Chapter 1

Quantum number towers for the Hubbard and Holstein
models

James K. Freericks

Abstract. In 1989, Elliott Lieb published a Physical Review Letter proving two theorems about
the Hubbard model. This paper used the concept of spin-reflection positivity to prove that the
ground state of the attractive Hubbard model was always a nondegenerate spin singlet and to also
prove that the ground state for the repulsive model on a bipartite lattice had spin ||A Al —|AB || /2,
corresponding to the difference in number of lattice sites for the two sublattices. In addition, this
work relates to quantum number towers—where the minimal energy state with a given quantum
number, such as spin, or pseudospin, is ordered, according to the spin or pseudospin values. It
was followed up in 1995 by a second paper that extended some of these results to the Holstein
model (and more general electron-phonon models). These works prove results about the quantum
numbers of these many-body models in condensed matter physics and have been very influential.
In this chapter, I will discuss the context for these proofs, what they mean, and the remaining open
questions related to the original work. In addition, I will briefly discuss some of the additional
work that this methodology inspired.

1.1 Introduction

In the late 1950s and early 1960s two models for condensed matter physics systems
with electron-phonon coupling [8] (called the Holstein model) and electron-electron
interaction [9] (called the Hubbard model) were proposed. These models were simple
in structure and easy to describe. But, they both turned out to be extremely difficult to
solve.

In the late 1960’s Gaudin [5] and Yang [39] solved a long-standing problem in
determining how to extend the Bethe-ansatz [1] from spin models to fermions. Shortly
thereafter, Lieb and Wu [17] solved the one-dimensional Hubbard model problem and
showed that the Mott metal-insulator transition occurred for infinitesimally large U at
half filling by showing a gap opened in the density of states for any positive value of
the interaction U. But solutions outside of one dimension proved difficult to find. In the
early 1990s, dynamical mean-field theory was introduced as a way to solve strongly
correlated models in infinite spatial dimensions. The properties of the Hubbard model
were mapped out over a decade or so using increasingly more sophisticated numerical
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methods [6]. Results for the Holstein model are even meagerer. There are no known
exact solutions, although numerical work in one-dimension [10] and in dynamical
mean-field theory [3] have established some properties of the model.

Elliott Lieb’s work on these two models is important, because it showed that one
can use rigorous analytical methods to understand properties of the quantum numbers
of the system—constraints on the quantum numbers of the ground-state, and “tower”
structures in the energy eigenvalue spectrum, similar to the Lieb-Mattis proof of the
absence of ferromagnetism in one-dimensional models [16]. This work was based on
the concept of spin-reflection positivity, a powerful new idea in many-body physics
that allows one to show precisely when electrons of opposite spins prefer to be located
on the same lattice site due to an attractive interaction. Then a partial particle-hole
transformation allows one to establish consequences of these results for the repulsive
model. The Hubbard model work was completed in 1989 [15] and was refined and
extended to electron-phonon coupled models in 1995 [4].

The Hubbard and Holstein models are models of electron correlations on lattices
(technically speaking the lattices need not be periodic, and can be thought of just as a
collection of sites {x | x € A}, with “bonds” corresponding to pairs x € Aand y € A
where a hopping matrix 7, # 0); we let |A| denote the (finite) number of lattice sites
in A. Then the Hubbard model involves electrons that hop on the “lattice” and interact
when two electrons of opposite spin sit on the same lattice site. It is defined as

H=D" > teyllolyp+ Y Usiixpityg. (1.1)

o x,yeA X€EN

Here, we use fermionic creation (annihilation) operators CAL, (Cx o) for a fermion of
spin o at site x. The “lattice” is a collection of sites, which does not need to have any
structure to it. The hopping matrix is arbitrary except it is real-valued and 7., = t,;
it is not allowed to depend on spin, but it is allowed to have diagonal elements, in that
one can have ¢, # 0. The fermionic operators satisfy the ordinary anticommutation
relations given by

{éw c‘y(,} = 653000 and {éw ,@yg,} ~ 0. (12)

The number operators are 7y, = éjmc‘xa. While the above form is quite general, in
condensed matter physics, the Hubbard model is most often studied on a periodic lattice
with nearest-neighbor hopping (sometimes longer range too) and with an interaction
U that does not depend on the lattice site.

Note that this model is a significant simplification of the model of a real material.
This is because we consider only one band and we only have an on-site Coulomb
interaction. It is well-known that the Coulomb interaction is fairly long-range, so it
often involves interactions farther away than just on-site—the idea of Hubbard was
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that screening could make the Coulomb interaction most important only when both
electrons are in the same unit cell. The other thing it misses is the exchange interaction.
This can be an important interaction, but it requires multiple bands at a given lattice
site to have exchange interaction effects—as a result, this model tends to de-emphasize
ferromagnetism, which is often enhanced by the degeneracy associated with multiple
bands; but in special cases the Hubbard model does have ferromagnetic solutions.

The other model we will consider is a general electron phonon coupling model
(which includes the Holstein model, but much more), given by electrons that hop on
a lattice and interact with phonon modes through a coupling of the electron charge
at a lattice site to a function of the phonon coordinates and via a modulation of the
hopping. The Hamiltonian is given by

Hep _Z Z tey (9)éL ¢ y(r+ZG (Q)(nxT+nx¢)+Z(—+ —mw? ql)

o xyeA xeA

+Van(¢])- (1.3)

There are many more conditions to discuss about this Hamiltonian. The phonon operat-
ors include position 41, - - , 4, and momentum p, - - -, p,,, which satisfy the canonical
commutatlon relatlon [Gj,Pk]=idjk (Weseth= 1) We collectively refer to these oper-
ators as q and p p The number of phonon modes is not assumed to be linked to the lattice
sites, although for the Holstein model, it is, with one phonon mode per lattice site. We
will work in the coordinate representation, where §; — g; and p; — 6‘9 and these

operators act on functions in L*(R”). V,,(§) is the anharmonic part of the phonon
potential (all nonquadratic terms); it is bounded from below V,,,(¢) > C, and goes to
infinity faster than linearly.

