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Preparing the ground state of the Fermi-Hubbard model is challenging, in part due to the exponentially large
Hilbert space, which complicates efficiently finding a path from an initial state to the ground state using the
variational principle. In this work, we propose an approach for ground state preparation of interacting models
by involving a classical reservoir, simplified to the instantaneous-response limit, which can be described using a
Hamiltonian formalism. The resulting time evolution operator consists of spin-adapted nearest-neighbor hopping
and on-site interaction terms similar to those in the Hubbard model, without expanding the Hilbert space. We
can engineer the coupling to rapidly drive the system from an initial product state to its interacting ground state
by numerically minimizing the final state energy. This ansatz also closely resembles the Hamiltonian variational

ansatz, offering a fresh perspective on it.

DOLI: 10.1103/plmg-8xbg

I. INTRODUCTION

Ground-state preparation, or more broadly the Hamiltonian
energy eigenvalue problem, is a challenging task, classified as
a QMA-hard problem [1]. Before the advent of noisy quantum
computers [2], classical algorithms such as quantum Monte
Carlo (QMC) [3,4] and density matrix renormalization group
(DMRG) [5,6] have had significant success in studying the
Fermi-Hubbard model. However, these methods face limita-
tions, including the notorious sign problem in QMC away
from half-filling [7] and the difficulties in applying DMRG to
higher-dimensional systems or systems with periodic bound-
ary conditions [8].

Recently, algorithms that could run efficiently on quantum
computers have also been proposed. These include adiabatic
state preparation [9—11], shortcuts to adiabaticity [12-16],
and quantum phase estimation [17,18]. Various variational
algorithms have also been proposed, such as the variational
quantum eigensolver (VQE) [19-22], ADAPT-VQE [23,24],
global optimization of both parameter values and opera-
tor order [25], feedback-based quantum algorithms [26,27],
variational counterdiabatic techniques [28-30], artificially en-
gineered cooling systems via an ancilla refrigerator [31],
and the Hamiltonian variational ansatz (HVA) [32-35]. We
call particular attention to Refs. [34,36], which highlight the
number-preserving (NP) ansatz [34], a more accurate gener-
alization of the HVA, and the most accurate wavefunction
ansatz prior to this work. However, the performance—
specifically, the plateauing error in the ground-state energy
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per site for larger lattices with strong electronic correlations
(U/t = 8)—remains unsatisfactory, with no clear approach
to improve it below 0.01. Moreover, the fidelity can still be
substantially below 0.99, such as around 0.7 in the 3x3 case
[36].

In this work, we adopt a different approach by employing
an engineered cooling algorithm that couples the system to a
classical reservoir in the instantaneous-response limit, which
we term the classical reservoir method. We demonstrate that
this method is efficient in terms of quantum circuit complexity
and the number of parameters needed, robust against disorder
when finding the lowest-energy state in each total spin sec-
tor, and—most importantly—can consistently achieve > 0.99
fidelity in all the cases we examined.

II. FORMALISM

The Hamiltonian for an N-site repulsive Fermi-Hubbard
model is

A=—7% (eL¢ic+cc)+U iy, 2.1)

(i,j),0 i

where (i, j) denotes a pair of nearest-neighbor sites. The
operators ¢/ and ¢, represent the fermionic creation and
annihilation operators at site i for spin o € {1, |}. The num-
ber operators 7;; and 7;, count the number of spin-up and
spin-down electrons at site i. The parameter 7 represents the
hopping strength, which is set to 1, while U denotes the
on-site interaction between electrons with opposite spins. We
work in the canonical formalism throughout, with a fixed total
particle number and a fixed total z component of spin.

©2025 American Physical Society
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FIG. 1. Left, schematic depiction of a generic classical reservoir-
system interaction showing the action 8 describing the retarded
(in time) interaction between the reservoir and the system. Right, the
instantaneous-response limit used in this work.

