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Anisotropic light-tailored RKKY interaction in two-dimensional d-wave altermagnets
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Altermagnets are known in spintronics for their intrinsic spin-splitting and unconventional magnetic re-
sponses, particularly to magnetic impurities. However, effectively controlling the magnetic exchange interactions
in altermagnets is challenging for practical applications. Here, we propose using circularly polarized light to tune
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in two-dimensional d-wave altermagnets. Using the
real-space retarded Green’s functions approach, our results show that while the Heisenberg and Ising exchanges
dominate, a notable Dzyaloshinskii–Moriya (DM) interaction also plays a key role. Furthermore, the inherent
strength of altermagnetism imprints chirp-like signatures into the magnetic responses, which can be dynamically
tuned via light. We mainly demonstrate that gate-induced Rashba spin-orbit coupling is essential in response to
light—light selectively and anisotropically adjusts the DM interaction without affecting the other exchanges. Our
findings further indicate that rotating the altermagnet by 45◦ relative to the light’s polarization direction generates
a Dirac-like dispersion and different DM interactions. We finally extract critical thresholds where light reverses
DM interactions along one axis or balances both in-plane components. The anisotropic light-driven control of
RKKY interactions in altermagnets not only highlights their unique properties but also opens new avenues for
engineering tailored magnetic characteristics in spintronic applications.
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I. INTRODUCTION

Altermagnetism introduces a revolutionary paradigm in
magnetic materials by merging characteristics traditionally
attributed to ferromagnets and antiferromagnets [1–9]. This
system arises from the interplay of nonrelativistic effects
and crystal rotational symmetries, generating momentum-
dependent spin splittings, often exhibiting d-, g-, or even
f -wave patterns, while the net magnetization cancels out
[10–13]. This results in band structures with nodal points
where time-reversal symmetry is broken despite no net mag-
netic moment. Experimentally observed in materials like
RuO2 [14–17] (although altermagnetism in RuO2 is contro-
versial, with no current consensus on its existence in the
material) and MnTe [18–20], and theorized in compounds
such as La2CuO4 [3], MnF2 [6], and Mn5Si3 [1,21], al-
termagnetism defies traditional classifications, revealing a
compensated antiparallel order that sustains robust spin-split
electronic states.

The exceptional electronic landscape of altermagnets
paves the way for innovative applications in spintron-
ics [11,16,22–25] and superconducting electronics [26–33].
With anisotropic spin textures, altermagnets enable the

*Contact author: mohsen.yarmohammadi@georgetown.edu

generation of spin-polarized currents and give rise to un-
conventional transport phenomena such as anomalous Hall
effects [14,15,34], giant and tunneling magnetoresistance [5],
and charge-spin conversion [35]. These properties challenge
conventional understandings of magnetic order and offer a
versatile platform for both fundamental research and techno-
logical innovation.

In altermagnets, where unconventional spin-splitting arises
despite the absence of a net magnetization, magnetic impu-
rities interact via the anisotropic and oscillatory Ruderman-
Kittel-Kasuya-Yosida (RKKY) mechanism [36–38]. Addi-
tionally, the application of external magnetic fields or the
introduction of Rashba spin-orbit coupling (RSOC), achiev-
able through substrate engineering or interface modifications,
offers an avenue to control the local spin texture precisely
and, consequently, the magnetic coupling. Such control over
impurity interactions could lead to the advancement of spin-
tronic devices, where the manipulation of localized magnetic
moments enables the realization of novel functionalities in
memory storage, logic circuits, and quantum information
processing. While some studies have explored the RKKY
interaction in altermagnets [37,38], propositions to control
this interaction remain unexplored.

While static approaches like Zeeman field [38] have their
merits, dynamic control, often through Floquet engineering,
offers a versatile way to modify the electronic band structure
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FIG. 1. (a) Schematic depiction of a gated (generating RSOC)
2D d-wave altermagnet under the influence of circularly po-
larized light, with two magnetic impurities doped onto the
surface to induce the RKKY interaction. The altermagnet is as-
sumed to be an interface between two gate electrodes (which
are not shown here to avoid adding complexity to the figure).
The spin-splitting effect is shown in the constant Fermi energy
(EF = 2 eV) contour of (b) pristine (in the absence of driving and
gating) and (c) gated (λ = 0.5 eV Å) 2D d-wave altermagnets with
altermagnetism strength of β = 0.5. Gating can change the electron
density, directly affecting the interaction between an electron’s spin
and its orbital motion.

of altermagnets by inducing transient changes in momentum-
dependent spin splitting. Unlike traditional methods, light
provides a noninvasive, ultrafast, and spatially precise ap-
proach to control the RKKY interaction. By tuning the
frequency, intensity, or polarization, one can precisely adjust
the strength and oscillatory behavior of the RKKY interaction
[39–42].

Given this background, this work addresses a crucial
question: How can circularly polarized light modulate the
unconventional phenomena of altermagnetism, taking crys-
tallographic orientations into account, and in turn, influence
the RKKY interaction between two magnetic impurities em-
bedded within the material? Specifically, we focus on a
two-dimensional (2D) altermagnet. We also incorporate gate
voltages applied to both the top and bottom of the layer,
thereby bringing the system closer to practical realizations, as
shown in Fig. 1. Experimentally, one would apply circularly
polarized light in tandem with gate electrodes, thereby selec-
tively modulating the RKKY interaction. Although achieving
precise control over light, frequency, and gate voltage presents
technical challenges, recent advances in ultrafast optics and
nanoscale device fabrication suggest that such experiments
are within reach [43–47].

We choose to focus on d-wave altermagnets because their
symmetry produces a well-defined sign-changing spin split-
ting with fewer nodal points than the more intricate g- and
f -wave states, resulting in robust spin polarization. Moreover,
d-wave states can generate sizable spin splittings without net
magnetization, making them ideal for spintronic applications
that require the manipulation of spin-dependent transport
without stray magnetic fields. Additionally, as a lower-order
symmetry, d-wave is easier to stabilize in 2D systems and
is less sensitive to impurities, while still offering sufficient
anisotropy for novel spin phenomena and maintaining a
manageable electronic structure for both theoretical and ex-
perimental studies.

The structure of this paper is as follows. In Sec. II, we intro-
duce the model Hamiltonian, incorporating both the gate and
light effects. Section III details the calculation of the RKKY
interaction. In Sec. IV, we present and discuss the results of
our analysis. Finally, we provide a summary in Sec. V.