The hopping matrix depends on g (but not on momentum) and for any fixed
g, the hopping matrix is real and symmetric 7., (g) = t,.(g) and the trace satisfies
Tr|txy(g)| < co. The functional dependence is that 7, () is an arbitrary measurable
real-valued function of g. Similarly G, (g) is an arbitrary real-valued function of the
coordinates g. We also will require a boundedness from below of the total phonon
energy given by

= 2Tr#(§)| =2 ) 16 (@) + 5 me +Van().- (1.4)

xXeEN

The general electron-phonon problem includes both the Su Schreiffer Heeger model
[31] and the Holstein model [8] (and even more general models). For the former, one
needs to express the system in a normal mode basis (which is not how the model is
usually written down) with no anharmonic potential, while for the latter, we associate
a constant frequency harmonic phonon with each lattice site.
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The Holstein model is also a simplification—it has no acoustic phonons in it—
only Einstein modes. Hence, it is not as accurate in describing heat transport. In the
generalization we describe above, we have much more generality, but even here, it is
not the most general case one can consider, as it ignores nonlinear electron-phonon
coupling and some additional anharmonic effects.

These models have a rich history of behaviors too voluminous to completely dis-
cuss here, but we will describe some of the general behavior that has been seen via dif-
ferent numerical methods (much of this behavior cannot be proven to occur in general).
In the Hubbard model, the repulsive case has a Mott metal-insulator transition at half
filling, and an antiferromagnetic spin-density wave phase at low temperature. Away
from half filling, a d-wave superconductor is expected to occur in two dimensions.
For the attractive case, the system has a superconducting ground state, which becomes
degenerate with a charge-density-wave phase at half filling. The Su-Schrieffer-Heeger
model and the Holstein model both have charge-density-wave behavior at half filling
and are superconducting away from half filling. They all can possess more complex
orders as well, especially in two dimensions.

The proofs that Elliott Lieb worked out relate to the ground-state quantum numbers
for finite-sized systems. The proofs work with much more general versions of the
models than what are usually studied in condensed matter physics. The main element
in these proofs relies on a new concept called spin-reflection positivity, and it is used
to show that the attractive interaction between electrons favors having two electrons
sitting on the same lattice site. The application to repulsive models arises from partial
particle-hole transformations and hence they apply only to the Hubbard model at half
filling. Nevertheless, these proofs have led to tremendous insight about these models
and have opened up new areas of research that remain active to this day. We will discuss
more about that later in the paper.

But first, we must discuss the two sets of operators that commute with these Hamilto-
nians, for the proofs are all about the quantum numbers of these operators. To begin,
both models conserve the total number operator for each spin Ny = 3, YeA (?igéxg,
since one can immediately see that [N, H] = 0 and [N, H, p] = 0. These two oper-
ators can be combined into the z-component of two SU(2) Lie algebras—a real spin
algebra and a pseudospin algebra. The operators of the spin algebra are

$ = % Dy =iy, §7=> e, and $7= ) el e (1.5)
xX€eA xX€eEA xX€eN

One can immediately verify that they satisfy the standard SU(2) algebra given by

[S'+, S_] =287 and [S’i, SZ] = +8* and that [S’J—',?A(] =0and [S’J—',‘f[ep] =0, so that

energy eigenstates of each Hamiltonian can be labeled by the total spin s and the

z-component of spin m quantum numbers as well. The operators of the pseudospin
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algebra are

_ A Al 5 A A o A A
ZEZ(HXT'anl)_?, J+:Z(_1)6(X)CxTcxl’ and J :ZCXLCXT' (16)

XEN X€EN XEN

These operators also satisfy [f*, J ‘] =2J% and [f 2 J i] = +J*. In this definition, we
must have that the lattice is bipartite, meaning the set of points A=A 4 U Ap (with Ag N
Ap=0)andt,, =0ifx,y € Aporx,y € Ag. Thesymbol e(x) =0ifx € Ay ande(x) =1
if x € Ap. So the pseudospin operators can only be defined when the lattice for the
hopping is bipartite. Then, it is only a symmetry of the Hubbard Hamiltonian if we also
have that the coupling U is independent of x, so we only discuss pseudospin symmetry
for the Hubbard model on a bipartite lattice with spatially homogeneous interaction.
In this case, one finds that [fz, 7:(] =0and [fi, (]:(] = +UJ*. The pseudospin raising
and lowering operators also raise and lower the energy of the energy eigenstates by U.
Nevertheless, the total pseudospin j and the z-component of pseudospin m ; are both
good quantum numbers, and energy eigenstates can be labeled by them as well. This
scenario is similar to that of the Zeeman effect on independent spins when placed in
a magnetic field.

The proofs in these theorems make statements about the quantum numbers s and
J (where relevant) for the ground-state, but these results can be extended, to make
statements of spin and pseudospin towers, first discussed in the Lieb and Mattis work
from the early 1960s [16] that showed a spin tower for one-dimensional systems with
nonsingular potentials (and hence, a lack of ferromagnetism). In a spin tower, the
minimal energy state with spin quantum number s lies strictly below the minimal
energy state with spin quantum number s + 1. We will discuss this more later in the
paper. As a final note, our goal in this work is more to provide sketches of proofs and
heuristic discussions—complete rigorous proofs appear in the original literature.

1.2 The two-site Hubbard model

We now discuss a simple example, to be concrete about how quantum numbers enter
into the models. As an example for how the quantum numbers behave for the Hubbard
model, we examine the two-site case, which can be diagonalized analytically.

