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ABSTRACT: The unitary coupled cluster (UCC) approximation is one of the more
promising wave function ansaẗzes for electronic structure calculations on quantum
computers via the variational quantum eigensolver algorithm. However, for large systems
with many orbitals, the required number of UCC factors still leads to very deep quantum
circuits, which can be challenging to implement. Based on the observation that most
UCC amplitudes are small for both weakly correlated and strongly correlated molecules,
we devise an algorithm that employs a Taylor expansion in the small amplitudes, trading
off circuit depth for extra measurements. Strong correlations can be taken into account by
performing the expansion about a small set of UCC factors, which are treated exactly.
Near equilibrium, the Taylor series expansion often works well without the need to
include any exact factors; as the molecule is stretched and correlations increase, we find
only a small number of factors need to be treated exactly.

1. INTRODUCTION

Quantum computing provides a new paradigm for manipulating
information according to the laws of quantum mechanics; it is
expected to provide an advantage over classical computation for
some scientific problems.1 As envisioned by Richard Feynman,
one of those problems is simulating quantum mechanical
systems.2 Focusing on molecular quantum systems, quantum
chemistry is poised to be among the fields of study that could
benefit from the developments of quantum computation. An
example for how this can be achieved is given by the phase
estimation algorithm3,4 for computing energy eigenvalues and
preparing energy eigenstates, for which a general polynomial
time classical algorithm is yet to be discovered. This algorithm
has been simulated and shown to work;5 it will provide
opportunities for solving problems that cannot be solved on
classical computers, if one can find a sufficiently large overlap of
the ground-state wave function in the trial statethen quantum
phase estimation is guaranteed to work. Unfortunately, phase
estimation is quite challenging to implement, because it requires
controlled time evolution of the system. Hence, it has extremely
deep circuits if the time evolution of the molecule is treated
exactly in a conventional basis for the Hamiltonian.
Current quantum hardware is limited due to noise and

decoherence. This near-term hardware is called noisy inter-
mediate-scale quantum (NISQ).6 It can only work with low-
depth circuits on a modest number of qubits. This precludes
direct application of many quantum algorithms, such as the
phase-estimation algorithm. To be specific, we have to work with
two constraints in the near term: (i) the number of qubits will
remain relatively small and (ii) the allowed circuit depth will

remain low due to gate fidelity and decoherence errors. To take
advantage of existing and near-term quantum computers, the
variational quantum eigensolver (VQE) has been proposed as a
low-depth alternative to quantum phase estimation.7 It is a
hybrid quantum-classical method, and it shows great promise.8

VQE needs to be carried out on both quantum and classical
computers: on the quantum computer, quantum states depend-
ing on a set of variational parameters are prepared, and the
expectation value of the Hamiltonian is then measured. Next,
that set of parameters is optimized on classical computers, and
the loop is repeated until converged. But, this approach suffers
from the need for higher-depth circuits as the ansatz wave
function becomes more complex and from the appearance of
barren plateaus in the optimization space (which is exacerbated
by the noise and decoherence of NISQ machines). Our
approach attempts to resolve both of these issues by using a
quadratic expansion of the energy in terms of the variational
amplitudes, which allows for significantly lower depth in the
required circuits and an optimization that is performed entirely
on the classical computer. But, it does so at the expense of
requiring significantly more measurements. This trade-offmight
not be as bad as it first seems, because the reduced state
preparation before each measurement can nearly compensate
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for the additional measurement needs. If the optimization
converges faster, then it can even require fewer resources.
Originally proposed as a wave function ansatz for quantum