II. MODEL HAMILTONIAN

We characterize the electronic properties of the 2D d-wave
altermagnet, as illustrated in Fig. 1(a), by a generic two-
band model Hamiltonian, which is expressed as H = ∑

�k H�k ,
where

H�k = α�k σ0 + β�k σz, (1)

with

α�k = h̄2k2

2 m
and β�k = h̄2β

(
k2

x − k2
y

)
2 m

, (2)

where m represents the electron mass and 0 < β < 1 quan-
tifies the dimensionless strength of the altermagnetic interac-
tion. It is important to highlight that β�k primarily governs the
intrinsic spin splitting in altermagnets and the anisotropy of
the Fermi surfaces for each spin. Here, k2 = |�k|2 = k2

x + k2
y

denotes the magnitude of the crystal momentum in two di-
mensions. Furthermore, σ0 is the 2 × 2 identity matrix, and
σ� for � ∈ {x, y, z} are the Pauli matrices, representing the
band-electron spin. Diagonalizing this Hamiltonian results in
the electronic band structure, revealing intrinsic spin-splitting
features at all energy levels. The matrix is already diagonal,
with eigenvalues of α�k + β�k for spin-up and α�k − β�k for spin-
down. In the absence of RSOC, spin is a conserved quantity
along the z axis, allowing for a straightforward classification
of states as spin-up or spin-down. At a given energy level, the
top view of the dispersion for spin-up and spin-down states
produces Fig. 1(b), clearly showing the significant splitting
between the dispersions of the spin states. Each spin state
is individually governed by a C2 rotational symmetry, while
there exists a C4 rotational symmetry between the spin states.
This means that a 90◦ rotation in reciprocal space for a given
spin leads to the other spin.

The applied gate voltage breaks the inversion symmetry, a
crucial factor in generating RSOC through relativistic effects
proportional to ( �∇V × �k) · �σ , where the derivative of potential
V is related to the effective electric field along the z axis [48].
Beyond enabling precise control of carrier density, the gate
voltage also fine tunes the spin splitting driven by Rashba
effects. Such RSOC generation leads to the following Rashba
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Hamiltonian:

HR
�k = α�k σ0 + β�k σz + λ (kx σy − ky σx ), (3)

where λ indicates the strength of the gate-induced RSOC. This
term couples the electron’s spin to its momentum, breaking
inversion symmetry in two dimensions and resulting in modu-
lation of the inherent spin-splitting effect in the band structure,
as shown in Fig. 1(c) with λ = 0.5 eV Å.

When Rashba SOC is present, spin is no longer a
good quantum number along a fixed axis due to the
spin-momentum locking, and the spin eigenstates become
momentum-dependent mixtures. To capture the spin structure
in this regime, we compute the expectation value of the spin
projection along the local spin quantization axis dictated by
the effective RSOC field, given by 〈sz〉�k = β�k/

√
λ2k2 + β2

�k .
The energy contour plots in Fig. 1(c) incorporate this spin
polarization information using a color scheme that interpo-
lates between red and blue to indicate the degree of spin
alignment with the effective field. This convention follows
the visualization method outlined in Ref. [49], and provides
a more physically accurate depiction of spin textures in the
presence of RSOC.

The RSOC induced by gate voltages is expected to be
weak in altermagnets because many altermagnets, such as
Mn5Si3 [1,21] and RuO2 [14–16], are primarily composed
of 3d transition metals, which exhibit weaker atomic spin-
orbit interaction compared to heavier elements. Additionally,
unlike strong Rashba systems that rely on large structural
inversion asymmetry, many altermagnets retain bulk inversion
symmetry or only weakly break it. Another reason would be
the exchange-driven (altermagnetic) spin splitting which is
usually much larger than the relativistic corrections leading to
RSOC. These factors collectively suggest that RSOC (λ) in-
duced by gate voltages in altermagnets is significantly weaker
than in conventional Rashba materials.

Next, we investigate the light effects. As detailed in Ap-
pendix A, the linearly polarized light only causes an energy
shift in the system—a point we do not further explore. Ap-
pendix B also demonstrates that the modulation in presence of
an elliptically polarized light remains as circularly polarized
light, with only the scale of the modulations being altered
and a negligible additional mass term due to the difference
in the amplitudes of the x and y components in the vector
potential. Therefore we proceed with the circularly polarized
light. The right circularly polarized light (see Appendix C
for left polarization) is modeled as a time-dependent vec-
tor potential, given by �A(t ) = A0 [sin(�d t ), cos(�d t )], where
A0 = E0/

√
2 �d, with E0 and �d representing the ampli-

tude and frequency of the light, respectively, see Fig. 1(a).
This vector potential couples to the Hamiltonian through the
minimal coupling approach (�k → �k − e �A(t ), where e is the
electron’s charge), inducing transitions between the system’s
eigenstates. Given the time-periodic nature of the Hamilto-
nian, H�k (t ) = H�k (t + T ), where T = 2π/�d is the period,
we employ the Floquet-Bloch theorem [50,51] to address such
time-dependent systems. Within this framework, the Floquet
Hamiltonian is calculated and diagonalized to unveil the ef-
fects of the light-induced perturbation.

When the light amplitude is weaker than the light fre-
quency, we can perform a high-frequency expansion to
simplify the Floquet Hamiltonian. We set the light frequency
to a fixed value of �d = 0.35 eV, which is larger than the low-
energy bandwidth relevant for electronic excitations discussed
throughout the paper. In this regime, the Floquet sidebands
are sufficiently well-separated, preventing band crossings that
would otherwise lead to gap openings. As a result, interband
electron transitions are suppressed, and the hybridization be-
tween the Floquet bands is diminished. To derive the effective
Floquet Hamiltonian in this limit, we employ a perturbative
technique known as the van Vleck inverse-frequency expan-
sion, which leads to the following expression [52–54]:

Heff
�k 
 HF

0 +
[
HF

−1,HF
+1

]
�d

, (4)

where HF
0 = 1

T

∫ T
0 HR

�k−e �A(t ) dt and HF
±1 = 1

T

∫ T
0 HR

�k−e �A(t )

e±i �dt dt . The van Vleck expansion is designed to capture the
slow (or averaged) dynamics by providing a time-independent
effective Hamiltonian. This effective Hamiltonian governs
the long-time evolution, particularly when observed strobo-
scopically (i.e., at multiples of the driving period) and fast
oscillations are neglected.

By evaluating these integrals (see Appendix C for details)
and defining the parameters A0 = eA0λ and 	 = A2

0/2 �d,
we ultimately find the effective Floquet Hamiltonian:

Heff
�k 


(
α�k + h̄2 	�d

m λ2

)
σ0 + (β�k + 2	) σz

+
[(

λ − 2h̄2 	β

m λ

)
kx σy −

(
λ + 2h̄2 	β

m λ

)
ky σx

]
.

(5)

The quantities α�k and β�k are already defined in Eq. (2). There-
fore light-induced effects occur in the modulation of all terms.
It should be emphasized that the term 2	σz represents the
light-induced magnetization, resulting from the inverse Fara-
day effect [55,56] and solely from the RSOC term. However,
when 	 is considered alone, such as in 2	σz term, it becomes
negligible due to the smallness of λ2. However, when taken
together with the altermagnetic strength β and the bare RSOC
strength λ, such as in the ratio 2 	β/λ of the third term, it is
not negligible.