The two-site (|A| = 2) Hubbard model we will examine is

_tz ( Clolrg t 20510) +U (”m”u +n2Tﬁ2l) ; (1.7

with a uniform interaction U and a hopping between the two sites. This is a bipartite
lattice and it satisfies the uniformity condition on the interaction, so it has both spin
and pseudospin symmetry.
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In general, a lattice with |A[ sites has 4/! possible electronic states, because each

site can have the state 0, T, |, or T] on it. Then, if we have N, total electrons in the

2|A
quantum state, there are ( 1|Ve |) = %

filling the 2| A| spin orbitals with the N, electrons). So, for the two-site case, we have

possible states (which can be seen by

N, =0, (?)) = 1 state

N, =1, (T) = 4 states
N, =2, (4) = 6 states
2
N, =3, (g) = 4 states
N, =4, (j) = 1 state
= 16 states total =42 v/ (1.8)

When we have N, electrons, the maximal spin quantum number is % and the minimum

isOor % depending on whether N, is even, or odd, respectively. The allowed pseudospin

Ne _ |A . . .
quantum number m; = =¢ — |2—| which means the pseudospin quantum number j

ranges in integer steps from )% - |2A|’ up to either |—/2\| for N, even or |A|2_1 for N, odd.

Before discussing the different energy eigenstates and their spin (and pseudospin)
quantum numbers, we want to discuss some notation. The state with no electrons is
denoted |0) and is called the vacuum state. Product states with N, electrons can be
written as (?L o 611\,6 N, |0), which we rewrite in a simpler notation as x; o x207 - - -
xn,on, for efficiency. Our convention is that we order the site labels x and we have
Xm < X, if m < n and if two indices x,, and x,,+] are equal, the o, =T appears before
the 0,41 | index. In this work, we focus on using a real-space representation of the
product states that we take linear combinations of to construct the many-body energy
eigenstates (in particular, the ground state). Now we are ready to discuss the solutions
of the Hubbard model with |A| = 2.

The state with N, = 0 is the vacuum state and it has s =0, m =0, j = 1, and
m; = —1.1Its energy is E = 0. For N, = 1, we have four possible states, given by 1 T,
27,1],and2 |. The quantum numbers are s = %, m= J_r%, Jj= % andm; = —%. The

energy eigenstates are

1 1
—((lo+20), E=—-t and —(lo -20), E =1t. (1.9
V2 V2



Quantum number towers for the Hubbard and Holstein models 7

Inboth cases we can have o =T or |, so each state is two-fold degenerate. One can verify
the energies (and that these are the eigenstates) by simply acting the Hamiltonian onto
these states—for N, = 1, we only have the hopping term contributing. For N, = 2, we
have six possible states. We have the state with s =0, m =0, j = 1, and m; = 0, found
by applying J* onto |0) and given by %(1 T1]-272]).Its energy is raised by U
from the N, = O state energy, so it is equal to U. Next, we have the three degenerate
states with s =1, m = 1,0,~1, j =0, and m; = 0. They are givenby 1 T2 T (m = 1),
\/li(l T21+1127)(m=0),and 1|2 | (m =—1). The energy is E = 0 (which is easiest
to see by acting the Hamiltonian onto the m = 1 state). Finally, we have two states with
s=0,m=0, j=0,andm; =0, spanned by v%(l 121-1027)and \%(1 111-21721]).
The Hamiltonian matrix that needs to be diagonalized to determine the energies is a
2 x 2 matrix. It is constructed by simply working in the above basis, and is given by

(1.10)

U -2t
Wszo,mzo,j:o,mjzo = ( ) .

-2t 0
The energy eigenvalues are E.. = 2 + é VU? + 16t2—the ground state corresponds to
the minus sign for all U. The cases with N, = 3 and N, = 4 can be worked out by
applying the J* operator onto the j=1land j= % states. We have four states with
s = %, m= ii’ J=3 L and m i=5. They split into two two-fold degenerate multiplets,
with energy givenby E = U + 2t. Finally, the case with N, =4 hass =0,m =0, j =1,
and m; = 1. It has energy 2U and the stateis 1 T1 | 2 T2 |.

‘We summarize these results as follows:

e=0:5=0,m=0,j=1,mj=-1, E=0 1 state
1: 1 —+1 ol . E = +t (twofold) 4 stat

N, = S_2’m__2’J_2’m]_ > = +¢ (twofo states
Ne=2:5=0,m Oj—lmj—O E=U 1 state
s=1, -1,0,1j=0,m; =0, E =0 (threefold) 3 states

U 1

s=0,m=0, j=0, mj =0, =§J_r§VU2+16t2 2 states

N.=3 ! —+1 . ! E = U %t (twofold) 4 stat
e = S_Z’m__z’J_2’mJ_2’ = U +t (twofo states
Ne=4:5=0,m=0, j=1,m;=1, E=2U 1 state .

(1.11)

What one can see from this is that the ground state always has minimal spin and min-
imal pseudospin; it even has both spin and pseudospin towers at half filling. In general,
Lieb proved that the ground state for the attractive case has minimal spin and for the
repulsive case has minimal pseudospin; in both cases, the ground state is also unique,
with additional restrictions on the problem. But his proofs show even more than this
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as well when combined with the partial particle-hole transformation and when one
explores other consequences of these ideas.

1.3 Spin-reflection positivity and the proof of the existence of a
spin-singlet ground state

We will follow Ref. [4] for both proofs, because it is simpler to discuss both at the same
time using the language developed in the later paper. We will discuss preliminaries for
the models and then state and prove the first theorem (existence of a spin singlet ground
state) for both models. In the next section, we will discuss and sketch the proof for the
uniqueness of the ground state.