chemistry about four decades ago,9−11 unitary coupled cluster
theory (UCC) has gained renewed attention because, in its
factorized form, it can serve as an efficient state preparation
method for the VQE;12−14 Usually, the UCC ansatz starts from
the Hartree−Fock (HF) reference state in the occupation
number representation, and then, the different UCC factors are
applied to the HF states in sequence; this excites the HF state by
including terms from unoccupied orbitals, but it also includes
de-excitation terms when the prepared state includes terms that
can be de-excited by the next UCC factor. Recent works also
demonstrated that orbital optimization can be combined with
UCC.15,16 Generalally speaking, the circuit depth for UCC state
preparation is proportional to the number of excitations applied,
especially if they are the same rank excitation. For example, a
molecule with N orbitals has N4 doubles excitations, which are
usually the most important excitations to include in the ansatz.
As a result, including all (or just a fraction of all) possible singles
and doubles excitations already requires a circuit depth that is
prohibitively high for large molecules, especially so on NISQ
hardware.
In this article, we show how to improve this situation, by

requiring only a small subset of UCC factors to be applied to the
reference state on the quantum computer. The insight behind
this comes from the fact that most amplitudes θ have small
absolute values. This suggests that they can be expanded in a
Taylor series about θ = 0, truncated at quadratic order and then
optimized. Doing this from the reference HF state is only
accurate when the molecule is weakly correlated, which holds
predominantly near the equilibrium configuration bond
distances and angles. In this case, the results are similar to
perturbation theory about the HF reference state. But, how
many UCC factors need to be treated exactly when carrying out
this approach as the correlations are increased (due to
stretching)? This is the question we address in this work. We
find the number remains relatively small, implying that such an
approach can enable more complex molecules to be treated on
currently available NISQmachines. Similar ideas have been used
in other contexts as well. Unitary multireference coupled cluster
theory has been explored before.11,17,18 A quadratic expansion
about a density-matrix-renormalization group calculation was
performed successfully for a carbon dimer,19 and the approach
was also investigated for a quantum-inspired algorithm using an
ansatz that can be constructed solely from Clifford circuits,
which can be easily simulated on a classical computer.20 Our
approach is similar to both of these earlier works but has a
number of differences as well. Note that when we expand about
the reference with a number of UCC factors applied to it, the
wave function we expand about is a complex, possibly strongly
correlated wave function. In this case, the Taylor series
expansion is far from resembling conventional perturbation
theory. For example, an expansion about an exact state with just
20 UCC factors could have on the order of 220 ≈ 1 000 000
determinants in the state we are expanding the Taylor series
about.

2. THEORY AND METHOD
2.1. Unitary Coupled Cluster Theory (UCC) in

Factorized Form and Operator Identity for UCC Factors.
In unitary coupled cluster (UCC) theory, the trial wave function
is expressed in an exponential form, given by

σ|Ψ ⟩ = ̂ |Ψ ⟩exp( )UCC 0 (1)

where |Ψ0⟩ is the reference state and the operator σ̂ is an anti-
Hermitian combination of particle-hole excitation and de-
excitation:

σ ̂ = ̂ − ̂†T T (2)

∑ ∑ ∑ ∑θ θ̂ = ̂ ̂ + ̂ ̂ ̂ ̂ + ···† † †T a a a a a a
i

occ

a

vir

i
a

a i
ij

occ

ab

vir

ij
ab

a b j i
(3)

Here, the rotation angles θ are the variational parameters. We
use letters from the start of the alphabet a, b, c, ··· to denote the
virtual orbitals, with respect to the reference state, and letters
from the middle of the alphabet i, j, k, ··· to denote the occupied
orbitals in the reference state. To simplify the notation, we
express a general n-fold excitation operator as aîj...

ab··· = aâ
†ab̂

†...aĵ aî
(with the corresponding de-excitation operator being its
Hermitian conjugate; note that the indices are always ordered
so a < b < c ... and i < j < k ...). We work with a factorized form for
the UCC, which is given by

∏

∏ ∏ θ
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(4)

The factorized form is generally different from an ansatz that
puts all operators in one exponential. But, because we are doing a
variational calculation and there is flexibility given by the needed
chemical accuracy, this factorized form is usually sufficient to
achieve chemical accuracy, if enough factors are included.
Indeed, if factors are repeated, it can be used to approximate the
original UCC ansatz via the Trotter product formula.21,22