A. Algorithm

We prepare the ground state by cooling the system via the
classical reservoir method. There are generically two types
of reservoirs that can be used for algorithmic cooling—a
quantum reservoir or a classical reservoir. A quantum reser-
voir has quantum degrees of freedom, which greatly expands
the Hilbert space of the combined system plus reservoir. If
the reservoir is noninteracting then the reservoir degrees of
freedom can be exactly traced out. If we neglect memory
effects, then the system’s dynamics can be approximated
by a Lindblad master equation [37], restoring the simula-
tion to the original system Hilbert space, but now describing
the evolution of a density matrix rather than a pure state
vector. In this case, the resulting state will generically be
mixed.

In contrast, when using a classical reservoir, which does
not add any quantum degrees of freedom, a system initially
in a pure state remains in a pure state, which is advantageous
for ground-state preparation. However, after tracing out the
classical reservoir degrees of freedom, the system is driven
by a complex two-time field that creates and annihilates par-
ticles, enabling the exchange of particles (and energy) with
the classical reservoir at different times. Such a system must
be described by Lagrangian time evolution. However, in the
instantaneous-response limit, where the particle enters and
returns from the classical reservoir at the same time, we
can work with Hamiltonian time evolution instead, using a
time-dependent Hamiltonian with the classical reservoir aris-
ing as additional time-dependent fields that evolve the initial
state.

Figure 1 illustrates the transition between Lagrangian-
based dynamics to Hamiltonian-based dynamics in the
instantaneous limit. The Lagrangian framework incorporates
the retarded response of the system, i.e., the action S describes
the effects on the system from the reservoir when there is
a time lag between particle creation and annihilation at the
system-reservoir interface. The reservoir removes particles
with spin o from site i at time # and reintroduces particles with
spin ¢’ at site j at a later time ¢/, but the classical reservoir
does not track the particle dynamics in the reservoir; usually
we consider reservoirs that do not flip spins, so ¢ = ¢’. Once

S is determined, we can calculate the thermal expectation
value of physical observables of interest O(¢) via

(O() = ——Te(Tre PE-H8(G)O)), 2.2)
ZN)

Z(R) = Tr{Tre PUIS (R}, (23)
where X is the two-time-dependent field describing the cou-
pling between the reservoir and the system, u is the chemical
potential, N, is the electron number operator, 7; is the time-
ordering operator, and Z (%) is the partition function.

There are two major challenges in evaluating S. First,
handling the time ordering is complicated because the X fields
depend on two times, ¢ and #’. Second, the grand canonical
formalism is required, because particle number is no longer
conserved due to the interaction with the reservoir. The dimen-
sion increases from the canonical Hilbert-space dimension for

N, electrons on N sites with S, = 0, (( leiz))2, to the full

Hilbert-space dimension of 4" for the system when a generic
classical reservoir is incorporated.

The situation greatly simplifies by imposing an
instantaneous-response limit on the classical reservoir, where
both challenges described above are removed: (i) we can
remain in a canonical formalism with fixed particle number
and (ii) we can work with a Hamiltonian formalism, where
time ordering is easy to implement because all time-dependent
objects depend on only one time. The interaction between
the system and the reservoir manifests as hopping terms,
with the X fields modulating the hopping strengths as shown
in Fig. 1. Since the exponentials of hopping terms form a
closed Lie group, they effectively act as a modification of
the single-particle basis. To engineer electron correlations,
additional operators are required. We introduce on-site
potential terms denoted by U (%), where X’ represents an
additional set of time-dependent fields; these fields allow
for the creation of entanglement. By alternating between
these terms in multiple layers, we construct the ansatz for an
effective “time-evolution operator,” given by

L

s) = 1‘[ it @R+0G) |y

=1

2.4)

where |1) is the initial state and L is the number of layers
(analogous to the number of time steps in time evolution). We
omit Az as it can be absorbed into the X and X’ fields because
only the product of the two will be optimized.