In the existence proof, we will work with a concrete representation of the many-
body wavefunction. The first requirement we have is that the number of electrons is
even and that the number of lattice sites is finite. Next, we restrict the many-body states
to m = 0, because states with every possible s eigenvalue have a representative in this
subspace. Then, we have the same number of up-spin and down-spin electrons, which
we denote N and hence N, = Ny + N| = N + N = 2N. It is important to note as well
that the two Hamiltonians we consider are real and are unchanged if we interchange
the up spins with the down spins and vice versa. This is where the requirement that
the hopping matrix be real, that the hopping not depend on spin, and that the electron-
phonon coupling be too the total electronic charge at a given lattice site are required.
This means, if I have a wavefunction that corresponds to an energy eigenstate, I can
interchange the spins, or I can take its complex conjugate, or do both, and it will still
be an energy eigenstate. We will use this important observation in just a moment. We
will use a first-quantized notation for our description.

Theorem 1 (Existence of a spin-singlet ground state for the attractive Hubbard
model in Eq. (1.1)): If the interactions are attractive, so that Uy < 0 V x € A, then
amongst all of the possible ground-states of the Hubbard model with an even number
of electrons N, = 2N, there is at least one state that is a spin-singlet state with s = 0.

We now discuss the proof of Theorem 1 for the Hubbard model, where we have
U, <0, Vx € A, so that we can write them as U, = —|U|. Welet X = (x1,x2, - ,xN)
be the N-tuple of labels for the up-spin electrons and ¥ = (y1, y2,- - - , yn) be the cor-
responding down-spin labels. We let ¥ (X, Y) denote the many-body wavefunction—it
must be separately antisymmetric under an interchange of any of the x; coordinates
and under an interchange of any of the y; coordinates. Because ¥ (Y, X), ¥*(X,Y), and
Y(Y, X)* are also eigenstates with the same energy, we can, without loss of generality,
assume that ¥(X,Y) = Y(Y, X)*—the wavefunction is self-adjoint, when thought of
as a matrix. This is because ¥(X,Y) + ¥(Y, X)* and i(¥(X,Y) — ¥(Y, X)*) are both
solutions as well. Note that this assumption does not imply that W (X, Y) is real valued.
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. . . o A .
This matrix ¥ is a d X d matrix, with d = (l Nl)' We use the spectral theorem, which

says that any finite-dimensional self-adjoint matrix can be expanded in an eigenfunc-
tion basis {¢o | Dy V(X,Y)do(Y) = wedo(X)}, with real eigenvalues w,, . Note that
each ¢, is orthonormal, with }’y ¢7,(X)¢g(X) = 6 op and that they are antisymmetric
functions with respect to interchange of any two of the x; labels. The expansion for
¥Y(X,Y) becomes

d
WX, Y) =) wada(X)g5(Y). (1.12)
a=1

We now compute the expectation value of the energy, in the state W using the
spectral decomposition in Eq. (1.12). The kinetic-energy piece is

d d
(PIRI®) = 3" > waug 3 3 3" (¢4 0K (X, V)dp(Y)d0(2)85(2)
Y Z

a=1p=1 X

+ 0 (K| (X, V)95V 65 (2)85(2)). (1.13)

Here, K- (X,Y) is the first-quantized version of 2ix,yeA txy &l yo» €xpressed in the
same coordinate system as we used for the wavefunctions. Using the facts that the
{¢o} are an orthonormal set, that the first quantized form K is independent of spin,
and that ¢, are real, yields

d
(PIRI) =2 ) wh(dalRIa). (1.14)

a=1

Similarly, we have the potential energy piece satisfies

d d
(WILI) == > MU Y Y wawg )" 3" 3" d0(WIL(W, X)¢p(X)
Y ZzZ

xeA a=1B=1 w X

X ¢ (V) Lo (Y. 2)85(2),
(1.15)

where L, (X,Y) is the first quantized version of n, o, which is independent of o-. Using
the fact that L% (X,Y) = Ly (X,Y) then yields

d d
(PILI®) = = > U D wawgl{alLelgp) . (1.16)
xeA a=1B=1
Finally, the overlap of the wavefunction with itself is

d d d
P2y =3 33 > 60 (X)dp(X)pa(V)gp(r) = > wl. (1.17)
a=1

a=1p=1 X Y
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This leads to the energy expectation value

22?,:1 wgy(¢a|[e|¢a> = XxeA |Ux| Zzzl ZZ;] waw,8|<¢a|£x|¢ﬁ>|2

E(YP) =
) Z?yzl w%z

(1.18)
One can immediately see that replacing w, by |w,| can only make the energy smaller,
so we can assume that the ground state includes a state that satisfies ¥ = |¥'| in a matrix
sense, where |¥| = VW2 note that this is usually not the same as ¥(X,Y) — |¥(X,Y)]|,
as that only holds in the diagonal basis. This means that Tr ¥ = Zi:l |lwe| > 0, which
implies that ¥(Xy, Xp) # O for some Xy. Then the up spin particles are at the same
locations as the down spin particles—this requires them to be in a spin-singlet state.
So, amongst the possible ground states, there is at least one ground state that is a spin
singlet.

Theorem 2 (Existence of a spin-singlet ground state for the generalized electron-
phonon Hamiltonian in Eq. (1.3)): If the boundedness criterion in Eq. (1.4) holds, then
among the different ground states of the generalized electron-phonon Hamiltonian,
there is at least one ground state that has s = 0.

The proof of Theorem 2 for the electron-phonon Hamiltonian is similar. Again,
we work in the space with m = 0 and we have a g-valued d X d matrix, with the
same d as before, when we have a lattice with |A| sites and N spin up and N spin
down electrons. As before, taking complex conjugates and transposes, we can show
that for each point g, the matrix ¥ (g) is a self-adjoint matrix for each g. Recall as
well that we have v different phonon modes (we do not require |A| = v). We write the
Schrodinger equation in a schematic form, where we separate out the kinetic-energy
contribution of the phonons from the rest of the potential (which we call V(g)—it is a
self-adjoint matrix for each ¢). The potential acts on the wavefunction matrix from the
right and from the left, to incorporate both the up-spin contribution and the down-spin
contribution. The schematic Schrodinger equation H, p¥ = EY takes the following
form:

SR L L R )
- Z ——Y(q) +V(9¥(q) +¥(q)V(9) = E¥(9), (1.19)
= 2mi dq;

where E is the energy eigenvalue.

