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ABSTRACT
The factorized form of the unitary coupled cluster Ansatz is a popular state preparation Ansatz for electronic structure calculations of
molecules on quantum computers. It is often viewed as an approximation (based on the Trotter product formula) for the conventional
unitary coupled cluster operator. In this work, we show that the factorized form is quite flexible, allowing one to range from a conventional
configuration interaction, to conventional unitary coupled cluster, to efficient approximations that lie in between these two. The variational
minimization of the energy often allows simpler factorized unitary coupled cluster approximations to achieve high accuracy, even if they do
not accurately approximate the Trotter product formula. This is similar to how quantum approximate optimization algorithms can achieve
high accuracy with a small number of levels.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0074311

I. INTRODUCTION

The electronic structure of molecules is viewed as one of the
most promising applications of quantum computing to the field
of chemistry.1 Within the field of electronic structure, there are
two promising pathways. The first is via quantum phase estima-
tion (QPE), which performs time evolution on an initial state2 and
extracts the energy by measuring a complex phase. It does so using
controlled time evolution to allow for Fourier signal processing of
the accumulated phases—at the end of the algorithm, it collapses to
an eigenstate and the accumulated phase tells us the eigenvalue. If
the initial state is a superposition of states with a high amplitude for
the ground state, the method will eventually determine the ground-
state eigenvalue and will also prepare the ground state; this tech-
nique can also determine excited states by varying the state prepara-
tion to have a large overlap with an excited state. A recent analysis in
the context of x-ray excitation describes how this can be employed.3
This method results in extremely deep circuits (due to the controlled
time evolution), and so it is not practical on computers available in
the near term. The second is via the variational quantum eigensolver

(VQE).4 This approach uses an Ansatz to approximately prepare a
ground-state wavefunction, measures the energy (using a breakup of
the Hamiltonian into a sum over unitary operators that can each be
directly measured), and then uses a classical computer to optimize
the parameters in the wavefunction, repeatedly looping through this
algorithm to complete the variational calculation. VQE has many
different varieties based on different strategies for preparing the tar-
get state and determining how to update it. Some examples include
the ADAPT method,5 which chooses the next operator to use in the
state preparation Ansatz from an operator pool, hardware-efficient
approaches,6 which simply entangle the wavefunction (rather than
applying fermionic excitations to a reference state) and then opti-
mize the entanglement for the best energy, and methods that enlarge
the wavefunction scope by including additional variational terms
in a virtual fashion.7 A recent article summarizes the prospects
of these two methods for quantum computing on near-term and
fault-tolerant quantum computers.8

In all of the variational methods, we need to apply opera-
tors to some reference state to prepare the state for the measure-
ment phase. In this work, we focus on methods that use fermionic
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excitations. Coupled cluster is the gold standard for electronic struc-
ture calculations of weakly correlated molecules. In a conventional
coupled cluster calculation, we create a state by applying excitations
to a reference state in the form ∣ψ⟩ = eT̂

∣ψ0⟩, where ∣ψ0⟩ is the ini-
tial reference state (which we will take to be the Hartree–Fock state)
and the excitation operator is a sum of excitation operators of differ-
ent orders T̂ = T̂1 + T̂2 + T̂3 + ⋅ ⋅ ⋅ . Each operator of a given order
includes all possible excitations from real orbitals present in the
reference state to virtual orbitals used in the basis set included in
the calculation (with amplitudes chosen to optimize the energy). In
many cases, a number of amplitudes for particular excitation oper-
ators are zero, implying they are not included in the Ansatz. Note
that amplitudes can be zero or so small that we set them equal to zero
for two reasons—symmetry restrictions can require some excitations
to be identically zero, or the optimization procedure can produce
an amplitude so small that it is not important to include it in the
results for the desired accuracy of the calculation. In this work, we
set the amplitude to zero if the optimization procedure produces an
amplitude whose magnitude is smaller than 10−12. This is done to
prune the tree-structure representation of the wavefunction of less
important terms when performing the calculation on a conventional
computer.