While the diagonal terms are consistent with those re-
ported in previous studies [40–42,57–60], the off-diagonal
terms, which play a crucial role in tuning the anisotropic
RSOC have not been explored before. In contrast to 2D
Rashba systems without altermagentic features, this modula-
tion essentially requires the altermagnetism term β�kσz. The
observation that altermagnetism, rather than merely time-
reversal symmetry breaking (as in a simple Zeeman model
like βσz), resulting in an enhancement of the inversion-
symmetry breaking, is required to achieve an anisotropic
modulation of the RSOC is a key insight in this study. Thus
the spinor structure—and consequently the orbital weight,
due to spin-orbit entanglement—changes with momentum.
This modulation effectively rearranges the orbital texture in
momentum space [61]. For left circularly polarized light, only
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FIG. 2. The effect of circularly polarized light (averaged over the
Floquet period via the van Vleck high-frequency expansion) on the
spin-splitting through the constant energy contour of a gated (λ =
0.5 eV Å) 2D d-wave altermagnet with β = 0.5 at (a) 	 = 0, (b) 0.2,
(c) 0.4, and (d) 0.6 eV. We fix the light frequency at �d = 0.35 eV
and set h̄ = m = 1. The gate-induced C4 symmetry for each spin is
broken by the light, resulting in the generation of a C2 symmetry
similar to the pristine phase, but with a significantly light-dressed
Fermi surface at EF = 2 eV.

the sign of the light exchange energy changes in the second
and third terms of Eq. (5), i.e., 	 → −	, while the modu-
lation remains anisotropic for RSOCs. See Appendix C for
details.

Similarly, by diagonalizing the light-induced Hamiltonian,
in Fig. 2, we observe how the light modulates the electronic
band structure and the propagation of waves for spin-up and
spin-down states. This results in a clear alteration of the Fermi
surface, which in turn influences the RKKY interaction. Turn-
ing on the light breaks the C4 symmetry between spins, while
it still maintain the C2 symmetry for each spin.

This result can be most fundamentally understood from
the interplay of the multipolar orders underlying the d-wave
altermagnet (a magnetic octupole density [62,63]) and light (a
magnetotoroidal dipole [64]). The new compound-multipole
order arising from the combination of these two is an elec-
trotroroidal quadrupole (odd under spatial inversion, even
under time inversion) whose xy components renormalize the
dipolar Rashba term. Generally, the interaction of Floquet
light with a crystalline multipole density will result in the
emergence of a new multipole order with rank reduced by
one and opposite behavior under space and time inversion. See
also Refs. [65,66] for a related discussion.

III. RKKY INTERACTION

In Fig. 1(a), we place two magnetic impurities, �S1 and �S2,
at sites �R1 and �R2 with a separation vector �R = �R2 − �R1 within
the layer. The indirect cross-talk between them is mediated by
the itinerant electron’s spins in the host system, as elegantly

captured by the RKKY theory [36]. In the present context,
these itinerant electrons are represented by the optically driven
and gate-controlled carriers in a 2D d-wave altermagnet, as
described by the expression in Eq. (5). By applying second-
order perturbation theory, the RKKY Hamiltonian can be
expressed as

HRKKY = −J2

π
Im

∫ EF

−∞
d E χ ( �R, E ), (6)

where J is the bare magnetic exchange coupling between
localized moments and itinerant-electron spins, EF represents
the Fermi energy, and the spin susceptibility is given by

χ ( �R, E ) = Tr [(�S1 · �σ ) G( �R, E )(�S2 · �σ ) G(− �R, E )], (7)

with G representing the retarded Green’s functions.
To obtain the real-space retarded Green’s functions, we

first require the momentum-space Green’s functions, which
are expressed as G(�k, E ) = ([E + iη]σ0 − Heff

�k )−1, where η

is an infinitesimally small parameter. After straightforward
calculations and setting λ2 → 0 where necessary, we find

G(�k, E ) 


⎛⎜⎝ 1
E+iη−α̃�k−β�k

−λy ky−iλx kx

[E+iη−α̃�k ]2−β2
�k

−λy ky+iλx kx

[E+iη−α̃�k ]2−β2
�k

1
E+iη−α̃�k+β�k

⎞⎟⎠, (8)

where α̃�k = α�k + h̄2 	�d
m λ2 and

λx = λ − 2h̄2 	β

m λ
and λy = −λ − 2h̄2 	β

m λ
. (9)

This expression can be succinctly represented as

G(�k, E ) = G0(�k, E ) σ0 + �G(�k, E ) · �σ , (10)

with

G0(�k, E ) = E + iη − α̃�k
[E + iη − α̃�k]2 − β2

�k
, (11a)

Gx(�k, E ) = λy ky

[E + iη − α̃�k]2 − β2
�k
, (11b)

Gy(�k, E ) = λx kx

[E + iη − α̃�k]2 − β2
�k
, (11c)

Gz(�k, E ) = β�k
[E + iη − α̃�k]2 − β2

�k
. (11d)

The real-space version of the Green’s functions can be easily
obtained by performing the Fourier transform Gn( �R, E ) =

1
4 π2

∫
d2k Gn(�k, E ) ei �k· �R, where n ∈ {0, x, y, z}. Accordingly,

we obtain the required expression for G( �R, E ) as needed in
Eq. (7). Finally, the RKKY Hamiltonian in Eq. (6) is given by

HRKKY =
∑
�,m

J�m(R)
[
S�

1Sm
2 +Sm

1 S�
2

]+ �JDM(R) · (�S1 × �S2).

(12)

These terms form isotropic/symmetric in-plane Heisenberg
interactions, (Jxx = Jyy), Ising interaction (Jzz), anisotropic
interactions (Jyz, Jxz), and anisotropic/antisymmetric
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Dzyaloshinskii-Moriya (DM) interactions (JDM,x, JDM,y).
These interactions give rise to unique spin configurations that
could play a role in magnetic memory devices and impact

spin-wave dynamics, potentially enhancing signal processing
technologies [67].