We will use the Schrodinger equation to determine the expectation value of the
energy. But first, let’s review how this calculation works. Since ¥(g) is a self-adjoint
matrix, we can again write it in a diagonal form for each ¢, using the “instantaneous”
eigenvectors as

d
V(X,Y3§) = ) wa(@)da(X: 5 (Y3 ). (1.20)
a=1

We use the symbol R” to denote the position space for the phonons, which is v-
dimensional and dg denotes the integration measure for the v-dimensional space. The
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orthogonal eigenvectors satisfy Y.y ¢% (X; §)¢p(X; §) = 64p and are antisymmetric
functions with respect to the interchange of any two of the x; labels. Then, the norm
of the state |¥) is

d
W= [ 47D wal@us @ (DD DD
a=1 X Y
d
- [ a2 Y wia. (1.21)
a=1

Using a similar methodology, we find that the numerator of the energy expectation
value becomes

(o 0 =
¥t = [ dd (Zl | v

2
+2Tr [V(PH(P]|. (1.22)

Note that the trace and the matrix multiplications here are with respect to the d X d
matrix structure of the respective terms.

Our strategy is the same as before. We replace () by |¥(g)| = V¥ (g)?2. Clearly
the norm of the state and the potential-energy term are unchanged by this replacement.
Proving that the phonon kinetic energy is also not increased is a more complicated
technical question involving distributions, but all of those details are fully handled in
the original publication [4], so indeed, we have that the energy is not increased. Hence,
among the ground states, there always is one that satisfies ¥(g) = |¥(g)|. Using the
same reasoning as for the Hubbard-model proof, one then concludes that the ground
state must include an s = O state.

1.4 Sketch of the uniqueness proofs

The existence proofs in the previous subsection illustrated the concept of spin reflec-
tion positivity. When we wrote the wavefunction in the square matrix form (possible
because we are in the sector with m = 0), we made manifest the spin-reflection sym-
metry, which switches the up spins and the down spins and vice-versa, and showed
that a positivity criterion for the wavefunction, does not raise the variational energy,
hence the ground state must be in this positive semidefinite form. From this we learn
that the ground state has a s = 0 component to it.

The existence proofs are both technically more complicated and they require signi-
ficant additional restrictions on the Hamiltonians. We will not prove them completely
here, but we will sketch how the arguments go for these theorems. Key to this work is
the idea of a lattice structure in the many-body configuration space of the wavefunction.
If this configuration space is fully connected, then the ground-state is unique (similar
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in many respects to the methodology used to prove the uniqueness in the Perron-
Frobenius theorem, which also relies on positivity and connectivity arguments).

The additional restrictions for the Hubbard model are not too severe—we must
have the hopping be connected on the graph A and we must require all U, to be strictly
negative U, < 0. The concept of connected on the lattice A is defined as follows: every
two lattice sites x, y € A are said to have a bond between them if 7, # 0. Then, the
lattice is connected, if for every pair x # y € A, there is a chain of bonds along a path
that connects x to y. This path (with the chain of bonds) is defined as {x; | x; € A, x; #
xjifi # j, x =x1, X2, *++, Xp1, Xp =y, and fx x,tx, x5+ - 1x,_x, # 0}. Hence, we
say for every pair of lattice points x and y there is a path from x to y connected by a
chain of bonds. This is the conventional condition for connectedness of a lattice via
its bonds.

The lemma we will need to prove first is that if the lattice A is connected, then
the single-spin many-body configuration space is also connected, when thought of as
an abstract lattice in the many-body space. The single-spin many-body configuration
space is the collection of all many-body states with N electrons of the form

el el 10y [xi e AVi=1,--+ ,N;x; #x;Vi,j=1,--- N wheni # j}, (1.23)

in the second-quantization language. Note that we have suppressed the spin label here.
You can think of these as exclusively spin-up or exclusively spin down electron states.
We can collect all of many-body states into a many-body graph, denoted A, defined by
the collection of all of the many-body states, as defined in Eq. (1.23). We index these
states with the same N-tuple as we used before, X = (x1,x7, -+ ,xn), with all x; € A.
We say that two many-body states are connected by a many-body bond on A if the two
graph states X and Y satisfy

X = (xl’-XZa"' s Xyt ,XN) and Y = (xlaxz"“ s Y, ,XN) (124)

where the two N-tuples are identical except for one element—X contains the element
x, while ¥ contains the element y with all other indices identical—and t,, # 0. Heur-
istically, this means the many-body state ¥ can be reached from the many-body state
X by acting the kinetic-energy operator K on it.

We also need to define the one-dimensional projector nx = fix fix, =+ Axp (I
the second-quantized language) as the projector onto the the many-body state, where
electrons are placed at the N-lattice sites (in A) and labeled by the N-tuple X. It is
easy to see that this is a Hermitian operator and that it is a one-dimensional projector
(because 72
the projector is identical for two states X and X’ that are just a permutation of the
respective indices. It is therefore useful to work, instead with the equivalence classes

of the projectors, with respect to the permutation operation.

= fiy). Note that because number operators commute with each other,



Quantum number towers for the Hubbard and Holstein models 13

e

Figure 1.1. Schematic for the proof of the connectivity of A. The figure illustrates an initial state
X (circles with a dot pattern) and a final state Y (circles with a horizontal line pattern), which
are elements of A. Here, the circles that are filled with a pattern illustrate the initial state (with
electrons on sites 1-5) and the final state (with electrons on sites a—e). The lines illustrate the
bonds between the sites on the original lattice A. The solid black lines indicate the bonds in A
over which we will be moving electrons from one site to another. Each intermediate state in this
figure corresponds to a particular state X on the many-body configuration lattice A. The lattice
A is not illustrated here.