For a general UCC factor, we derived a general operator
identity based on a hidden SU(2) algebra.23−25 It is

θ

θ θ

= [ ̂ − ̂ ]

= + ̂ − ̂ + −

[ ̂ ̂ − ̂ − ̂ + − ̂ − ̂ ̂

̂ ]
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(5)

Here the number operators are of the form n̂ = a†̂a.̂ If the
rotation angle θ = 0, the UCC factor becomes the identity:

=U(0) .
We can take the derivative of eq 5:

θ

θ
θ

θ

̂
= ̂ − ̂
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When we evaluate the derivative at θ = 0, it becomes the
operator term in the exponent, namely,

θ

θ
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(7)

The derivative of the wave function with respect to one rotation
angle immediately follows as
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θ θ
= ̂ ··· ̂

̂
̂ ··· ̂ ̂+ −

U
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Evaluated at θk = 0, a simple result is obtained:

θ θ
σ| =

̂
| = ̂θ θ⃗= =

dU
d

Ud
dk

k

k
k

UCC
0 0k (9)

2.2. Quadratic Angle Expansion. A Taylor expansion of
the expectation value of the energy around the point where all
angles vanish (θ⃗ = 0) becomes

∑ ∑θ θ θ θ θ⟨ ̂ ⃗ ⟩ = ⟨ ̂ ⟩ + + +H H b A( ) (0)
1
2

( )
k

k k
k m

km k m
,

3

(10)

where
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and
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Note that the real part is not necessary inmost calculations, since
the wave function is usually expanded in terms of real
coefficients; this can change in the presence of a magnetic
field or with spin−orbit coupling. The ordering of the operators,
however, is important. Note that in eq 12, we have used the
following notation:

σ σ
σ σ

σ σ
̂ ̂ =

̂ ̂ ≥

̂ ̂

m k
( )

if

otherwisek m
k m

m k

l
m
oo
n
oo (13)

The ordering of the UCC factors matters in the second
derivative matrix because of second term in eq 12. The de-
excitation operator may also apply when the first operator can be
de-excited. Since σ̂k|HF⟩ and σ̂kσ̂m|HF⟩ are both single
determinants, the above expressions for A and b are just
many-body Hamiltonian matrix elements in the Hartree−Fock
basis and with respect to many-body product states (determi-
nants). This means one can perform an initial minimization,
about the point where all angles are zero, from the Hamiltonian,
expressed in the Hartree−Fock basis and extended to include
matrix elements for all states that are required in the bk vector
and the Akm matrix.
Tominimize the energy with respect to the angles, we take the

derivative of eq 10 about the point where each θi = 0 and set the
derivative to zero in order to find the minimum energy. We have

∑θ
θ

θ
⟨ ̂ ⃗ ⟩ | = + =θ ⃗=

H
b A

d ( )
d

0
i

i
j

ij j0
(14)

In matrix form, the angles that minimize the energy are the
solution of the following system of linear equations:

θ· ⃗ = − ⃗bA (15)

Angles that minimize the energy can be obtained either by
inversion of the matrix A or by solving linear system eq 15 by
row-reduction (or by using sparse-matrix iterative techniques).
The correlation energy, which is the difference between the

total energy and the Hartree−Fock energy, becomes

θ θ θ θ= ⟨ ̂ ⃗ ⟩ − ⟨ ̂ ⟩ = ⃗· ⃗ + ⃗ · · ⃗E H H b A( ) (0)
1
2corr

T
min min min (16)

Note how this calculation is quite straightforward and simple to
carry out, it just requires generating Hartree−Fock matrix
elements and solving the linear matrix equation.