The exchange interactions are given by

Jxx(R) = −J2

π
Im

∫ EF

−∞
d E

[
G2

0(R, E ) + Gx(R, E )Gx(−R, E ) − Gy(R, E )Gy(−R, E ) − Gz(R, E )Gz(−R, E )
]
, (13a)

Jyy(R) = −J2

π
Im

∫ EF

−∞
d E

[
G2

0(R, E ) − Gx(R, E )Gx(−R, E ) + Gy(R, E )Gy(−R, E ) − Gz(R, E )Gz(−R, E )
]
, (13b)

Jzz(R) = −J2

π
Im

∫ EF

−∞
d E

[
G2

0(R, E ) − Gx(R, E )Gx(−R, E ) − Gy(R, E )Gy(−R, E ) + Gz(R, E )Gz(−R, E )
]
, (13c)

Jxy(R) = −2 J2

π
Im

∫ EF

−∞
d E [Gx(R, E )Gy(−R, E ) + Gx(−R, E )Gy(R, E )], (13d)

Jyz(R) = −2 J2

π
Im

∫ EF

−∞
d E [Gy(R, E )Gz(−R, E ) + Gy(−R, E )Gz(R, E )], (13e)

Jxz(R) = −2 J2

π
Im

∫ EF

−∞
d E [Gx(R, E )Gz(−R, E ) + Gx(−R, E )Gz(R, E )], (13f)

JDM,x(R) = −J2

π
Im

∫ EF

−∞
d E i G0(R, E )[Gx(−R, E ) − Gx(R, E )], (13g)

JDM,y(R) = −J2

π
Im

∫ EF

−∞
d E i G0(R, E )[Gy(−R, E ) − Gy(R, E )], (13h)

JDM,z(R) = −J2

π
Im

∫ EF

−∞
d E i G0(R, E )[Gz(−R, E ) − Gz(R, E )]. (13i)

It should be noted that since Gx(R, E ) and Gy(R, E ) are
proportional to λ, setting λ2 ≈ 0 leaves only the G0(R, E ) and
Gz(R, E ) contributions with Jxx(R) = Jyy(R) 
= Jzz(R) and
Jxy(R) = 0.

The closed-form analytical expressions of the real-space
Green’s functions are given by (see Appendix D for deriva-
tions)

G0(R, E ) = −m

4h̄2
√

1 − β2

[
H (1)

0 (k+R) + H (1)
0 (k−R)

]
, (14a)

Gx(R, E ) = −i λy m eiφ

4h̄4
√

1 − β2

[
H (1)

1 (k+R)

k+
− H (1)

1 (k−R)

k−

]
,

(14b)

Gy(R, E ) = −λx m eiφ

4h̄4
√

1 − β2

[
H (1)

1 (k+R)

k+
+ H (1)

1 (k−R)

k−

]
,

(14c)

Gz(R, E ) = −m β cos(2φ)

4h̄2
√

1 − β2

[
H (1)

2 (k+R)

k2+
+ H (1)

2 (k−R)

k2−

]
,

(14d)

where

k± =

√√√√2m
(
E − h̄2 	 �d

m λ2

)
h̄2(1 ± β )

, (15)

and φ represents the direction of the separation vector between
the impurities in the xy-plane. Note that, by symmetry, we
achieve JDM,z(R) = 0 because H (1)

2 (−z) = H (1)
2 (z) as well

as Jyz(R) = Jxz(R) = 0 because H (1)
1 (−z) = −H (1)

1 (z). Thus
only four terms remain, including the Heisenberg, Ising, and
in-plane DM terms. The altermagnetism strength (β) and the
light (	) serve as crucial tunable parameters that modulate the
RKKY responses, pivotal in the control and manipulation of
the system’s magnetism.

We note that light-induced effects are sensitive to the crys-
tallographic orientation of the altermagnet [27]. For instance,
the corresponding light-induced effective Hamiltonian and
RKKY interaction of a 45◦ rotation of the illuminated surface
is given in Appendix E. For such a special rotation, RSOC
term is invariant, while the altermagnetism term is rotated
from β�k = h̄2β

2 m (k2
x − k2

y ) σz to θ�k = h̄2β

m kxky σz, which in turn,

turns on a Dirac-like dispersion, �k · �σ , stemming from the
light. We do not explore additional rotations here, as they can
be easily obtained by rotating both real- and spin-space in the
same manner.

IV. RESULTS AND DISCUSSION

Although numerical results could be used to cover all
regimes of R with the Hankel functions themselves, we
choose to proceed with their asymptotic forms in order to
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obtain analytical expressions that can be easily compared
with previous studies. However, we focus on large impurity
separations (kR � 1) in this work for the following rea-
sons: (i) The standard derivation of the RKKY interaction
relies on second-order perturbation theory, which remains
well-controlled at large impurity separations due to the weak
coupling, ensuring that higher-order corrections are negligi-
ble. In contrast, for closely spaced impurities, the perturbative
expansion may break down, necessitating the inclusion of
additional effects such as direct exchange interactions or local
modifications of the band structure. (ii) When studying uni-
versal features that depend only on the low-energy electronic
structure of 2D materials like our case, the long-range regime
is the natural focus. As a consequence, we use H (1)

ν (kR �
1) ≈ √

2/π kR ei(kR− πν
2 − π

4 ). For short-range responses, see
Appendix F.

In the presence of light, the effective parameter 	 intro-
duces a uniform energy shift in the band structure, which
modifies the Fermi surface and consequently the Fermi wave
number, as shown in Fig. 2 and Eq. (15). However, in our
analysis of the RKKY interaction, we treat this light-induced
energy shift as an effective offset near the Fermi level. This ap-
proximation allows us to isolate and focus on the anisotropic
modulation of the interaction terms induced by light, with-
out introducing cumbersome 	-dependent corrections to the
oscillation periods. We emphasize that this treatment cap-
tures the essential physics of the anisotropic modulation,
and the qualitative features of the interaction remain robust
even though finite 	 may introduce mild shifts in the oscil-
lation period. This implies that near the Fermi energy EF −
h̄2 	�d/m λ2, accounting for the light-induced energy offset,
one can rewrite k± = kF/

√
1 ± β ≈ k±

F . After straightforward
calculations, for kFR � 1, one obtains

J̃xx(R) ≈ − 1

R2(1 − β2)

{
(1 + β )cos

(
2
[
k+

F R − π
4

]) + (1 − β )cos
(
2
[
k−

F R − π
4

]) − 2 β cos(2φ) sin([k+
F + k−

F ]R)
}
, (16a)

J̃zz(R) ≈ − 1

R2(1 − β2)

{
(1 + β )cos

(
2
[
k+

F R − π
4

]) + (1 − β )cos
(
2
[
k−

F R − π
4

]) + 2 β cos(2φ) sin([k+
F + k−

F ]R)
}
, (16b)

J̃DM,x(R) ≈ + λy sin(φ)

R2(1 − β2)

{
(1 + β )sin

(
2
[
k+

F R − π
4

]) − (1 − β )sin
(
2
[
k−

F R − π
4

])}
, (16c)

J̃DM,y(R) ≈ + λx cos(φ)

R2(1 − β2)

{
(1 + β )sin

(
2
[
k+

F R − π
4

]) + (1 − β )sin
(
2
[
k−

F R − π
4

])}
, (16d)

where J̃ = J /Jl with Jl = J2m2

16π2 h̄4 .
We note that our above analytical expressions are con-

sistent with those in Ref. [37], once differences in notation
and parameter definitions are accounted for. Specifically, by
mapping the parameters appropriately, both models exhibit
the same 1/R2 decay and similar functional forms in angular
dependencies.

As previously mentioned, gating is crucial for detecting
the effects of light. However, this holds only for anisotropic
and antisymmetric DM interactions, as seen in Eqs. (16c) and
(16d) through λy and λx, respectively. In the limit where β = 0
and 	 = 0, i.e., in the absence of light and altermagnetism
features, the results of the RKKY interaction in a disordered
2D electron gas and low-dimensional electrons with RSOC
are recovered [68,69].