Lemma I (Many-body connectedness of the single-spin configuration space lattice
A): If the A lattice is connected, such that any two points x, y € A can be connected
by a path in A such that a bond connects each step along the path with a nonzero
hopping matrix element, then the many-body lattice A is also connected with respect
to the kinetic energy operator, in the sense that for any X,Y € A, there exists a set of
elements X; € A with X = X1, X5, -+ , Xu—1, Xm = Y such that X; # Xjforalli # j
and the product of matrix elements, determined by the operator chain below satisfies

A A A

(1% RTTXm-1 - T2 RTTK # 0. (1.25)

The proof begins with solving a geometrical problem, which is visualized con-
cretely in Fig. 1.1. We put unlabeled markers on the lattice A at the N locations of the
initial configuration X = (x1,--- ,xn) € A. Our goal is to move those markers, via
bonds in A (determined by nonzero hopping matrix elements connecting two lattice
sites) from the sites corresponding to configuration X to the sites corresponding to the
configuration Y. This is illustrated in the figure as follows: (i) sites corresponding to
X are the circles with a dotted pattern, with the labels indicated by numerals from 1 to
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5; (ii) sites corresponding to Y are the circles with a horizontal line pattern, with the
labels indicated by letters from a to e; and (iii) solid dark lines indicate the bonds we
will use to move the markers during our algorithm. We first describe how it works for
the concrete figure, and then describe the general case.

In our first step, we will move a marker from site 1 to site a, along the black-line
bonds, to end in a state with one marker on a and four markers on 2-5. This first step
is simple, as we have a direct path from 1 to a with no other markers along the path,
so we make the move. Next, we want to move the marker from 2 to b. But here, the
marker on a blocks our ability to move the marker from 2 to b. So, we move the marker
from 2 to the empty circle adjacent to a, then move the marker from a to b (which has
a direct path) and then finally move the marker from the site adjacent to a to a. Now
we have markers on a and b and 3-5. Moving the marker from 3 to c is direct, with no
obstructions, so we do it. Moving from 4 to d is blocked on the first attempt. Instead,
we move from 5 to d, and then from 4 to 5. Finally, in the last step, we move from 5 to
e. As you can see, when we move the markers from 1-5 to a—e, we can always succeed,
but we do not always move the marker originally sitting on 1 to site a and similarly for
the remaining markers—when there is blockage, we must move them in tandem—but
this is always possible due to the connectivity of the original lattice A. This shows X
and Y are connected on A.

How about the general case? We proceed in essentially the same way. Start by
placing markers on the N sites given by X = (x1,x3, -+ ,xn). Next, find a path from
the site x; to the site y;. Such a path is guaranteed by the connectivity of A. Identify
whether any other markers are on the path. If none, move the marker directly from x;
to y;. If there are markers along the path, then move the marker that has a direct path
to y; from its lattice site to y;. Then move the next marker down the path (marching
backwards from y; towards x;) from where it sits to where the marker originally was
that we moved to y;. Repeat this process for all remaining markers on the path. In this
fashion, we have moved a marker from x; to y;, and have left unchanged the markers
on sites x; to x. Moving the marker from x; to y, proceeds in a similar fashion. Note
that markers along the path could be on an X site or on a Y site. It does not matter, the
algorithm works for either scenario, as you can readily check.

Now, with the geometrical problem solved, we select the m X configurations Xy, - -, X,
by choosing every configuration of the markers that were used in the rearrangement to

move the markers from X to Y. Because I1% is a projection operator, so I1%/ = (HXJ' ) ,
we can rewrite

A A A

(1% R Xm1 . [1% RYTX = (ﬁXm R Xm-1 ) (f[Xm-1 R Xm-1 ) ... (f[Xz RIS ) '
(1.26)
We now introduce complete sets of states in between each projection operator and to the
left and to the right. The states X; and X, in A agree on all but two of their index val-
ues (recall that we work with the equivalence class due to permutations of each X state).
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This means we have X; = (x1,x2,---,x, - ,xn) and Xj41 = (X1,X2, -+, ¥, -+ ,XN).
Then the matrix element satisfies

(e TP KITY | ¢g) =ty (Xj1) x5 (XN, (1.27)

where the states { y } are the localized states, formed by products of creation operators
ateach lattice site in A acting on the vacuum. In this basis, only one state yg will yield a
nonzero matrix element for a given y,, and the operator ITX/+' KT%/ . Then, because of
the connectivity of the original lattice A, we have that the product of matrix elements
is nonzero, as we claimed. Hence, the state X and Y in A are connected.

Theorem 3: (Uniqueness of the Hubbard model when A is connected and U, <
0V x € A): The ground state of the Hubbard model when the interactions are strictly
attractive and the lattice is connected is unique. Since we always have a ground state
with s = 0, the ground state must have s = 0 as well.

We sketch the uniqueness proof for the Hubbard model. The proof is by contradic-
tion. Assume two solutions exist ¥; and ¥;. Then the state ¥ (1) = ¥; + AW, is also
a ground state for all real A. For some value of A the matrix W(A) is neither positive
semidefinite nor negative semidefinite. Fix A for this value, then since |¥(1)]| is also
a ground state, the two matrices W, = %(lgb(/l)l + ¥(1)) are also ground states—the
state P, is a positive semidefinite ground state.