As an example for how we proceed, the singles and doubles
excitations can be written schematically as

T̂ = T̂1 + T̂2 + ⋅ ⋅ ⋅ , (1)

=
occ

∑
i

vir

∑
a
θa

i â†
a âi +

occ

∑
i<j

vir

∑
a<b

θab
i<jâ

†
a â†

b âjâi + ⋅ ⋅ ⋅ . (2)

Here, we use letters from the beginning of the alphabet a, b, c, . . .
to represent the virtual (unoccupied) spin orbitals available in the
basis set and letters from the middle of the alphabet I, j, k, . . . to
represent the occupied (real) spin orbitals that appear in the ref-
erence state. The operators âr (â†

r ) destroy (create) an electron in
the spin orbital labeled by r and satisfy the canonical anticommuta-
tion relations. The singles amplitudes are denoted by θa

i , the doubles
amplitudes are denoted by θab

ij , and so on—these amplitudes repre-
sent the real numbers, which can be equal to 0. In the summations
in Eq. (2), the set of indices that uniquely determine an excitation
appear only once, as indicated in the doubles summations.

In conventional coupled cluster, we do not actually form the
variational wavefunction. Instead, we perform a similarity trans-
formation on the Hamiltonian, ℋ̂ → e−T̂ℋ̂ eT̂ , and then force the
overlaps of all elemental excitations with the transformed Hamilto-
nian acting on the reference state to vanish; this effectively zeroes
out the off-diagonal elements of the Hartree–Fock column of the
transformed Hamiltonian, which is a requirement of an energy
eigenvector. This then produces the so-called amplitude equa-
tions. The similarity transformation can be carried out exactly
because the Hadamard lemma eÂB̂e−Â

= B̂ + [Â, B̂] + 1
2 [Â, [Â, B̂]]

+ ⋅ ⋅ ⋅ involving a sum of terms with increasingly nested commu-
tators truncates after the fourth-order term because the Hamil-
tonian only has single- and two-body operators in it (the name
Hadamard lemma is commonly used for this identity, as is the
Baker–Hausdorff lemma, Hausdorff lemma, and others—it should
not be conflated with the Hadamard lemma from calculus). Note

that this standard form of coupled cluster is no longer a variational
calculation.

Unitary coupled cluster (UCC) is usually carried out in a varia-
tional fashion, which makes it much less efficient than conventional
coupled cluster. In UCC, we form the variational wavefunction via

∣ψUCC⟩ = eT̂−T̂†
∣ψ0⟩. (3)

In this case, the Hadamard lemma does not generically truncate, so
one is forced to work with the wavefunction directly. This comes
at a huge computational cost, making UCC inefficient on classical
computers. However, on quantum computers, it is feasible if one can
prepare the UCC operator in an efficient way and apply it to the ref-
erence state; especially so, since conventional coupled cluster cannot
be carried out on a quantum computer. In general, this is difficult for
the general form of the Ansatz. This is because we do not know how
to write general quantum circuits for sums of operators in an expo-
nential (however, this may be changing9). Instead, we use a Trotter
product formula to break the conventional UCC approximation up
into a product of factors for which quantum circuits are known. This
has us rewrite the UCC Ansatz in a Trotter product form as

∣ψUCC⟩ = lim
N→∞
⎛

⎝
∏

ia
e

1
N θ

a
i (â†a âi−â†i âa)

∏
ijab

e
1
N θ

ab
ij (â†a â†b âj âi−â†i â†j âb âa) . . .

⎞

⎠

N

∣ψ0⟩.

(4)

We will show below that for typical molecules one usually needs an
N value that is on the order of 10–20 for an accurate representa-
tion of the operator. However, the case with N = 1 often can produce
nearly as accurate results because the variational principle has addi-
tional freedom in it that allows it to correct some of the Trotter
errors, by modifying the precise value of the amplitudes. Note that
the order of the factors in the products in the parentheses does not
matter if we take the limit N →∞, but it is common to pick a par-
ticular ordering scheme, especially when working with finite values
of N (where the ordering does matter). Note that this factorized
form of the wavefunction is also employed in the anti-Hermitian
Schrödinger equation approach,10 which typically uses products of
exponential terms in constructing the wavefunction.

There is an exact operator identity for each of the individual
UCC factors that appear in the Trotter product formula.11–13 It arises
because the operators in the exponent of a single UCC factor obey a
hidden SU(2) algebra. It is

exp[θa1...an
i1...in

(â†
a1 . . . a†

an âi1 . . . âin − â†
in
. . . a†

i1
âan . . . âa1)]

= 1 + sin θa1...an
i1...in

(â†
a1 . . . a†

an âi1 . . . âin − â†
in
. . . a†

i1
âan . . . âa1)

+ (cos θa1...an
i1...in

− 1)[n̂a1 . . . n̂an(1 − n̂i1) . . . (1 − n̂in)

+ (1 − n̂a1) . . . (1 − n̂an)n̂i1 . . . n̂in] (5)

for the general order-n UCC factor; note that n̂ = â†â and (1 − n̂)
= ââ†, where we have suppressed the subscripts.