The direct consequence of these expressions is that all
types of RKKY interactions in a 2D d-wave altermagnet de-
cay as R−2 when the impurities are far apart, which is expected
for 2D systems. Therefore we focus on the coherent signals,
which are strongly influenced by the altermagnetism strength
β and the light exchange energy 	. They all oscillate with the
impurity separation R, with periods of π/k±

F , which depend
on how the system is doped to modify the Fermi energy and
on the specific target altermagnet (characterized by β) being
considered.

It is also important to note that these expressions dis-
play a unique angular dependence on φ (the direction of the
separation vector between the impurities in the xy plane).
Specifically, when the magentic moment of one impurity is

rotated relative to the other, the interaction oscillates and
shows periodic behavior. Therefore we choose to fix the an-
gle at a specific value, such as φ = π/6, which is arbitrary,
with no physical reasoning behind it other than having a
nonzero term. We also set h̄ = m = 1 in the following data for
simplicity.

To understand the competition of the interactions in the
overall RKKY interaction response, let us start with the
undriven-gated 2D d-wave altermagnet, 	 = 0 eV, in Fig. 3.

FIG. 3. The noncollinear beating-type RKKY interactions in an
undriven-gated 2D d-wave altermagnet with β = 0.1, λ = 0.2 eV Å,
EF = 2 eV, and 	 = 0 eV reveal a striking dominance of the
Heisenberg and Ising interactions (a), followed by the contributions
from the antisymmetric DM interactions (b).
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FIG. 4. Chirp-Like signals (β dependency) for the RKKY in-
teractions in an undriven-gated 2D d-wave altermagnet with λ =
0.2 eV Å and kFR = 275 (EF = 2 eV) exhibit isotropic behavior for
the Heisenberg and Ising interactions in the strong altermagnetic
regime (a). In contrast, the anisotropic and antisymmetric DM in-
teraction displays markedly anisotropic amplitude oscillations along
the x and y directions across all altermagnetic regimes (b).

We set the bare RSOC to a weak value of λ = 0.2 eV Å here-
after to support our analytical expressions. From Eq. (16),
beating-type oscillations are expected, which arise as a direct
consequence of the intricate interplay between the orienta-
tion of magnetic impurities and the propagation of itinerant
electrons in the host altermagnet near the Fermi level [38].
However, the Heisenberg and Ising interactions dominate the
other contributions, with the anisotropic/antisymmetric DM
interaction being 10 and 20 times weaker along the y and x
directions, respectively.

Next, in Fig. 4, we see how altermagnetism strength, β,
tunes the RKKY interactions. This parameter can be tuned
in real materials by doping, applying strain, applying mag-
netic fields, altering temperature, changing layer thickness, or
selecting specific materials with various intrinsic spin split-
tings [1,3,70,71]. These methods offer a range of possibilities
for controlling the behavior of altermagnets in practical ap-
plications. Strong altermagnetism strength means that the
electrons’ spins will be strongly polarized in momentum space
even though the material as a whole does not generate an
external magnetic field. Altermagnetism strength causes the
RKKY signals to exhibit a chirp-like behavior, “sweeping”
through a range of β values, adapting to the evolving os-
cillations. For weak altermagnetism, all interactions respond
differently. However, for strong altermagnetism, Heisenberg
and Ising interactions respond similarly, while we still ob-
serve different DM responses. For practical applications, this
can be particularly useful in magnetization (magnetization of
the relative orientation between the impurity spins) reversal
in spintronics, where the system must overcome an energy
barrier. This means the inherent chirp-like signal exhibits a
range of oscillatory frequencies across space, influenced by
the tunable strength of altermagnetism β. This variability al-
lows the signal to be adjusted to match the specific frequency
needed for magnetization switching, ensuring that energy is
delivered precisely at the right moments to help the magneti-
zation surpass the barrier.

FIG. 5. Light-induced modulation of DM interactions in a
driven-gated 2D d-wave altermagnet with λ = 0.2 eV Å, EF = 2 eV,
and β = 0.1 exhibits anisotropy, with an enhanced x component
(a) and a diminished y component (b).

To examine how light affects the interactions, we analyzed
all RKKY interactions for different values of 	 in Fig. 5.
From Eqs. (16a) and (16b), no 	 dependence is expected for
Heisenberg and Ising interactions. This is because the light
influences only the gate-induced RSOC, which contributes
exclusively to the anisotropic and antisymmetric DM inter-
actions. Thus, the amplitude of the DM signals increases
(decreases) when the light tunes the RSOC along the x di-
rection (y direction). Equations (16c) and (16d) predict these
trends with varying amplitudes and signs in their oscillations,
which is confirmed in Figs. 5(a) and 5(b), respectively. It
should be noted that, for 	 = 0.2 eV, the RSOC along the
x-direction, λx = λ − 2	β

λ
, vanishes when β = 0.1 and λ =

0.2 eV Å. Consequently, the component J̃DM,y vanishes at
	 = 0.2 eV.

We next turn our attention to see how DM interactions
evolve under the influence of light, quantified by 	. In
Fig. 6(a), the evolution is shown for a fixed altermagnetism
strength, β = 0.4. Notably, both in-plane components of the
DM interaction increase with rising light amplitude. Note
that the negative sign of J̃DM,y should not make any confu-
sions about the anisotropic responses to the light. However,
while the x component exhibits a steady, monotonic increase
without any sign reversal, the y component undergoes a sign
inversion at a specific threshold. This sign change indicates
that the effective coupling between the magnetic impurities re-
verses its rotational symmetry (spin chirality). More precisely,
this reversal occurs when the y component, J̃DM,y, vanishes,
which defines the critical light amplitude as

Ec
0 = 2

e λ
�

3/2
d 	c1/2

. (17)

For β = 0.4 and λ = 0.2 eV Å, this condition is met at 	c =
0.05 eV, in excellent agreement with the trends displayed in
Fig. 6(a). This results in Ec

0 ≈ 4 × 109 V/m, a strength that
can now be achieved in experiments [43–47]. In experiments,
the estimated and applied electric field strength depends on
various factors such as loss energy. Thus using 109 V/m for
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FIG. 6. The anisotropic and antisymmetric RKKY interactions
in a driven-gated 2D d-wave altermagnet with λ = 0.2 eV Å and
kFR = 275 (EF = 2 eV). In (a), we set β = 0.4. The DM interaction
along the y axis vanishes at 	 = 0.05 eV, as derived in Eq. (17).
On the other hand, the in-plane DM interactions become equal at
	 ≈ 0.088 eV, according to Eq. (18). The phase diagrams in (b) and
(c) illustrate the anisotropic modulation of the DM components.
In (c), we reflect the systematic relationship between light and the
altermagnetism along the y direction, Eq. (17).

a free-standing model at zero temperature does not pose the
same challenges encountered in experiments [43,47].