W, satisfies the following Schrodinger equation:

RY, + V,K - Z U L W, 0, = EY,. (1.28)
XEA

Define H, as therange of ¥, and H as the orthogonal complement of H, in the Hilbert
space. If there are two ground states, then both H, and H, are nontrivial subspaces
of the Hilbert space. If we multiply Eq. (1.28) on the right and the left by IT,, the
projector onto H , we find

WL, I, =0. (1.29)

This result follows because each U, # 0, W,I1, = 1,¥, =0, and ¥, is a positive
semidefinite matrix. This says that L, maps H, to H,. Keeping in mind Eq. (1.29),
we multiply the Schrédinger equation in Eq. (1.28) on the right by [T, and find that

Y. KI1, =0, (1.30)

as well. This means K also maps H, to H,. Hence, the subspaces H, and H, are left
invariant by K and I, .

The sum of the projectors, over one element of each equivalence class, is the iden-
tity element on the Hilbert space, so there is some X, € A such that [TX0W, # 0 because
H. is nontrivial. Furthermore, for some element ¢, € H,, there exists a Yy € A such
that fIY‘)wL # 0. Now, choose the operator in Eq. (1.25) with X = Xy and Y =Y. We
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must have the matrix element between (¢, | and |¥,) is nonzero. But this operator
keeps the subspaces H, and H, invariant, because it is constructed from K and IT¥
operators. Hence, the matrix element cannot be nonzero. This is a contradiction. So,
the ground state must be unique. Since it is unique, it must have s = 0.

Theorem 4: (Uniqueness of the ground state for the electron-phonon Hamiltonian):
When the electron-phonon Hamiltonian satisfies four more conditions: (i) the hopping
matrix elements are independent of ¢ and the lattice A is connected; (ii) the remain-
ing functions of g in the Hamiltonian are differentiable; (iii) the G (g) functions are
independent, meaning the |A| X v matrix G (q)/dq is rank |A] for all g; and (iv)
all masses m  are finite, then the ground state is unique and has s = 0.

We will not sketch the proof of this theorem here. It is closely related to the proof
for the Hubbard model, but it requires many additional technical details to be properly
handled. It is given in the original work [4]. So, we do not repeat it here.

While these proofs focused on electronic systems where either the direct interac-
tion, or the effective electron-electron interaction, are all attractive, then one has the
ground state is always s = 0 and under some additional restrictions, it is unique. These
theorems are reasonable physically—when the attraction is very strong, it is difficult
to break a pair, so all electrons are paired, which must be a singlet state. In the limit
as the interaction goes to zero, if the hopping matrix has no degeneracies, then we fill
in the lowest energy levels, and this is also a singlet state (if we have degeneracies,
which is usually the case, then the ground state includes a singlet state, but need not
be unique). The main achievement of Lieb’s work is to show the ground state is a spin
singlet and is unique for all intermediate interactions.

1.5 Impact of the original ideas

It turns out that these original ideas can be generalized to other cases that are more
physically relevant (the direct electron-electron interaction is usually repulsive, not
attractive, for example). To understand this requires us to discuss the partial particle-
hole transformation.

The partial particle-hole transformation is a particle-hole transformation on the
up-spin particle, leaving the down spin particles unchanged; it requires we work on a
bipartite lattice for the Hubbard model with U independent of x. In this transformation,
we have
(1.31)

X

ey = d (=D and ¢ —d,.
In this case, the number operators transform as 71,1 — (1 —nyt) and i,| — 7i,|. Hence,
the filling changes by Ny — |A| — Ny and N; — N|. This means all even fillings are
transformed to half filling Ny + N| = |A|. Furthermore, the interaction changes sign

(plus a shift in energy given by UN)), so the attractive model becomes the repulsive
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model (the hopping term remains intact, if the lattice is bipartite). Be-cause it is a unit-
ary transformation, the energies remain the same, in particular, the repulsive Hubbard
model, after the constant shift, has the same ordering of the energy levels as in the
attractive model. But the spin operators transform to the pseudospin operators and the
pseudospin operators transform to the spin operators. Key, is the fact that the ground
state is unique, so it has no level crossings. This means its spin quantum number, which
is heretofore unknown, cannot change with U. But, in the large-U limit, the Hubbard
model maps to a Heisenberg antiferromagnet. So, it must have the same spin quantum
number as the antiferromagnet. But, this is known to be ’|AA| - |AB|| /2. So, in the
case where the two sublattices of the bipartite lattice have different numbers of lattice
sites, the system is ferrimagnetic (no long-range order was proven, just that the spin
quantum number is in between the saturated ferromagnet and the spin singlet). Most
bipartite lattices that people were familiar with at that time had |A4| = |Ap|. Lieb
pointed out that by removing bonds from the face-centered-cubic lattice, one could
create a bipartite lattice with one sublattice having three-times as many sites as the
other sublattice. These lattices are special and bipartite lattices with different numbers
of sites on each lattice are now called Lieb lattices. They are characterized by having
a macroscopic number of zero eigenvalues in the hopping matrix, and are often called
flat band models. We will have more to say about them later.

Because the Hubbard model is closely related to the periodic Anderson model
(which can be thought of as a Hubbard model with two bands and U = 0 in the second
band, with the hybridization being thought of as a hopping term), the theorem Lieb
proved holds for these models as well. This has led to work by Sigrist and collaborators
on proving properties of the spin quantum numbers of this and related models [29,37].
Tian was even able to prove antiferromagnetic order [35].