2.3. Exact UCC Reference. For this quadratic expansion to
be accurate, it is necessary for the angles to be small. This is not
the case for strongly correlated systems. To extend this scheme
to correlated systems, we can treat factors with large angles more
carefully. After separating factors with large angles {σ̂l} and small
angles {σ̂s} into two groups, UCC factors with large angles are
used to construct an exact UCC reference wave function, and the
exact angles are optimized:

∏|Ψ ⟩ = | ⟩θ σ

=

̂e HF
l

N

0
UCC

1

l l
0

(17)

This reference state naturally contains more than one
determinant (the maximum number is 2N with N the number
of large angles in the reference), and its contribution to the
correlation energy can be calculated as

= ⟨Ψ | ̂ |Ψ ⟩ −E H Ecorr
0 0

UCC
0
UCC

HF (18)

In the second step, angles for all UCC factors are expanded to
second order, as described in last section. The difference is that,
for factors used in the UCC reference, their angles are expanded
with respect to their optimized values, instead of around zero.
The presence of these nonzero angles in the reference state
affects the computation of the b vector and the Amatrix for all of
their elements. The total energy after the quadratic expansion
becomes, in this case,

∑

∑

θ θ θ

θ θ θ θ θ

⟨ ̂ ⃗ ⟩ = ⟨Ψ | ̂ |Ψ ⟩ + −

+ − − +

H H b

A

( ) ( )

1
2

( )( ) ( )

k
k k k

k m
km k k m m

0
UCC

0
UCC 0

,

0 0 3

(19)

where θk
0 is the exact angle used in the UCC factors of the UCC

reference for k = 1, ···, N and θk
0 = 0 for k > N.

Again, bk andAkm can be obtained by taking the corresponding
derivatives. But, the two groups of UCC factors, corresponding
to large and small angles, have different expressions for the
derivatives. For the vector bk, if k is within the group of small
angles, elements can be calculated simply by replacing the
reference state |Ψ0⟩ in eq 11 by |Ψ0

UCC⟩ as defined in eq 17;
otherwise, bk can be calculated as a derivative of the UCC wave
function, by inserting eq 6 into eq 8.We have an exact expression
for the derivative of each UCC factor. Furthermore, we know
exactly where to place the derivative operator within the
calculation. The matrix Akm can be obtained in a similar wayif
two factors k, m are both small angle factors, then eq 12 can be
employed with |Ψ0

UCC⟩ replacing |Ψ0⟩. If one or two of k, m are
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large angle factors, derivatives with respect to |Ψ0
UCC⟩ need to be

taken, just like the case for bk, as already discussed. It is a simple
exercise to work out the exact formulas (we do not write them
out here); the operator arising from the derivative is placed next
to the corresponding UCC factor.
The energy minimization is again carried out to find θmin for

both large and small angles. Then the large angles used to
construct the UCC reference wave function are updated by θl

new

= θl
0 + (θl − θl

0), with θl − θl
0 determined by minimizing the

quadratic expansion. These θl
new values are then used to

construct the new UCC reference wave function, which is
used for the new quadratic angle expansion. This procedure is
iterated until the calculation has converged to a fixed point for
both the large and the small angles. The total correlation energy
now has three contributions:

θ θ θ= + ⃗· ⃗ + ⃗ · · ⃗E E b A
1
2corr

corr T
0 min min min (20)

where θ⃗min denotes the angles for the minimized energy.
The computational procedure described above can be carried

out as a hybrid quantum-classical algorithm. The preparation of
the UCC reference state needs to be performed on a quantum
computer. Then the quantities bk and Akm are measured with
respect to the prepared UCC reference state. As we will show
later, only a small number of factors are required in the UCC
reference state, which greatly reduces the circuit depth on a
quantum computer. As a trade off, the bk and Akm require many
more measurements. But of course, even a standard VQE
procedure will require calculating at least something like the bk
for a gradient-based minimizer or to choose the best operator to
pick from an operator pool, like the ADAPT-VQE scheme and
its hardware efficient variant.26,27 If this trade-off is worthwhile
requires a more detailed analysis. But, note that there are likely
some measurements that can be replaced by cubic expansion
about θ⃗0 = 0, because they might not depend strongly on the
large angles. This analysis can be performed on a classical
computer prior to the quantum computation and can greatly
reduce the required measurements.
Since the state preparation is often more costly than the

measurement itself, it is the counting of the number of UCC
factors to be prepared that is most important in determining the
depth of the circuit. Suppose I want to prepare a state with M
amplitudes. If I compute the M gradients, this will require M2