To make Eq. (2.4) more resource efficient, three simplifica-
tions are applied to derive the final expression for the ansatz.
First, the ansatz enforces the conservation of both the total
spin and its z component, thereby reducing the optimization
landscape to a smaller target spin subspace and eliminating
concerns about spin contamination. This is achieved by pair-
ing the spin-up and spin-down hopping terms, as previously
shown in Ref. [38]. Consequently, the initial state must al-
ready have the target total spin and z component. For a total
spin S state with N electrons distributed across N sites (half
filling), the configuration of the initial state is as follows:
% — S empty sites, ¥ — § doubly occupied sites, and 2S spin-
up occupied sites. See Appendix A for numerical examples.
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FIG. 2. Schematic representation of the classical reservoir method for a 4x4 two-dimensional square lattice. Left: operators used to
describe the instantaneous-response classical reservoir. Center: snakelike path for the Jordan-Wigner fermionic encoding used in this work,
illustrating adjacent sites in the Jordan-Wigner string—i.e., each site has two nearest neighbors in the one-dimensional index scheme, regardless
of the actual physical connectivity of the hopping matrix, as shown on the right. Right: connectivity of the hopping terms between nearest
neighbors for a small cluster with periodic boundary conditions. Bottom: optimization strategy to prepare the ground state.

Second, we note that the aforementioned closure of the Lie
algebra for the singles hopping terms results from

(872, E1ep] = E184alh — €101ty (2.5)
where p, q, a, b are site indices. This implies that including
the hopping terms only along the Jordan-Wigner string will
create indirect hopping terms between nonadjacent sites. This
closure property allows us to restrict the operator set to only
adjacent hoppings along the Jordan-Wigner snakelike path,
regardless of the system’s dimension or lattice connectivity
when we have enough layers in the ansatz. This reduces com-
putational costs by avoiding the need for any Jordan-Wigner
Pauli-Z string operators in the state preparation [39]. Conse-
quently, the hopping part in the ansatz is further simplified to

= Z )‘<i,j>(f)(5;(,5j,a +c.c),

(i.j).0

(2.6)

where (i, j) denotes adjacent sites along the 1D Jordan-
Wigner snakelike path. Conceptually, this is akin to the
compression algorithms for free fermionic systems discussed
in Refs. [40,41].

Finally, we separate the hopping and potential terms
for efficient implementation on a quantum computer. When
separating the hopping terms, one can combine terms that
commute into one exponent. In the case of an even number
of sites, these terms are separated into two groups. The first
group includes hopping terms with hopping indices such as
(1, 2), (3,4)...(N — 1, N}, and so on, while the second group
consists of terms such as (2, 3), (4,5)... (N —2,N — 1), and
so forth. Denoting the first hopplng group as T'(X) and the
second hopping group as 7" (%), we can rewrite the classical

reservoir method ansatz as

L
y) = [T @@ e Dyy), @.7)

=1
M-L
,‘Am
= [Te ™ 1vo).
m=1

with m being the parameter index of a set A that combines
all the terms in the ansatz. The whole classical reservoir
method is summarized in Fig. 2 as a flow chart, outlining
the process from state initialization and the ansatz expres-
sion in Eq. (2.8), as well as the fermionic encoding used to
translate the problem onto quantum circuits via the Jordan-
Wigner transformation. In detail, one ansatz layer contains
a total of M = 2N — 1 parameters, and each ansatz layer
consists of three quantum circuit elements each implemented
in parallel (on an all-to-all connected machine). We then
perform optimizations on the A and A’ fields using noiseless
energy measurements (optimization details are provided in
Appendix B).

(2.8)

B. Quantum circuit

To translate the algorithm into a quantum circuit, i.e., to
map fermionic operators to Pauli operators, we apply the
Jordan-Wigner transformation. Below, we write the on-site
potential term and the spin-adapted nearest-neighbor hopping
term of the Hubbard Hamiltonian after this mapping, as these
are the only operators used in the ansatz:

nipRy > Z(I —Z)I — Ziyn), (2.9
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FIG. 3. A four-site Hubbard model example with a single layer
of the classical reservoir ansatz, including initial state preparation.
Qubits gy to g3 denote the spin-up orbitals, while the remaining
qubits represent the spin-down orbitals. On the right, we show one
possible decomposition of the on-site potential terms into basic quan-
tum gates: two single-qubit rotation Z gates and a two-qubit RZZ
gate.
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where i is the site index. Here, the first N qubits represent
the spin-up orbitals, and the second N qubits represent the
spin-down orbitals. Note that in Eq. (2.10), by including only
nearest-neighbor terms in the Jordan-Wigner ordering for the
ansatz, no Z string appears in the quantum state prepara-
tion circuit. However, in the measurement circuits, simulating
physical Hubbard hopping terms that are not adjacent in
the Jordan-Wigner mapping still requires the inclusion of
Z strings to preserve the correct fermionic anticommutation
relations.