The variational Ansatz with N = 1 is called the factorized form
of the UCC (sometimes the factorized form of the UCC also allows
individual factors to repeat, but we do not do that in this work). It
is a different Ansatz than the original UCC Ansatz. Indeed, it now
has a dependence on the ordering of the factors (because some fac-
tors do not commute with other factors). However, if the factors are
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chosen with a reasonable ordering scheme, then the variational prin-
ciple helps to make different orderings produce similar accuracies
for the final energies that are calculated. However, note that a spe-
cific ordering does produce constraints on the amplitudes. They no
longer can be freely modified because the de-excitations that arise
as more and more factors are applied produce constraints on the
relative values of different amplitudes. For example, a particular
ordering may not allow two amplitudes to be exactly the same—one
amplitude may be constrained to be equal to the other plus sin2 θ—if
θ ≠ 0, they cannot be identical.

In this work, we focus on the factorized form of the UCC and
how it can be used in creating different variational wavefunction
Ansätze for electronic structure calculations. We have already seen
that the Trotter product formula allows us to express the original
UCC operator in terms of products of UCC factors, with factors
being repeated. In this work, we explore two additional themes—the
first is showing how one can perform configuration interaction cal-
culations on a quantum computer instead of UCC calculations. Since
it is widely believed that UCC calculations will be more accurate
than a configuration interaction (CI) calculation, this is really an aca-
demic exercise. However, there may be some situations where the
manipulations we discuss do become important in variational state
preparation, and it does illustrate the flexibility one has within the
factorized form of the UCC. The second is examining the accuracy of
the factorized form of the UCC vs the Trotter product formula when
we perform a variational minimization of the energy. This result tells
us what is the most efficient Ansatz to use when performing a VQE
calculation on a quantum computer.

The remainder of the paper is as follows: In Sec. II, we describe
how one can perform a configuration interaction calculation on
a quantum computer. In Sec. III, we compare the N = 1 form of
the UCC Ansatz to the exact formula for N →∞. We conclude in
Sec. IV.

II. THE CONFIGURATION INTERACTION
APPROXIMATION ON A QUANTUM COMPUTER

The configuration interaction (CI) approximation works with
a truncated Hamiltonian that is projected onto a specific set of
determinants. Within this restricted subspace, the Hamiltonian is
then diagonalized, producing a variational approximation to the true
ground-state energy, and a good approximation to the ground-state,
projected onto the determinants that are used in the CI basis set. The
CI approximation is not generally used, except in tailored basis sets,
such as the selective CI approximation. This is because one can usu-
ally achieve higher accuracy with a CC calculation that employs the
same number of amplitudes as the number of determinants in the
CI. In addition, the CC approximation is size-consistent, while the
CI usually is not.

Since most operators applied on a quantum computer are uni-
tary, it seems like one cannot easily create a CI wavefunction to
use in a variational calculation, but it is indeed possible to do this
using the factorized form of the UCC. Each application of a UCC
factor adds a determinant to the wavefunction when it acts on the
reference state. It can add additional determinants when it acts on
other states in the current expansion of the wavefunction. To cre-
ate the CI state, we need to prune the wavefunction and remove the
added determinants that are unwanted. This can be achieved via a

variant of the elimination algorithm12 by removing the extra terms,
one-by-one.

It is best to start with a simple example before moving to the
general case. The simplest case that has this behavior is the Hubbard
model with nearest-neighbor hopping (−t) on a four-site ring. There
are eight spin orbitals composed from the four single-particle eigen-
states in momentum space. State 0 has k = 0 with energy −2t, state 2
has k = π with energy 2t, and states 1 and 3 have k = π/2 and 3π/2
both with energy 0. At half filling, we choose the reference state to
occupy the 0 state (both up and down) and the 1 state (both up
and down) so that the reference state is ∣101̄0̄⟩, where the overbars
indicate the down spins.

