η2 → vz c |uη1wxyη2〉

+s |uvwxyz〉
|uη1φ1φ2φ3φ4〉 |wxyη2φ5φ6〉 c |uvwxyz〉

−s |uη1wxyη2〉
wxyη2 → cde f c |uη1cde f 〉

+s |uvwxyz〉
|uη1φ1φ2φ3φ4〉 |cde f φ5φ6〉 c |uvwxyz〉

−s |uη1cde f 〉
uη1 → ab c |abcde f 〉

+s |uvwxyz〉
|abφ1φ2φ3φ4〉 |cde f φ5φ6〉 c |uvwxyz〉

−s |abcde f 〉
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TABLE X. Schematic for the 3-3 sextuple decomposition algorithm. c and s in the second and last columns represent cos θ and sin θ ,
respectively. The angles with which the four UCC doubles apply to the wave functions are all π/2, whereas the angle of the doubly controlled
UCC double operator is θ .

State |abcde f 〉 |abcφ1φ2φ3〉 |de f φ4φ5φ6〉 |uvwxyz〉
abc → uvη1 |uvη1de f 〉 |uvη1φ1φ2φ3〉 |de f φ4φ5φ6〉 |uvwxyz〉
de f → xyη2 |uvη1xyη2〉 |uvη1φ1φ2φ3〉 |xyη2φ4φ5φ6〉 |uvwxyz〉
Cuvxyη1η2 → wz c |uvη1xyη2〉

+s |uvwxyz〉
|uvη1φ1φ2φ3〉 |xyη2φ4φ5φ6〉 c |uvwxyz〉

−s |uvη1xyη2〉
xyη2 → de f c |uvη1de f 〉

+s |uvwxyz〉
|uvη1φ1φ2φ3〉 |de f φ4φ5φ6〉 c |uvwxyz〉

−s |uvη1de f 〉
uvη1 → abc c |abcde f 〉

+s |uvwxyz〉
|abcφ1φ2φ3〉 |de f φ4φ5φ6〉 c |uvwxyz〉

−s |abcde f 〉

of active orbitals, multiqubit controlled SWAP gates and multi-
qubit Givens operators will quickly become inefficient.

For higher-rank excitations, we present various methods
for decomposing N-rank excitations in terms of lower-rank
excitations. While multiple methods to break down higher-
rank excitations are possible, every method will follow the
same methodology. We start with two excitations into ancilla
orbitals, followed by a controlled operation and then two more
excitations to undo the rotation into the ancilla orbitals. In
total, the process takes five operations (see Table VIII). For an
n-tuple excitation operator, the outer excitations should add
up to n. For example, for a sextuple excitation, one should use
a double and quad, two triples, or a single and a quintuple
excitation.

The method of choice should depend on the hardware in
use, as different methods utilize different numbers of CNOT

gates and rotations. For example, consider the case of the
sextuplet excitation. Either we can perform this with two dou-
bles, two quads, and one quadruply controlled double, or we
can use four triples and one quadruply controlled double. The
choice to pick is based on hardware limitations, as the gate
counts for different types of gates vary for these two schemes.
Tables IX and X show these two schematics.

C. Code for controlled UCC factors

The decomposition method relies on controlled UCC fac-
tors. For example, in the quadruple excitation, we require a

w

x

y

z

η1

η2

α1

α2

U1

U2

U3

U4 U2θ

U†
1

U†
2

U†
3

U†
4

FIG. 7. Example of a circuit used to implement a doubly con-
trolled double. This circuit corresponds to Cwyη1η2 → xz. The qubits
|α1〉 and |α2〉 are ancilla qubits used to keep the information of w and
y since the CNOT cascade encoding parity will alter the values.

doubly controlled UCC factor that applies η1η2 → xz with wy
as the control qubits. Figure 7 shows the circuit for a doubly
controlled UCC factor; note that the circuit decomposition
requires an additional two ancilla qubits, denoted α1 and α2.
The CNOT gates applied before the unitary gates are used to
encode the information of the control qubits into two ancilla
qubits. In this way, even after the cascade is applied to account
for the parity, qubits |α1〉 and |α2〉 contain the information
from the control qubits. These qubits are not involved in the
CNOT cascade but are used as control qubits for the doubly
controlled rotation gate that is applied within the UCC factor.

The doubly controlled rotation gate can be broken down
into unitary gates and CNOT gates [28]. A doubly controlled
unitary gate can be broken down into three singly controlled
unitary gates and two CNOT gates. The singly controlled uni-
tary gates can be broken down into two CNOT gates and two
unitary gates. Thus, in total, the doubly controlled unitary
gates consist of eight CNOT gates and six unitaries.

IV. RESULTS

The benefit of the decomposition method is that the total
number of CNOT gates is significantly lower than what is used
in a traditional N-rank UCC factor. A traditional N-rank UCC
factor with M orbitals requires at most 22N−1 single-qubit ro-
tations, 22N (M − 1) CNOT gates, and 4N (22N−1) single-qubit
nonrotation gates [16,17]. This count comes from assuming
that there are no simplifications in the Jordan-Wigner strings.
Each UCC factor consists of a circuit that must be run 22N−1

times for an N-tuple excitation. For each run, a CNOT must
be applied between every neighboring set of orbitals twice,

FIG. 8. CNOT gate counts of traditional triples and decomposed
triples.
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FIG. 9. CNOT gate counts of traditional quadruples and decom-
posed quadruples.

resulting in a total of 2(M − 1) CNOT gates per run. In reality,
the number of CNOT gates may be reduced due to simplifica-
tions in the Jordan-Wigner strings. Although this estimate for
CNOT gates is generally an overestimate, the decomposition
method presented above is significantly lower in gate count.