UCC state preparations for each measurement circuit. For the
quadratic expansion, we require NM2 UCC state preparations.
This appears to be significantlymore, as we expectN to be on the
order of 10−1000 for typical molecules and M on the order of
1 000 000 or more. But, there may be significant reductions
possible with the measurements themselvesmany measure-
ments can be completed in tandemand some matrix elements
in Amight be well approximated by the θ⃗0 = 0 values, which can
greatly reduce the measurements. In addition, the number of
steps needed for optimization, which is difficult to estimate,
might be significantly lower for the quadratic-expansionmethod,
especially since the data will be much less noisy due to the lower
circuit depth. So, the trade-off between the two is likely to be
significantly less than this naive factor of N.
One potential issue in this procedure is the appearance of an

instability in the minimization step for strongly correlated cases.
The origin of this instability is that the inverse of A may be ill-
defined (due to zero or near zero eigenvalues). To overcome
this, we use a pseudoinverse of A, which is constructed as
follows. First, A is diagonalized via a similarity transformation

with the matrixQ:A =QΛQ−1. Then, a cutoff ϵ is applied to the
eigenvalues included in Λ. If an eigenvalue is smaller than ϵ, the
corresponding diagonal element ofΛ′ is set to zero. The reduced
set of eigenvalues is placed in the diagonal matrix Λ′, and the
pesudoinverse of A is calculated as A−1≈QΛ′−1Q−1, where the
terms in Λ′ that were set equal to zero are not inverted in
computing the pseudoinversethey remain set equal to zero.
This approach is the same as a singular-value decomposition of a
matrix, relative to a cutoff ϵ. Then, the angles that minimize the

energy are found from θ = − · ⃗− bAmin
1 .

3. RESULTS AND DISCUSSION
3.1. Near Equilibrium. We implemented this quadratic

UCC (qUCC) method using integrals generated by PySCF.28,29

We performed calculations on a set of small molecules with the
ccpvdz basis set. To benchmark the calculations, we use almost
exact energies from the semistochastic heat-bath configuration
interaction calculation as a reference.30 The results are
summarized in Figure 1.

While an exact UCC calculation is always variational, the
qUCCSD approximation need not have its energy bounded by
the full configuration interaction (FCI) from below, because of
the potential error from the truncated Taylor expansion. This
means it need not be strictly variational. For several molecules in
Figure 1, the errors are indeed negative. However, if we compare
the absolute error, qUCCSD is more accurate than CCSD,
which has similar computational scaling. Comparing to
CCSD(T), qUCCSD is not as accurate but is not expected to
be either. What is surprising is that qUCCSD is consistently not
that far away from CCSD(T).

3.2. Chemical Bond Stretching. The quadratic expansion
of the unitary coupled cluster theory using the HF ground state
as reference, as described earlier, shows many similar character-
istics with the older XCC approaches,31 which are based on the

Figure 1. Error, (E-EFCI), from CCSD, CCSD(T), and qUCCSD
calculations on a subset of Gaussian-2molecules. The basis set is ccpvdz.
O2 and S2 are spin triplets, and NO is a spin doublet. All others are spin
singlets. Note the difference in vertical scale for the top panel versus the
other two panels.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01026
J. Chem. Theory Comput. 2022, 18, 2193−2198