Our example is illustrated schematically in Fig. 1. We start with
the reference state ∣101̄0̄⟩. We want to add the determinant ∣203̄1̄⟩ to
the CI calculation. We do so by applying the corresponding doubles
operator to find

∣ψ1⟩ = eθ
23̄
10̄(â†2↑ â

†
3↓ â0↓ â1↑−â†1↑ â

†
0↓ â3↓ â2↑)∣101̄0̄⟩

= cos θ23̄
10̄∣101̄0̄⟩ − sin θ23̄

10̄∣203̄1̄⟩ (6)

after using the exact operator identity. By adjusting θ23̄
10̄, we can have

arbitrary weight for the two terms in the superposition. Note that
the overall sign of the second term is determined by the ordering
convention of the fermionic raising operators acting on the vacuum,
which are used in determining the determinant.

Now we want to add the determinant ∣312̄0̄⟩. To do this, we
apply a second doubles operator to ∣ψ1⟩. The new state becomes

∣ψ2⟩ = eθ
32̄
01̄(â†3↑ â

†
2↓ â1↓ â0↑−â†0↑ â

†
1↓ â2↓ â3↑)∣ψ1⟩

= cosθ23̄
10̄ cosθ32̄

01̄∣101̄0̄⟩ − cosθ23̄
10̄ sinθ32̄

01̄∣312̄0̄⟩

− sinθ23̄
10̄ cosθ32̄

01̄∣203̄1̄⟩ + sinθ23̄
10̄ sinθ32̄

01̄∣323̄2̄⟩. (7)

The first state is the reference, and the next two states are the two
determinants we are adding into the CI calculation. However, we
have the fourth term, which is an extra determinant, that we did not

FIG. 1. Schematic of the determinants created in the example discussed in the text.
The lines represent the different energy levels; level 1 and level 3 are degenerate.
The arrows represent the inclusion of a single-particle state in a given determinant,
denoting the up-spin or down-spin state, respectively. ∣ψ0⟩ is the reference state,
and ∣ψ1⟩ is the state after one doubles UCC factor is applied (we use a shorthand

c1 = cos θ23̄
10̄

and s1 = sin θ23̄
10̄

). ∣ψ2⟩ is the state after applying two doubles opera-
tions with c2 and s2 being the corresponding trigonometric functions with argument
θ01̄

32̄
. The state ∣ψ3⟩ has a similar form as ∣ψ2⟩, but with different coefficients (not

shown).
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want. Hence, we need to remove it. One might ask why? The issue
is that this extra determinant does not have a free amplitude that we
can adjust. Instead, it has an amplitude determined by the ampli-
tudes of the other two determinants that we added. This is not the
way a CI calculation works, where each added determinant has its
own adjustable amplitude in the superposition. It can be removed
by applying a quad operator, which acts only on the first and last
terms in ∣ψ2⟩. We find that

∣ψ3⟩ = eθ
232̄3̄
010̄1̄(â†2↑ â

†
3↑ â

†
2↓ â

†
3↓ â1↓ â0↓ â1↑ â0↑−â†0↑ â

†
1↑ â

†
0↓ â

†
1↓ â3↓ â2↓ â3↑ â2↓)∣ψ2⟩

= (cos θ23̄
10̄ cos θ32̄

01̄ cos θ232̄3̄
010̄1̄ − sin θ23̄

10̄ sin θ32̄
01̄ sin θ232̄3̄

010̄1̄)∣101̄0̄⟩

− cos θ23̄
10̄ sin θ32̄

01̄∣312̄0̄⟩ − sin θ23̄
10̄ cos θ32̄

01̄∣203̄1̄⟩

+ (cos θ23̄
10̄ cos θ32̄

01̄ sin θ232̄3̄
010̄1̄ + sin θ23̄

10̄ sin θ32̄
01̄ cos θ232̄3̄

010̄1̄)∣323̄2̄⟩.
(8)

We can remove the unwanted term by choosing

tan θ232̄3̄
010̄1̄ = − tan θ23̄

10̄ tan θ32̄
01̄. (9)

One can verify that the state ∣ψ3⟩ is normalized, and by choosing
θ23̄

10̄ and θ32̄
01̄, we have all possible linear superpositions possible of

the three determinants in the wavefunction. This is exactly what is
needed for a CI calculation.