In Fig. 3, we present a quantum circuit diagram where
each color denotes a different layer used in the ansatz. The
first single layer of blue X gates is used for initial state
preparation—for example, to create a double occupancy state
when preparing the ground state in the S = 0 sector. This
is followed by two separate layers for nearest-neighbor hop-
ping terms—represented by pink and orange, corresponding
to T(X) and T'(%), respectively. These layers are denoted
by the symbol G and G’, as Givens rotation gates either are
the typical native gates on some quantum hardware platforms
[42,43], or readily map onto them. A final layer for the on-site
potential terms, corresponding to the ZZ interaction is labeled
in red. Hence, it is clear that each ansatz layer consists of
three quantum circuit layers on fully connected hardware.
On machines with linear connectivity, the hopping terms re-
main two-local interactions. The long-range entangling gates
required for the on-site potential terms can be implemented
efficiently using dynamic circuits, as proposed in Ref. [44].
Alternatively, on the Google Willow chips [45], which feature
four-way connectivity in the bulk, one can arrange the spin-up
orbitals along one linear array and the spin-down orbitals

TABLE I. Energy gap values (in units of 7) for the pure and and
one explicit representation of a disordered Hubbard Hamiltonian for
different total spin S values at U/t = 8.

§=0 s=1 §S=2 §=3
Pure 112945 0.62746 078693  1.63385
Disordered ~ 0.56782  0.16508 032210  2.12290

along another. Since these two linear arrays are positioned
adjacent to each other, the on-site potential terms can be
implemented as nearest-neighbor gates along the vertical di-
rection in the qubit layout.

III. NUMERICAL RESULTS

To quantify the accuracy of this work, we define the relative
error in energy as (Eg — E)/Ey and also use the infidelity
as a complementary metric. In this work, we examine only
two-dimensional systems due to memory constraints in the
classical simulation. However, we study varying lattice struc-
tures to best illustrate that this method shows promise for
application to arbitrary Hubbard models.

A. Two-dimensional periodic cluster

We perform calculations on a two-dimensional v/8x~/8
periodic cluster [46], where each even-numbered site is con-
nected to four neighboring odd-numbered sites, and vice
versa, as illustrated in Fig. 4 (top panel). When studying
two-dimensional systems, this model is interesting because it
highlights the potential advantage of quantum computing, as it
exhibits faster entanglement growth compared to the two-leg
ladder system, which can typically be solved efficiently using
DMRG classically [47].

We can efficiently determine the ground state for different
total spin values by starting with an initial state that has the
target spin value. The performance for varying numbers of
layers at each spin value is detailed in Fig. 4(b). Naturally, we
find that the difficulty of finding the ground state for different
total spin values is directly related to the energy gap in each
total spin sector, which is shown in Table I, with a smaller
gap making it harder to find the ground state. For the pure
Hubbard Hamiltonian at U /¢t = 8, which is the case studied in
this work, we found the largest energy gap occurs at § = 3,
followed by S = 0, then S = 2, and finally the smallest gap
occurs for S = 1. We similarly see that the S = 3 ground state
is the easiest to prepare and the ease of preparing the ground
state increases as the size of the energy gap in each spin sector,
as expected, and shown in Fig. 4(b).