2196

https://pubs.acs.org/doi/10.1021/acs.jctc.1c01026?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01026?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01026?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01026?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01026?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


expectation value of the normal coupled cluster operator and
other linearized coupled-cluster methods32 developed by
Rodney Bartlett and his colleagues. But even at second order,
the derivatives from a factorized form of the UCC depend on the
ordering, while for a conventional UCC, they do not. The
common weakness of the XCC methods is that they diverge
when near-degeneracy is present in the HF states, so they cannot
treat level crossings or near level crossings in the potential
energy surface. This often occurs for bond stretching and
breaking situations. One way to overcome this difficulty for the
quadratic expansion of the factorized form of the unitary
coupled cluster theory is to use multideterminant reference
states, as detailed in Section. 2.3.
To demonstrate this method, we performed calculations for

the bond stretching of a H2O molecule with the 6-31G basis set.
In total, this system has 74 single and 2240 double excitations.
We first did a geometry optimization and then optimized theH−
O bond length. It becomes 0.96 Å, and the optimized H−O−H
angle is 104.5°. To study the situations of bond stretching, we
gradually increase the bond from its equilibrium length to 2.74
Å, while keeping the H−O−H angle fixed. Standard quantum
chemistry methods including full configuration interaction
(FCI) and coupled-cluster singles and doubles (CCSD) were
carried out to test against the qUCCSD with exact UCC
reference states. Here all the qUCCSD calculations were
performed with 28 factors of large angles and ϵ = 0.1 for the
pseudoinverse procedure, which is defined in Section. 2.3. Those
28 factors are determined from largest initial MP2 amplitudes,
and they are determined individually for each bond length.
Results can be found in Figure 2.
As expected, CCSD correlation energies are close to the exact

FCI results when the molecular geometries are close to
equilibrium. But, CCSD has difficulties when away from
equilibrium; CCSD violates the variational principle and gives
lower energies than FCI when the O−H bond length is larger
than 2.2 Å. We also find that qUCCSD with a UCC reference
usually gives better results than CCSD. Close to equilibrium,
qUCCSD gives similar results as CCSD, and when far from
equilibrium, qUCCSD with UCC reference states has better
behavior than CCSD, since it never violates the variational
principle once N is large enough.

4. CONCLUSION
One of the main issues slowing down the ability for quantum
computers to show an advantage over classical computers is that
current hardware can only run codes that are quite short in
circuit depth. In this situation, the only advantage will occur due
to the larger memory that a quantum computer has in storing
quantum states. The algorithm discussed here, denoted qUCC,
is a methodology that will allow quantum computers to aid in
determining the electronic structure of complexmolecules much
sooner, because it trades off circuit depth for additional
measurements. If those additional measurements can be carried
out, then we might see a quantum advantage sooner than later.
To illustrate how this methodology works, we showed that the

number of exact UCC factors needed in an electronic structure
calculation on a quantum computer can be greatly reduced from
that of a standard approach. Our test case (bond stretching of
water molecule) shows better results can be achieved with only a
small fraction of factors (28 versus 2314) when constructing the
wave function. Our result compares the qUCC approach to a
CC approach, but results would be similar for a comparison to a
standard UCC approach as well. Our algorithm is one way to

utilize low-depth quantum circuits to treat molecules with large
basis sets, which has been amajor obstacle for applying quantum
computing to quantum chemistry.

■ AUTHOR INFORMATION
Corresponding Authors

Jia Chen−Department of Physics and QuantumTheory Project,
University of Florida, Gainesville, Florida 32611, United
States; orcid.org/0000-0002-7310-3196;
Email: jiachen@ufl.edu

Hai-Ping Cheng − Department of Physics and Quantum
Theory Project, University of Florida, Gainesville, Florida
32611, United States; Email: hping@ufl.edu

J. K. Freericks−Department of Physics, Georgetown University,
Washington, District of Columbia 20057, United States;
Email: james.freericks@georgetown.edu

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.1c01026

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
J.C. and H.P.C. are supported by the Department of Energy,
Basic Energy Sciences, as part of the Center for Molecular