Furthermore, our analysis indicates that the two compo-
nents converge to an equivalent value at a distinct critical
light strength, 	c

2 ≈ 0.088 eV. This equivalence is derived
by carefully considering Eqs. (16c) and (16d) such that the
solution of the following relation marks the point at which the
two DM interaction components are equal:

[1 + cot(φ)] + 2	c
2β

λ2 �d
[1 − cot(φ)]

[1 − cot(φ)] + 2	c
2β

λ2 �d
[1 + cot(φ)]

= (1 − β ) sin
(
2k−

F R − π
4

)
(1 + β ) sin

(
2k+

F R − π
4

) .
(18)

Finally, Figs. 6(b) and 6(c) illustrate a systematic explo-
ration of the DM interactions as both the light exchange
energy, 	, and the altermagnetism strength, β, are varied
simultaneously. Our analysis reveals that the amplitude of
the x component, J̃DM,x, increases steadily with higher val-
ues of both 	 and β. In contrast, the y component, J̃DM,y,
displays a more complex behavior: its amplitude initially
decreases as 	 increases, up to the given critical threshold.
Beyond this threshold, J̃DM,y undergoes a sign reversal and
then increases in amplitude. This behavior highlights the intri-
cate interplay between light and altermagnetism in tuning the
DM interactions anisotropically. We briefly note that all these

effects can be reversed (J̃DM,x/y → J̃DM,y/x) when using left
circularly polarized light. See Appendix C for details.

V. SUMMARY

In conclusion, our study unveils a pathway for the dynamic
control of RKKY interactions in 2D d-wave altermagnets
through the application of circularly polarized light. We
demonstrate that in these 2D systems, the magnetic landscape
of RKKY interaction is predominantly governed by robust
Heisenberg and Ising exchange interactions, complemented
by a significant yet subtler DM interaction. The inherent
altermagnetism strength imparts chirp-like signatures to the
magnetic responses. What is particularly intriguing is that
these chirp-like responses can be finely adjusted using light.

This work demonstrates that applying an external gate
to induce Rashba spin-orbit coupling is not just a minor
tweak—it is essential for controlling the DM interaction under
light illumination. The gate-induced Rashba coupling acts in
a highly selective way, modifying only the DM interaction
anisotropically while leaving the fundamental (primary) ex-
change interactions intact. This anisotropic control means that
the DM interaction, which typically influences the twist or
rotation between adjacent impurities, can be tuned differently
along various directions in the material when exposed to op-
tical stimuli. Our study also demonstrates that by rotating the
altermagnet’s crystallographic orientation by 45◦ relative to
the illuminated surface, light can effectively induce a Dirac-
like dispersion and different DM interactions.

The study further identifies a critical point in the altermag-
netic strength. When this threshold is reached, the effect of
light on the DM interaction changes—the rotation induced by
the DM interaction along the y-axis reverses direction. This
implies that by carefully tuning the level of altermagnetism
(and by extension, the optical conditions), one can control not
only the magnitude but also the direction of the spin twisting.

The ability to use light to drive such precise changes in the
RKKY interactions provides deep insights into the underlying
magnetic phenomena in altermagnets. More importantly, this
light-driven control mechanism opens up new possibilities for
engineering custom magnetic properties. Such advances are
crucial for the development of next-generation spintronic de-
vices, where manipulating electron spins with high precision
is key to enhancing performance and functionality.

Note added. Recently, we became aware of a related work
by Ghorashi and Li [72], which provides similar effective
Hamiltonian for the light-driven d-wave altermagnets. While
we acknowledge the relevance of this work, the focus of their
study differs from ours.
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APPENDIX A: EFFECTIVE HAMILTONIAN OF A LINEARLY POLARIZED LIGHT-INDUCED 2D d-WAVE ALTERMAGNET

In this Appendix, following a linearly polarized vector potential �A(t ) = A0 [sin(�d t ), 0] and minimal coupling regime �k →
�k − e �A(t ), we use the van Vleck expansion to obtain the light-induced effective Hamiltonian in 2D d-wave altermagnets. We
start with

HR
�k−e �A(t ) = α�kσ0 + β�k σz + λ (kx σy − ky σx ) + h̄2

2 m

[
e2 A2

0 sin2(�dt ) − 2 e A0 kx sin(�dt )
]
[σ0 + β σz] − e A0 λ sin(�dt )σy.

(A1)

One needs to proceed with the following expression to find the light-induced Hamiltonian [52,52–54]: Heff
�k 
 HF

0 + [HF
−1,HF

+1]
�d

,

where HF
0 = 1

T

∫ T
0 HR

�k−e �A(t ) dt and HF
±1 = 1

T

∫ T
0 HR

�k−e �A(t ) e±i �dt dt . For HF
0 , we find

HF
0 =

(
α�k + h̄2 e2 A2

0

4 m

)
σ0 +

(
β�k + h̄2 e2 A2

0 β

4 m

)
σz + λ (kx σy − ky σx ). (A2)

Moreover, for HF
±1, we achieve

HF
±1 = ∓ i

h̄2 e A0

2 m
kx[σ0 + β σz] ∓ i

e A0 λ

2
σy, (A3)

resulting in [HF
−1,HF

+1]/�d = 0 and

Heff
�k 


(
α�k + h̄2 e2 A2

0

4 m

)
σ0 +

(
β�k + h̄2 e2 A2

0 β

4 m

)
σz + λ (kx σy − ky σx ). (A4)

Thus a linearly polarized light only shifts the chemical potential and adds a magnetization to the altermagnetism term, which
generally results in a rescaling of the system’s energies, without affecting the RSOC term, which is important for practical
spintronic applications. The same procedure can be applied to �A(t ) = A0 [0, cos(�dt )], which leads to the same contributions.

APPENDIX B: EFFECTIVE HAMILTONIAN OF AN ELLIPTICALLY POLARIZED LIGHT-INDUCED
2D d-WAVE ALTERMAGNET

In this Appendix, following an elliptically polarized vector potential �A(t ) = [Ax sin(�d t ), Ay cos(�d t + δ)], where Ax and
Ay are the amplitudes of the x and y components, respectively, while δ is the phase difference between the two components. We
employ the minimal coupling regime �k → �k − e �A(t ) and use the van Vleck expansion to obtain the Floquet terms in the effective
Hamiltonian. We start with

HR
�k−e �A(t ) = α�k σ0 + β�k σz + λ (kx σy − ky σx ) + h̄2

2 m

[
e2 A2

x sin2(�d t ) + e2 A2
y cos2(�d t + δ)

− 2e(Ax kx sin(�dt ) + Ay ky cos(�dt + δ))
]
σ0 + h̄2β

2 m

[
e2 A2

x sin2(�d t ) − e2 A2
y cos2(�d t + δ)