The number of CNOT counts can also be lower if one uses
an encoding other than the Jordan-Wigner encoding [30]. We
do not examine this strategy in detail here, primarily because
such a decoding can be used for the different operators in
the decomposition as well, and we anticipate similar gains in
efficiency.

For comparison, consider the requirements for a quadru-
ple excitation. A traditional quad requires 128 single-qubit
rotations, 256(M − 1) CNOT gates, and 2048 single-qubit Clif-
ford gates. The circuit used consists of 2(M − 1) CNOT gates
from the cascade, one single-qubit rotation applied within the
cascade, and 16 single-qubit gates for the basis transforma-
tions and inverse transformations. This circuit must be run 128
times.

Our decomposition instead requires two (plus two) an-
cilla orbitals and is built from four doubles and one
doubly controlled double. The number of required qubits
will increase from M to M + 4. Two qubits are used as
ancillae, and two additional qubits are needed for the con-
trolled gate implementation. Since the decomposed quad
is constructed from four doubles excitations and one con-
trolled UCC doubles, the resulting CNOT count in the worst
case is 4×24[(M + 2) − 1]+{24[(M + 2) − 1]+24 × 8} =
80M + 208. The first term is the CNOT count for the four

FIG. 10. CNOT gate counts of traditional quintuples and decom-
posed quintuples.

FIG. 11. (a) CNOT gate counts of traditional sextuples, the 3-3
sextuples, and the 2-4 sextuples. (b) CNOT gate counts of the 3-3
sextuples and the 2-4 sextuples.

standard doubles used, and the term in the curly brackets is the
count for the controlled UCC doubles. This count increases
with the number of orbitals because in each of the doubles,
adding an extra orbital will add two more CNOT gates to the
CNOT cascade that calculates parity. The 24 × 8 CNOT gates
come from breaking down the controlled rotation gate [28].
Note that, although we have a total of M + 4 qubits, two of
the qubits are not involved in the CNOT cascade. Compared to
that of a standard quadruple, the order is much lower in the
worst-case count.

Similarly, for other higher-rank UCC excitations, the
CNOT count of the decomposition method is much lower.
Figures 8–11 show the worst-case gate counts for the decom-
position method against the method proposed in [16,17].

a
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y

z

η1

η2

Aab
wη1

Acd
yη2

Cwyη1η2 → xz Ayη2
cd Awη1

ab

FIG. 12. Schematic of how the decomposed quad excitation
would be implemented.
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FIG. 13. Schematic of the first UCC factor in the decomposed
quad.

In the NISQ era, optimizing the Ansatz for current hard-
ware is necessary. In the near term, circuits that reduce circuit
depth and the number of CNOT gates in exchange for a few
additional qubits can be highly beneficial.

V. CONCLUSION

We have presented specific schemes to decompose high-
rank UCC operators into low-rank singles and/or doubles,
significantly reducing the number of CNOT gates needed to
implement such circuits at the expense of using extra ancilla
qubits. We have shown the proposed method is the most re-
source friendly when the state preparation involves entangling
a large number of qubits for a large system using high-rank
UCC operators, such as quintuples and sextuples (or higher).
It is anticipated such terms will be needed for strongly corre-
lated molecules that are planned to be examined on quantum
computers.

For NISQ hardware, large numbers of two-qubit entangling
gates are problematic. Generally, one wants to avoid having a
large circuit depth due to noise, decoherence, and low fidelity.
However, increasing the number of qubits in exchange for
a circuit with less depth is favorable in the near term. For
the construction of the specific scheme presented in this pa-
per, we used the factorized form of the UCC Ansatz, which
was able to create the exact ground-state wave vector using
the method mentioned in [19]. Being able to decompose the
UCC quadruples operator used in the state preparation for the
ground-state wave function for the four-site Hubbard model at
half filling, we managed to halve the total number of two-qubit
gates. We anticipate that preparing strongly correlated states
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FIG. 14. Schematic of the second UCC factor in the decomposed
quad.

of larger systems, such as those studied in [31], will require
higher-order UCC factors. Our approach should significantly
reduce the gate counts for these circuits. Similar strategies
have been used to examine the decomposition of hardware-
efficient state-preparation protocols that preserve the particle
number [29].
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APPENDIX: DECOMPOSITION OF THE STANDARD
QUADRUPLE CIRCUIT

In the extended figures, we show how one may implement
the decomposed quad. Figure 12 shows the generic order of
UCC operators needed to implement the decomposed quad.
It starts off with two doubles (indicated in Figs. 13 and 14).
Then, the doubly controlled UCC doubles is applied. This
circuit is given in Fig. 7. The following two blocks are the
conjugate of the UCC factor of the previous two blocks. Thus,
the circuit can be constructed by swapping U1 ↔ U3 and
U2 ↔ U4.
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