Now, suppose we have n doubles determinants already in the
CI approximation. To add a new doubles determinant, we use the
corresponding doubles UCC factor. When this operator acts on the
reference state, it creates the desired doubles determinant that is
being added. The de-excitation term in the UCC factor cannot de-
excite any term because it is a doubles de-excitation and all of the
other n doubles terms in the superposition are different doubles
determinants. However, the excitation part will excite every term
in the superposition for which an excitation is allowed. This creates
some number of quad excitations. We need to remove all of them to
have a CI approximation. Each quad that was added can be removed,
one-by-one, by applying a similar quad UCC factor with the ampli-
tude chosen to ensure the coefficient of the given quad is zero. Each
quad that is applied in this removal procedure can create a sextu-
plet excitation when applied on every double excitation that can still
be further excited. As we continue to apply additional quad UCC
factors to remove the unwanted quad determinants, we will cre-
ate additional sextuplet excitations, but we can also de-excite some
of the previously excited sextuplets down to doubles. These dou-
bles are always ones that already appeared in the superposition—but
their coefficient is modified when this happens. Eventually, we have
removed all of the offending quads. We now have a number of
offending sextuplets and all of the desired doubles. We continue in
the same hierarchical fashion to remove all sextuplets. This requires
using a sextuplet UCC factor. Again, all possible doubles that can
be excited to octuplets will be so excited. Removing additional sex-
tuplets can modify the coefficients of the doubles again, and the
procedure continues. Will it ever stop? Yes, it must. This follows
either from the elimination algorithm12 or from the simple fact that
because we use a finite basis set of allowed orbitals, there is a max-
imal excited determinant that we can have (we cannot excite to an
order higher than the number of electrons in the original reference
state).

Hence, this approach will eventually remove all higher-order
determinants, leaving behind only the desired doubles determi-
nants. The only remaining question, for this to be an unbiased CI
approximation, is whether the coefficients of the different doubles
determinants have independent amplitudes that can be freely var-
ied. While this should be true, it is a subtle point, that does not have
any simple answer without calculating the different coefficients con-
cretely and seeing if there are any extraneous constraints on them
(similar to what we did with the example above). This appears to
be unlikely, but we cannot rule it out at this stage. However, if this
does appear to cause a problem, one should be able to adjust the
doubles coefficient by applying a correction UCC doubles factor
for the problematic coefficient. This will require additional quads
and higher-order corrections to finally reduce to having just doubles
again.

Suppose we have added all desired doubles and now we wish
to add in other determinants, such as singles. The first single added
will also add in a number of triples because it can excite many of the
doubles. These triples can be removed following a similar strategy
as described above. If we add two singles, then we will have extra
doubles excitations in addition to the extra triples. Again, following
a hierarchical elimination procedure, we can remove all extrane-
ous terms. Next, if we add triples terms, they can create quads and
quintuplets. These can also be removed as before.

After all of this is completed, is there any way we can see
whether the coefficients can be freely adjusted, or do some of them
have constraints? As discussed above, the only way this can occur
is if the elimination steps create constraints in different coeffi-
cients, and adding in additional UCC factors to compensate for
these constraints produce additional constraints, so they all cannot
be removed. The spirit of the elimination algorithm indicates this
should not occur, but it would be useful, if implementing this, to see
whether it occurs in the final expressions. It would be nice to try to
do this exercise on a small system, but this algorithm is so complex
that even a small system is likely to require more resources than are
feasible on a conventional computer. Hence, we are not able to test
the freedom of the amplitudes. However, it appears quite unlikely
to us that such constraints will occur for the reasons described
above.

One can see that the procedure becomes quite complicated
as more and more determinants are added into the CI calcula-
tion. In addition, it is possible that some of the determinants kept
in the CI calculation may not have completely independent coeffi-
cients. Hence, modulo some possible (but unlikely) constraints on
the coefficients of the desired terms in the CI approximation, one
can perform CI-based calculations on a quantum computer. We
do note that the complexity of carrying this out, and the fact that
a coupled cluster calculation is likely to be more accurate than a
corresponding CI calculation, means it is unlikely that this would
be widely used. However, there may be some specialized situations
where it proves to be valuable. We find it interesting that the factor-
ized form of the UCC allows us to work with such an approximation.
Nevertheless, we do want to emphasize that if one is creating a CI
wavefunction with N determinants, it is likely to require a far deeper
circuit than a factorized form of the UCC that has N amplitudes in
it. This is because we need to add many additional UCC factors for
the CI wavefunction to remove the higher-order excitations and de-
excitations associated with the UCC factor being applied onto the CI
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wavefunction as we introduce new determinants into the superposi-
tion one-by-one.