− 2e(Ax kx sin(�dt ) − Ay ky cos(�dt + δ))
]
σz − λe(Ax sin(�dt )σy − Ay cos(�dt + δ)σx ). (B1)

For HF
0 = 1

T

∫ T
0 HR

�k−e �A(t ) dt , we have

HF
0 =

(
α�k + h̄2 e2

[
A2

x + A2
y

]
4 m

)
σ0 +

(
β�k + h̄2 e2

[
A2

x − A2
y

]
β

4 m

)
σz + λ (kx σy − ky σx ). (B2)

Moreover, for HF
±1 = 1

T

∫ T
0 HR

�k−e �A(t ) e±i �dt dt , we achieve

HF
±1 = − h̄2 e

2 m
(Ay ky ± i Ax kx )σ0 + h̄2 β e

2 m
(Ay ky ∓ i Ax kx )σz + λ e

2
(Ay σx ∓ i Ax σy), (B3)
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resulting in [
HF

−1,HF
+1

]
�d

= λ2 e2 Ax Ay

�d
σz − h̄2 e2 Ax Ay λ β

m �d
(kx σy + ky σx ). (B4)

Substituting the above equations into Heff
�k 
 HF

0 + [HF
−1,HF

+1]
�d

results in

Heff
�k 


(
α�k + h̄2 e2

[
A2

x + A2
y

]
4 m

)
σ0 +

(
β�k + h̄2 e2

[
A2

x − A2
y

]
β

4 m
+ λ2 e2 Ax Ay

�d

)
σz

+
[(

λ − h̄2 e2 Ax Ay λ β

m �d

)
kx σy −

(
λ + h̄2 e2 Ax Ay λ β

m �d

)
ky σx

]
. (B5)

APPENDIX C: EFFECTIVE HAMILTONIAN OF A CIRCULARLY POLARIZED LIGHT-INDUCED
2D d-WAVE ALTERMAGNET

In this Appendix, following a right circularly polarized vector potential �A(t ) = A0 [sin(�d t ), cos(�d t )] and minimal coupling
regime �k → �k − e �A(t ), we use the van Vleck expansion to obtain the Floquet terms in the effective Hamiltonian given by Eq. (5).
We start with

HR
�k−e �A(t ) = α�k σ0 + β�k σz + λ (kx σy − ky σx ) + h̄2

2 m

[
e2 A2

0 − 2eA0(kx sin(�dt ) + ky cos(�dt ))
]
σ0

+ h̄2β

2 m

[ − e2 A2
0 cos(2�dt ) − 2eA0(kx sin(�dt ) − ky cos(�dt ))

]
σz − λeA0(sin(�dt )σy − cos(�dt )σx ). (C1)

For HF
0 = 1

T

∫ T
0 HR

�k−e �A(t ) dt , we have

HF
0 =

(
α�k + h̄2 e2 A2

0

2 m

)
σ0 + β�k σz + λ (kx σy − ky σx ). (C2)

Moreover, for HF
±1 = 1

T

∫ T
0 HR

�k−e �A(t ) e±i �dt dt , we achieve

HF
±1 = − h̄2 e A0

2 m
(ky ± ikx )σ0 + h̄2 β e A0

2 m
(ky ∓ ikx )σz + λ e A0

2
(σx ∓ iσy), (C3)

resulting in [
HF

−1,HF
+1

]
�d

= λ2 e2 A2
0

�d
σz − h̄2 e2 A2

0 λ β

m �d
(kx σy + ky σx ). (C4)

Substituting the above equations into Heff
�k 
 HF

0 + [HF
−1,HF

+1]
�d

and defining A0 = eA0λ and 	 = A2
0/2 �d results in

Heff
�k 


(
α�k + h̄2 	�d

m λ2

)
σ0 + (β�k + 2	) σz +

[(
λ − 2h̄2 	β

m λ

)
kx σy −

(
λ + 2h̄2 	β

m λ

)
ky σx

]
. (C5)

For the left circularly polarized vector potential �A(t ) = A0 [− sin(�d t ), cos(�d t )], we find a sign change 	 → −	 in the
second and third terms as

Heff
�k 


(
α�k + h̄2 	�d

m λ2

)
σ0 + (β�k − 2	) σz +

[(
λ + 2h̄2 	β

m λ

)
kx σy −

(
λ − 2h̄2 	β

m λ

)
ky σx

]
. (C6)

APPENDIX D: DERIVATION OF CLOSED-FORM ANALYTICAL EXPRESSIONS FOR Gn(R,E ) for n ∈ {0, x, y, z}
In this Appendix, we present the detailed derivations of the real-space Green’s functions for light-induced and gated 2D

d-wave altermagnets. We consider the relation G(R, E ) = G0(R, E ) σ0 + �G(R, E ) · �σ with diagonal (G0(R, E ), Gz(R, E )) and
off-diagonal (Gx(R, E ), Gy(R, E )) elements.
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1. Diagonal G0(R,E )

First, we solve the following integral:

G0(R, E ) = 1

4π2

∫
d2k ei�k· �R

E + iη − h̄2

2m

(
k2

x + k2
y

) − h̄2 	 �d
m λ2[

E + iη − h̄2

2m

(
k2

x + k2
y

) − h̄2 	 �d
m λ2

]2
−
(

h̄2β

2m

(
k2

x − k2
y

))2 , (D1)

where in our notation, the momentum and real-space vectors are written in polar form as �k = (k cos θ, k sin θ ) and �R =
(R cos φ, R sin φ). A key observation is that the numerator factors nicely with the denominator and leads to a partial fraction
expansion. In fact, one may verify that

A(k)

A(k)2 − B(k)2 cos2 2θ
= 1

2

[
1

A(k) − B(k) cos 2θ
+ 1

A(k) + B(k) cos 2θ

]
. (D2)

where A(k) = E + iη − h̄2k2

2m − h̄2 	 �d
m λ2 and B(k) = h̄2β k2

2m . In each term the angular integration is of the standard form∫ 2π

0 dθ eikR cos θ

A(k)±B(k) cos 2θ
. One can then expand the exponential as eikR cos θ = ∑+∞

�=−∞ i�J�(kR)ei�θ , and use the standard result

∫ 2π

0
dθ

ei�θ

A(k) ± B(k) cos 2θ
= 2π√

A(k)2 − B(k)2

(
A(k) −

√
A(k)2 − B(k)2

±B(k)

)|�|
, (D3)

with appropriate interpretation when � is not an even integer. After solving the simplified integrals, G0(R, E ) can be written in
terms of Hankel functions as

G0(R, E ) = −m

4h̄2
√

1 − β2

[
H (1)

0 (k+R) + H (1)
0 (k−R)

]
, (D4)

with k± =
√

2mẼ
h̄2(1±β )

with Ẽ = E − h̄2 	 �d
m λ2 . In writing this result we have taken the limit η → 0+. The appearance of the two

distinct wave numbers k+ and k− is a consequence of the anisotropic dispersion introduced by the altermagnetism parameter β.