Figure 2. (a, b) Total correlation energies for the water molecule as a
function of the H−O bond length. Here, we plot results for FCI (black
circles), CCSD (red squares), and qUCCSD (blue diamonds) with a
UCC reference state (that contains 28 exact UCC factors). Note that
the ranges of the plots differ in the two panels. (c) Error of the CCSD
(red squares) and qUCCSD (blue diamonds) results relative to the FCI
as a function of the H−Obond length. Note how the CCSD calculation
becomes nonvariational at strong coupling.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01026
J. Chem. Theory Comput. 2022, 18, 2193−2198

2197

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jia+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-7310-3196
mailto:jiachen@ufl.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hai-Ping+Cheng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:hping@ufl.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="J.+K.+Freericks"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:james.freericks@georgetown.edu
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01026?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01026?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01026?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01026?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c01026?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01026?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Magnetic Quantum Materials, an Energy Frontier Research
Center under Award No. DE-SC0019330. J.K.F. is supported
from the National Science Foundation under Grant Number
CHE-1836497. J.K.F. is also funded by the McDevitt bequest at
Georgetown University. This research used resources of the
National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science
User Facility, operated under Contract No. DE-AC02-
05CH11231, and University of Florida Research Computing
systems. We also acknowledge useful discussions with Rodney
Bartlett, Garnet Chan, Joseph Lee, John Staunton, Cyrus
Umrigar, Luogen Xu, and Dominika Zgid.

■ REFERENCES
(1) Nielsen, M. A.; Chuang, I. L.Quantum Computation and Quantum
Information; Cambridge University Press: 2011.
(2) Feynman, R. P. Simulating physics with computers. International
Journal of Theoretical Physics 1982, 21, 467−488.
(3) Abrams, D. S.; Lloyd, S. Simulation of Many-Body Fermi Systems
on a Universal Quantum Computer. Phys. Rev. Lett. 1997, 79, 2586−
2589.
(4) Abrams, D. S.; Lloyd, S. Quantum Algorithm Providing
Exponential Speed Increase for Finding Eigenvalues and Eigenvectors.
Phys. Rev. Lett. 1999, 83, 5162−5165.
(5) Aspuru-Guzik, A.; Dutoi, A. D.; Love, P. J.; Head-Gordon, M.
Simulated QuantumComputation of Molecular Energies. Science 2005,
309, 1704−1707.
(6) Preskill, J. Quantum Computing in the NISQ era and beyond.
Quantum 2018, 2, 79.
(7) Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.-H.; Zhou, X.-Q.;
Love, P. J.; Aspuru-Guzik, A.; O’Brien, J. L. A variational eigenvalue
solver on a photonic quantum processor. Nat. Commun. 2014, 5, 4213.
(8) Cao, Y.; Romero, J.; Olson, J. P.; Degroote, M.; Johnson, P. D.;
Kieferová, M.; Kivlichan, I. D.; Menke, T.; Peropadre, B.; Sawaya, N. P.
D.; Sim, S.; Veis, L.; Aspuru-Guzik, A. Quantum Chemistry in the Age
of Quantum Computing. Chem. Rev. 2019, 119, 10856−10915.
(9) Kutzelnigg, W. InMethods of Electronic Structure Theory; Schaefer,
H. F., Ed.; Springer U.S.: New York, NY, U.S.A., 1977; Chapter 5, pp
129−188.
(10) Koch, S.; Kutzelnigg, W. Comparison of CEPA and CP-MET
methods. Theor. Chim. Acta 1981, 59, 387−411.
(11) Kutzelnigg, W.; Koch, S. Quantum chemistry in Fock space. II.
Effective Hamiltonians in Fock space. J. Chem. Phys. 1983, 79, 4315−
4335.
(12) Romero, J.; Babbush, R.; McClean, J. R.; Hempel, C.; Love, P. J.;
Aspuru-Guzik, A. Strategies for quantum computing molecular energies
using the unitary coupled cluster ansatz. Quantum Science and
Technology 2019, 4, 014008.
(13) Anand, A.; Schleich, P.; Alperin-Lea, S.; Jensen, P. W. K.; Sim, S.;
Díaz-Tinoco, M.; Kottmann, J. S.; Degroote, M.; Izmaylov, A. F.;
Aspuru-Guzik, A. A Quantum Computing View on Unitary Coupled
Cluster Theory. arXiv, 2021, 2109.15176 (preprint).
(14) Ryabinkin, I. G.; Yen, T.-C.; Genin, S. N.; Izmaylov, A. F. Qubit
Coupled Cluster Method: A Systematic Approach to Quantum
Chemistry on a Quantum Computer. J. Chem. Theory Comput. 2018,
14, 6317−6326.
(15) Sokolov, I. O.; Barkoutsos, P. K.; Ollitrault, P. J.; Greenberg, D.;
Rice, J.; Pistoia, M.; Tavernelli, I. Quantum orbital-optimized unitary
coupled cluster methods in the strongly correlated regime: Can
quantum algorithms outperform their classical equivalents? J. Chem.
Phys. 2020, 152, 124107.
(16) Barkoutsos, P. K.; Gonthier, J. F.; Sokolov, I.; Moll, N.; Salis, G.;
Fuhrer, A.; Ganzhorn, M.; Egger, D. J.; Troyer, M.; Mezzacapo, A.;
Filipp, S.; Tavernelli, I. Quantum algorithms for electronic structure
calculations: Particle-hole Hamiltonian and optimized wave-function
expansions. Phys. Rev. A 2018, 98, 022322.