We also examine a disordered Hubbard Hamiltonian. The
hopping term in Eq. (2.1) is now given by 7;; =  + §;;, where
8;; =0.2-N(0, 1), and (0, 1) represents a random number
drawn from a normalized Gaussian distribution with mean
zero and variance one. The on-site potential term U; is a ran-
dom value drawn from the range [0, 16]. In Fig. 4(c), it shows
that the disorder does not significantly affect performance,
suggesting robustness against randomness and against smaller
energy gaps in the different spin sectors.
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FIG. 4. Numerical results for U/t = 8 in the two-dimensional
periodic cluster lattice, with the x axis representing the number of
layers L, where each layer consists of 15 parameters. The top panel
(a) illustrates the lattice connectivity. Panel (b) presents the relative
error (solid lines) and infidelity (dashed lines) for the pure system,
while panel (c) shows the corresponding results for the disordered
system. The legend indicates different values of the total spin S, with
S = 0 representing the ground state across all spin configurations in
both panels (b) and (c).

B. Two leg ladder system

We also perform calculations on a two-leg ladder system
to benchmark with the number preserving (NP) ansatz [34].
When using the NP ansatz [34], it is unclear how to handle
periodic boundary conditions efficiently [34,48]. Therefore,
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FIG. 5. Relative errors (solid lines) and infidelities (dashed lines)
for the two-leg ladder system with eight sites and ten sites. Panel
(a) corresponds to U/t = 2, while panel (b) corresponds to U/t = 8.

the comparison between this work and the NP ansatz [34] is
conducted using open boundary conditions, with the results
from this work summarized in Table II.

Systems with periodic boundary conditions typically have
reduced finite-size effects, because they have no surface ef-
fects [49]. In Fig. 5, we present numerical results for 2x4
and 2x5 ladders in both the weakly and strongly correlated
regimes, using periodic boundary conditions. Notably, by sim-
ply adding more parameters and layers, the ansatz can achieve
accurate ground-state preparation, with fidelities reaching at
least 0.999.

From the ladder system data, we see that this method
offers two key improvements. First, this work successfully
prepares the ground state in the strongly correlated regime
with a high fidelity. Second, this work demonstrates a po-
tential pathway for efficiently simulating multidimensional
systems by employing the one-dimensional indexing scheme
of the Jordan-Wigner string. An intriguing observation arises
when comparing the 2 x4 ladder system to a two-dimensional
periodic cluster: the latter, with increased site connectivity,
surprisingly yields higher final fidelities. This suggests that
the classical reservoir approach may be particularly well-
suited for simulating realistic lattices with higher connectivity.

TABLE II. Resources required to achieve at least 0.99 fidelity in a 2x4 and 2x5 Hubbard ladder with open boundary conditions and
U/t = 2. In the NP ansatz [34], the initial state preparation requires N — 1 quantum circuit layers, which is consistent with the result in
Ref. [48] stating that at most N layers are needed. In this work, the initial state preparation consists of a single layer of X gates applied to a

subset of qubits, used to encode the desired spin configuration.

Ansatz Fermionic swap network Initial state preparation layers No. Params (2x4) No. Params (2x5)
NP (Ref. [34]) Yes N -1 392 432
This work No 180 285
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IV. CONCLUSION

We show that the simplification to an instantaneous in-
teraction with a classical reservoir is an efficient method for
ground-state preparation, offering a feasible approach for im-
plementation in near-term quantum computers.

When comparing this work to previous approaches, we
find that the classical reservoir method produces an ansatz
expression analogous to the NP ansatz or the HVA ansatz
[33,34]. However, the motivations of the two approaches are
different—our method arises from examining cooling dy-
namics while the HVA and NP ansatz are motivated by the
adiabatic theorem [33,34]. The classical reservoir method fur-
ther enhances the efficiency of the algorithm by exploiting
total spin symmetry and the closure property of the Lie alge-
bra in the Hubbard hopping terms. Depending on hardware
constraints, our algorithm can be implemented in a similar
fashion to NP ansatz [34,36].

The classical reservoir method shows promise in preparing
more accurate ground states in the strongly correlated regime,
while simultaneously reducing implementation costs in the
following ways:

(1) We only require the initial state to have the target total
spin and do not need it to be the U=0 noninteracting ground
state; it is most easily prepared by creating double occupan-
cies in a single product state. The noininteracting state is more
complicated to make in the position basis [34,50], especially
when it is degenerate [33].