Another interesting area where significant work has been done is in the description
of spin and pseudospin towers. A spin tower was proven to exist in one dimension in
the original work by Lieb and Mattis in the 1960s [16]. The spin tower says the lowest
energy eigenvalue with total spin quantum number s + 1 is greater than the lowest
energy eigenvalue with total spin quantum number s. The Lieb-Mattis result can only
be proven in one dimension and with finite-strength potentials. Lieb’s original proof
for the Hubbard model [15] shows that the ground-state for the attractive model has
s =0 whenever the conditions for uniqueness hold. Noce and Romano [24] showed that
the one-dimensional attractive Hubbard model has minimal pseudospin in its ground
state, which implies a pseudospin tower for all even fillings. Shen wrote two papers
discussing these issues [26,27]. Shen was able to extend Lieb’s proof, via a small
change of the uniqueness proof, to also show that |W| is positive definite, as opposed
to positive semidefinite. This allows one to determine quantum numbers of the ground
state if we can find a positive semidefinite state with a specific quantum number—such
a state has nonzero overlap with the positive-definite state and so they must share the
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same eigenvalue. Shen employed this idea along with the ground states of a fictitious
pseudospin model, to show that the ground states of the attractive Hubbard model
have minimal pseudospin for N < 2 min{|A4l, |A|}, then the pseudospin is fixed
at ||AA| - |AB||/2 until N > 2 max{|A4|, |Ag|}, where it becomes minimal again.
Boretsky and Freericks [2] constructed the pseudospin states concretely.

One can perform the partial particle-hole transformation, and then learn that the
half-filled repulsive Hubbard model has a partial or a full spin tower—the tower forms

for spin values that satisfy s > ‘|A Al—|AB |‘ /2, because the ground state has s = [|A 4| —

|Ag||/2. We do not learn about the relative ordering of lower spin values, except they
are above the ground state in energy.

What remains unproven is whether there exists a spin tower for the attractive Hub-
bard model. Heuristically this should occur, as it is clear for U — —oco and U — 0, but
is has not yet been proven. If it is proven, then it would imply the ground state of the
Hubbard model with even numbers of electrons always has minimal pseudospin—a
pseudospin tower. These results are higher-dimensional extensions of the Lieb-Mattis
theorem.

Significant work was also done on superconductivity. Kubo and Kishi showed
that the spin susceptibility was bounded at all temperatures for the attractive Hubbard
model, and the partial particle-hole transformation then showed that the on-site s-wave
superconducting susceptibility and the charge-density-wave susceptibility are always
bounded for the repulsive model. Note that it has nothing to say about whether a d-wave
order might exist in the repulsive Hubbard model. This work then led to a proof of the
superconducting off-diagonal long-range order in the attractive Hubbard model [34]
and a discussion of so-called eta-pairing [28]. Tian also proved that the repulsive model
had antiferromagnetic correlations [36].

The examination of flat bands led to a flurry of activity on ferromagnetism led by
Mielke [18, 19] and Tasaki [32] and both [20]. Then, after graphene came onto the
seen at the turn of the century, interest in flat bands and Lieb lattices really flourished.
Some examples of work in this area include creating flat bands in optical lattices [7], in
photonic lattices [38], the relationship to superfluidity [12], and the electronic Lieb-
lattice has been created experimentally as well [30]. The ferromagnetism [11] and
topological properties [13] have also been examined on real materials.

Finally, the theorems for the SU(2) Hubbard model, have been extended to the
attractive SU(N) model [40].

The electron-phonon work has also spawned new theorems by others. Of note are
the three papers by Miyao, that examine the Holstein model in one-dimension [21],
the Su-Schrieffer-Heeger model in one dimension [22], and the long-range order in
the Holstein model [23].

We end our discussion of the impact of these original ideas with a discussion of
many-body localization. As Lieb showed in his original proof, there are two lattices
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of note—the original lattice A, which governs the single-particle hopping matrix, and
the many-body lattice A, which governs the many-body states. In particular, if the
original lattice is connected, then the many-body lattice is connected as well. Just
like the ideas of localization in a single-particle problem is described by Anderson
localization, localization on the many-body lattice describes the phenomena of many-
body localization. While localization ideas were not discussed in Lieb’s work, the
idea to look into the properties of the many-body lattice become instrumental when
analyzing many-body localization. For example, this is the analysis pursued by Roy
and Logan [25] for the many-body localization transition.

Hal Tasaki has written a book [33] with three chapters covering material discussed
here as well.

It is clear the work on spin-reflection positivity, and the other ideas presented in
these works by Elliott Lieb are likely to have significant impact in the future as well.

1.6 Historical context

I will take a moment to describe the history of my interactions with Elliott Lieb. In
1984, I was a senior at Princeton University and I took a differential geometry class
with Elliott in the math department. Then, when I was a graduate student in Physics
at Berkeley, I made a transition from string theory to condensed matter physics. I
read many of Elliott’s works from the 1960’s as I was preparing for work in this new
field (for me). My first research project was on the Falicov-Kimball model, where we
found a wide range of interesting ordered phases as functions of the electron density
and the interaction strength. I would visit Princeton annually for reunions, and it was
then that I started meeting Elliott whenever I would be on campus. The summer I was
transitioning from a postdoctoral fellowship to a tenure-track job at Georgetown, I met
with Elliott and discussed with him about the work I had been doing on the Holstein
model in infinite dimensions. The next day, Elliott had written on the board the spin-
reflection positivity argument for the existence of a spin-singlet state. The paper was
finished shortly thereafter (with significant assistance by Jan-Philip Solovej). I spent
a sabbatical visiting Princeton once a week where we worked with Daniel Ueltschi
on proving phase separation in the Falicov-Kimball model—this was a result I had
conjectured for many years, but was unable to make much progress on, until Elliott
came up with the idea for how we define the boundary in the problem—from that
point on, all became clear as to how we prove the phase separation. I have not worked
with Elliott again for the past twenty years, but we keep in touch, and I always feel his
influence in much of the work that I do.
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1.7 Conclusion

What lies in the future? This is always hard to tell, but it is clear that we have not
seen the last of the results related to spin-reflection positivity. The idea was a major
breakthrough that has allowed a number of important results about strongly correlated
models in condensed matter physics be proven. Such results always stand the test of
time. But, it is highly likely that more remain on the horizon. We just need a little bit
of inspiration, and a lot of perspiration, to be able to prove them!
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