III. THE TROTTER APPROXIMATION
TO THE CONVENTIONAL UNITARY
COUPLED CLUSTER APPROXIMATION

The conventional UCC approximation, where we apply eT̂−T̂†

to our reference state, is a uniquely formed wavefunction Ansatz—it
does not depend on the ordering of the terms in the operator T̂.
However, if we convert it to an approximate form expressed in terms
of individual UCC factors, then the ordering plays a role, as we dis-
cussed above. In this section, we discuss accuracy issues associated
with approximating the conventional UCC approximation with a
Trotter product formula that has a finite value of N. Note if we wish
to approximate the conventional UCC approximation with a spe-
cific approximation that has a rigorously bounded error, then we
think of the Trotter product formula as being an approximation that
becomes more and more accurate as N is increased. In this case, we
need to know how large does N need to be to achieve our desired
chemical accuracy?

We can look at this problem in a different way. We can think of
it as we think of the quantum approximate optimization algorithm
(QAOA),14 which seeks the most accurate approximation given the
number of levels (that is, the number of UCC factors) in the wave-
function Ansatz. In this case, we may find a wavefunction that gives a
more accurate energy than we would have if we identified the ampli-
tudes in the factorized form with the same amplitudes that we would
use in the conventional UCC Ansatz. This is because, by varying the
values of the amplitudes, we can sometimes correct issues associated
with Trotter product formula errors. The best way to investigate this
is by looking at a concrete example. Of course, this is a case study
and not a rigorous proof for the general situation.

The problem we choose to test these ideas on is one that can
be solved by a full configuration interaction (FCI) calculation. We
choose a particularly small system in order to be able to perform all
calculations exactly and efficiently. We look at the open H6 chain.
We use the STO-6G basis set. The system is a modest size, with 12
spin orbitals and a Hilbert-space dimension of 400. Our exact Ansatz
includes all possible excitations allowed by the number of electrons
and the total number of orbitals in the operator T̂. We choose the
interatomic spacing to be 4 Å to be in the strong-correlation regime.
We determine that it is the strong-correlation regime by compar-
ing the correlation energy of the FCI solution with that of the MP2
solution. As the bond length ranges from 1 to 3 Å, we find the MP2
correlation energy is on the order of 50%–80% of the FCI correlation
energy. However, at 4 Å, the MP2 correlation energy is three times
that of the FCI, indicating one is well within the strong-correlation
regime. This then provides an excellent test of the Trotter product
formula against the factorized form of the UCC Ansatz for strongly
correlated cases.

We evaluate the Trotter product formula in two different ways.
The first way chooses the ordering within each Trotter factor to
be ordered in terms of the most important amplitudes, as deter-
mined by an MP2 calculation (for the singles and doubles) and as
determined by the energy of the excitation for all triples, then all
quads, and so on. This ordering is then repeated N times to obtain
the Trotter product formula. The other way we do it is to pick

the UCC factors at random for one Trotter step and then repeat
the same ordering for the remaining N Trotter steps. This is moti-
vated by work on the Trotter product formula in time evolution,
which showed that picking Trotter factors at random (and using
importance sampling) improved the accuracy of the Trotter prod-
uct formula for a fixed number of Trotter factors.15 We will see that
does not occur here. Finally, we perform a full optimization using the
N = 1 Trotter product formula, including only singles and doubles
excitations and de-excitations; the doubles amplitudes are chosen in
the MP2 order, followed by the singles amplitudes.

The way that we choose the exact amplitudes for the con-
ventional UCC Ansatz is to start from the exact ground state, as
determined by an FCI approximation. Then, because we can calcu-
late the conventional UCC Ansatz exactly, we fit the amplitudes to
give us the exact ground state for eT̂−T̂†

∣ψ0⟩. This is done by first
computing the matrix of T̂ − T̂† in the given product-state basis.
The exponential of the matrix was then calculated with the SciPy16

package. Note that since we have fixed the amplitudes, there is no
optimization performed during these calculations. Just an evaluation
of the operators acting on the reference state and then calculation of
the energy expectation value were performed.