(2) Constraining the system to a definite total spin as
well as its z component allows us to find the ground
state for each value of total spin easily and reduces the
numerical cost by working within a smaller optimization
landscape.

(3) The closure property of the Lie algebra allows us to
use a one-dimensional indexing scheme, eliminating the need
for the fermionic swap (fSWAP) network [48,51] to handle
any hopping terms that require Jordan-Wigner strings in the
ansatz for the state preparation.

Using the classical reservoir method, we find high-
accuracy results—infidelities reach the range of 1073 —107°
for 8- and 10-site two-dimensional systems, even in the strong
correlation region (U /t=8). We conjecture that this robustness
arises from the fact that we do not start with the U =0
ground state as many other algorithms do, and thereby all
U values are more likely similar in terms of preparation
difficulty.
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APPENDIX A: INITIAL STATE EXAMPLES

The only requirement for the initial state is to have the
target value of total spin. However, we find it is advantageous
to intersperse the doubly occupied sites and the empty sites,
so that the hopping terms in the ansatz can reduce the double
occupancy in the first layer. Hence, we select the simplest
states that fulfill this requirement, which is a product state.
We illustrate this with an eight-site example.

For the § = 0 sector, the choice is as follows:

site 1 site 3 site 5 site 7

00 00 00 00 Al
Vo) =] T ™ T ™ . (AD
site 2 site 4 site 6 site 8

For nonzero S sector initial states, we work with states that
have S, = S. We assign double occupancies to %V — § lattice
sites, with the remaining electrons being spin up on 2S5 sites,
leaving % — S empty sites. For example, for the S = 1 sector,
a possible starting state is

site 1 site 3 site 5 site 7

[woh =|700" 00,700 1 Th 44 ML AL ) (A2)
. ~— ~— g
site 2 site 4 site 6 site 8

APPENDIX B: NUMERICAL OPTIMIZATION DETAILS

We use the L-BFGS algorithm from the GPU-supported
PyTorch package for the optimization [53]. The choice of this
optimizer is empirical, as L-BFGS, a second-order gradient
method using an approximate Hessian matrix, often outper-
forms first-order optimizers such as ADAM. This preference
has also been observed in many other variational studies
[23,34,54,55].

The parameter amplitudes are initialized as random values
within the range [—0.001, 0.001]. By choosing a small ran-
dom initialization, we ensure that the final optimized energy
exhibits only a small variation with respect to the initialization
of the parameters. The precise variance in the final energy due
to the initial guess is case dependent, as factors such as the
potential parameter U and the number of sites can contribute
to this variation. In this work, using the mentioned initial
guess, we find that the variation in the final energy is typically
at most on the order of 1072

Though the goal of this work is to implement this algo-
rithm on a quantum computer, we are currently using classical
computer simulations. For the exponential of the hopping
terms, we use an exact SU(2) identity [56] to implement
the hopping terms instead of directly calculating the ma-
trix exponential, which speeds up the computation. This is
given by

explif(é]e, + &ie)] =1+ isin0() e, +élé)
~+ (cos O — 1)(7, + #1;)
— 2(cos 6 — Dn,n;. (B1)
The stopping threshold for the optimization in this work is set
to a gradient L, norm smaller than 0.001.

In Fig. 6, we provide details of the convergence behavior

for the two-leg ladder system with periodic boundary con-

ditions, along with the number of iterations required as the
system size increases. We present results for U/t = 8§ only, as
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FIG. 6. Gradient norms in panels (a) and (b), and relative errors in panels (c) and (d) during optimization over different numbers of layers.
The x axis represents the iteration index. The left panels, (a) and (c), correspond to the 2x4 system, while the right panels, (b) and (d),

correspond to the 2x5 system.

the total spin value of the ground state differs in the U/t =2
regime for the 2x4 and 2x5 systems, which can affect per-
formance. The results show that the optimization typically
reduces the relative error to below 0.01 within a few thousand
iterations for both system sizes. However, achieving the next

order of accuracy, 0.001, often requires five to seven times
more iterations, as both the gradient and the step size along the
gradient direction become very small when the optimization
approaches the local minimum.
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