(17) Kirtman, B. Simultaneous calculation of several interacting
electronic states by generalized Van Vleck perturbation theory. J. Chem.
Phys. 1981, 75, 798−808.
(18) Hoffmann, M. R.; Simons, J. A unitary multiconfigurational
coupled-cluster method: Theory and applications. J. Chem. Phys. 1988,
88, 993−1002.
(19) Sharma, S.; Alavi, A. Multireference linearized coupled cluster
theory for strongly correlated systems using matrix product states. J.
Chem. Phys. 2015, 143, 102815.
(20) Mitarai, K.; Suzuki, Y.; Mizukami, W.; Nakagawa, Y. O.; Fujii, K.
Quadratic Clifford expansion for efficient benchmarking and
initialization of variational quantum algorithms. arXiv, 2020,
2011.09927 (preprint).
(21) Babbush, R.; McClean, J.; Wecker, D.; Aspuru-Guzik, A.; Wiebe,
N. Chemical basis of Trotter-Suzuki errors in quantum chemistry
simulation. Phys. Rev. A 2015, 91, 022311.
(22) Hatano, N.; Suzuki, M. In Quantum Annealing and Other
Optimization Methods; Das, A., Chakrabarti, B., Eds.; Springer Berlin
Heidelberg: Berlin, Heidelberg, 2005; pp 37−68.
(23) Evangelista, F. A.; Chan, G. K.-L.; Scuseria, G. E. Exact
parameterization of fermionic wave functions via unitary coupled
cluster theory. J. Chem. Phys. 2019, 151, 244112.
(24) Xu, L.; Lee, J. T.; Freericks, J. K. Test of the unitary coupled-
cluster variational quantum eigensolver for a simple strongly correlated
condensed-matter system. Mod. Phys. Lett. B 2020, 34, 2040049.
(25) Chen, J.; Cheng, H.-P.; Freericks, J. K. Quantum-Inspired
Algorithm for the Factorized Form of Unitary Coupled Cluster Theory.
J. Chem. Theory Comput. 2021, 17, 841−847.
(26) Grimsley, H. R.; Economou, S. E.; Barnes, E.; Mayhall, N. J. An
adaptive variational algorithm for exact molecular simulations on a
quantum computer. Nat. Commun. 2019, 10, 3007.
(27) Tang, H. L.; Shkolnikov, V.; Barron, G. S.; Grimsley, H. R.;
Mayhall, N. J.; Barnes, E.; Economou, S. E. Qubit-ADAPT-VQE: An
Adaptive Algorithm for Constructing Hardware-Efficient Ansaẗze on a
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