In Fig. 2, we show the results for the accuracy of the correla-
tion energy as a function of the number of Trotter steps N. One can
see that for this simple problem, we require N to be on the order
of 10 to achieve chemical accuracy. Interestingly, a variationally
optimized UCC calculation in the factorized form with N = 1 and
including only singles and doubles (in MP2 order) produces a corre-
lation energy of −1003.082 mH, where we optimize the amplitudes
to produce the best energy (orange line). This is to be compared with
the FCI correlation energy of −1010.085 mH. This shows that the
N = 1 approximation is quite accurate (but not quite chemical accu-
racy), even though it does not represent a good approximation of the
conventional UCCSD Ansatz! Note that the exact result (including

FIG. 2. Comparison of the Trotter product formula to the exact energy of an H6

chain with an interatomic spacing of 4 Å. The two curves represent the cases
where the UCC factors are chosen in an ordering according to the MP2 perturba-
tion theory (purple) or randomly (blue). The chemical accuracy is indicated by the
dashed line. The full CI result (and the full UCC Ansatz, which becomes exact) is
given by the red line. The orange line is the optimized result for an N = 1 UCCSD
approximation in a factorized form.
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FIG. 3. Relative fraction of the correlation energy for the different approximations
for a single-step Trotter formula (N = 1); these results are not optimized since the
amplitudes are known exactly from the exact ground state. The UCC(S)D results
are the optimized results for the N = 1 Ansatz with just doubles or with just singles
and doubles.

higher-order excitations) becomes better than the N = 1 singles and
doubles approximation only for N values that are larger than N = 1.
For this bond stretch, the conventional CC Ansatz is not accurate.
We discuss the boost in accuracy due to the variational principle
next.

In Fig. 3, we show the percentage of the correlation energy that
is found for the different N = 1 approximations. The worst result
comes from the N = 1 approximation to the conventional UCC
Ansatz when we choose the UCC factors in random order. Choos-
ing them in the MP2 order does significantly better, indicating that
the ordering of the UCC factors can play a significant role. If we
do not use the exact amplitudes in the conventional UCC Ansatz
but instead optimize the amplitudes, we get the next two bars, corre-
sponding to a doubles-only Ansatz and a singles and doubles Ansatz.
One can clearly see that the variational principle allows for signifi-
cant improvements on the accuracy of the total energy when we use
the factorized form of the UCC as the wavefunction Ansatz.

The results shown here are suggestive that one requires mod-
erate to large N values to correctly approximate the conventional
UCC Ansatz via the Trotter product formula. However, we can still
achieve high accuracy with N = 1 if we use the UCC Ansatz in its fac-
torized form and perform an optimization to minimize the energy.
Just like in the QAOA approach, we find that the optimization step
greatly improves the accuracy of the final answer. It does this by par-
tially compensating for the Trotter error of the N = 1 form of the
Ansatz.

Hence, we find that the approach we employ still works for
this strongly correlated problem, even though the MP2 correlation
energy is three times too large for this case. This implies that the
MP2 ordering plus the variational freedom of the N = 1 Ansatz may
be sufficient to describe a wide range of different chemical systems.

IV. CONCLUSIONS
In this work, we showed that the factorized form of the UCC

has great flexibility as a wavefunction Ansatz for deployment on
quantum computers. It can produce a conventional or selective

CI wavefunction. It can produce the conventional UCC wavefunc-
tion, or it can produce something new that balances the ease of
implementation with high accuracy, which is attained through the
optimization step for the total energy. This implies that if one wants
to use a wavefunction Ansatz in a fermionic form, then the N = 1
Trotter product formula, with the doubles amplitudes chosen in
the MP2 order, is likely to produce high accuracy with low circuit
depth. If the accuracy is not sufficient, then triples and higher-order
excitations can be added in using the same factorized Ansatz. Our
work suggests that this is a general principle for carrying out varia-
tional quantum eigensolver calculations on a quantum computer. Of
course, the VQE itself may turn out to be inadequate for quantum
chemistry on quantum computers. In this case, other methods with
lower depth than QPE may be needed. Some possible approaches are
based on powers of the Hamiltonian.17,18 Other approaches based on
the anti-symmetric Schrödinger equation are also being tried.19

SUPPLEMENTARY MATERIAL

See the supplementary material for the data in Figs. 2 and 3.
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