2. Off-diagonal Gx(R,E )

Second, we wish to evaluate the two-dimensional integral

Gx(R, E ) = 1

4π2

∫
d2k ei�k· �R λy ky[

E + iη − h̄2(k2
x +k2

y )
2m − h̄2 	 �d

m λ2

]2
−
(

h̄2β (k2
x −k2

y )
2m

)2 , (D5)

where the integration is carried out over the entire (positive) k plane using the polar coordinate representation:

Gx(R, E ) = λy

4π2

∫ ∞

0
k2 dk

∫ 2π

0
dθ

eikR cos(θ−φ) sin θ

A(k)2 − B(k)2 cos2 2θ
. (D6)

Following the same procedure, the expression for Gx(R, E ) yields

Gx(R, E ) = λy

4π2

∫ ∞

0
k2 dk

∞∑
�=−∞

i�J�(kR)e−i�φ
∫ 2π

0
dθ

ei�θ sin θ

A(k)2 − B(k)2 cos2 2θ
. (D7)

Since the denominator depends on θ only through cos 2θ , it can be expanded in a Fourier series containing only even harmonics:

[A(k)2 − B(k)2 cos2 2θ ]−1 = ∑∞
�′=−∞ C2�′ (k)e2i�′θ with coefficients C2�′ (k) = (−1)�

′

A(k) ( B(k)
2A(k) )|2�′| �(�′+1/2)

�(1/2)�(�′+1) , which �(. . . ) is the

Gamma function. Next, the angular integral becomes
∫ 2π

0 dθ ei(�+2�′ )θ sin θ = 1
2i [2π δ�+2�′+1, 0 − 2π δ�+2�′−1, 0] = π

i [δ�+2�′,−1 −
δ�+2�′,1]. Thus only those combinations of � and �′ satisfying � + 2�′ = ±1 contribute. One may then resum the resulting series
(after a shift in the summation index) and show that the net effect is to select the +1 cylindrical-wave component. A further
(standard) contour integration over k (whose details we omit) yields the final result in terms of Hankel functions of order one:

Gx(R, E ) = −i λy m eiφ

4h̄4
√

1 − β2

[
H (1)

1 (k+R)

k+
− H (1)

1 (k−R)

k−

]
. (D8)

where the factor ieiφ arises from the angular dependence of the numerator ky ∝ sin θ .
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3. Off-diagonal Gy(R,E )

Third, we wish to evaluate

Gy(R, E ) = 1

4π2

∫
d2k ei�k· �R λx kx[

E + iη − h̄2(k2
x +k2

y )
2m − h̄2 	 �d

m λ2

]2
−
(

h̄2β (k2
x −k2

y )
2m

)2 , (D9)

leading straightforwardly to

Gy(R, E ) = λx

4π2

∫ ∞

0
k2 dk

∑
�,�′

i�J�(kR)e−i�φ C2�′ (k)
∫ 2π

0
dθ ei(�+2�′ )θ cos θ. (D10)

A somewhat lengthy (omitted here, but standard) calculation shows that the final answer may be written in closed form as

Gy(R, E ) = −λx m eiφ

4h̄4
√

1 − β2

[
H (1)

1 (k+R)

k+
+ H (1)

1 (k−R)

k−

]
. (D11)

4. Diagonal Gz(R,E )

Fourth, we wish to evaluate the 2D integral

Gz(R, E ) = 1

4π2

∫
d2k ei�k· �R

h̄2β (k2
x −k2

y )
2m[

E + iη − h̄2(k2
x +k2

y )
2m − h̄2 	 �d

m λ2

]2
−
(

h̄2β (k2
x −k2

y )
2m

)2 , (D12)

By applying the same procedure as outlined previously, the integral becomes

Gz(R, E ) = 1

8π2

∫ ∞

0
k3 dk

∫ 2π

0
dθ eikR cos(θ−φ)

[
1

A(k) − B(k) cos 2θ
− 1

A(k) + B(k) cos 2θ

]
. (D13)

Again, using the Fourier-Bessel series and standard contour-integration techniques, one finds that the final answer may be written
in closed form in terms of Hankel functions:

Gz(R, E ) = −m β cos(2φ)

4h̄2
√

1 − β2

[
H (1)

2 (k+R)

k2+
+ H (1)

2 (k−R)

k2−

]
. (D14)

APPENDIX E: A CIRCULARLY POLARIZED LIGHT-INDUCED 45◦ ROTATED 2D d-WAVE ALTERMAGNET

In this Appendix, we repeat the calculations of Appendix C for a 45◦ rotated 2D d-wave altermagnet with the Hamiltonian
H�k = α�k σ0 + h̄2β

m kx ky σz + λ (kx σy − ky σx ), where the RSOC term is invariant and the altermagnetism term is rotated from

β�k = h̄2β

2 m (k2
x − k2

y ) to θ�k = h̄2β

m kxky. We start with

HR
�k−e �A(t ) = α�k σ0 + θ�k σz + λ (kx σy − ky σx ) + h̄2

2 m

[
e2 A2

0 − 2eA0(kx sin(�dt ) + ky cos(�dt ))
]
σ0

+ h̄2β

m

[
e2 A2

0

2
sin(2 �d t ) − eA0(kx cos(�dt ) + ky sin(�dt ))

]
σz − λeA0(sin(�dt )σy − cos(�dt )σx ). (E1)

For HF
0 = 1

T

∫ T
0 HR

�k−e �A(t ) dt , we have

HF
0 =

(
α�k + h̄2 e2 A2

0

2 m

)
σ0 + θ�k σz + λ (kx σy − ky σx ). (E2)

Moreover, for HF
±1 = 1

T

∫ T
0 HR

�k−e �A(t ) e±i �dt dt , we achieve

HF
±1 = − h̄2 e A0

2 m
(ky ± ikx )σ0 − h̄2 β e A0

m
(kx ± iky)σz + λ e A0

2
(σx ∓ iσy), (E3)

resulting in [
HF

−1,HF
+1]

�d
= λ2 e2 A2

0

2 �d
σz − 2 h̄2 e2 A2

0 λ β

m �d
(kx σx + ky σy). (E4)
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FIG. 7. [(a) and (b)] The evolution of a driven-gated 45◦-rotated 2D d-wave altermagnet (λ = 0.2 eV Å, β = 0.1, and EF = 2 eV) with light.
This mechanism modulates the DM interactions, yielding enhanced components compared to the 0◦ configuration. [(c) and (d)] Systematic
variation of light exchange energy and altermagnetism strength produces multiple rotational reversals in both components, in contrast to the
uniaxial changes observed at 0◦ rotation.

Substituting the above equations into Heff
�k 
 HF

0 + [HF
−1,HF

+1]
�d

and defining A0 = eA0λ and 	 = A2
0/2 �d results in

Heff
�k 


(
α�k + h̄2 	�d

m λ2

)
σ0 + (θ�k + 	) σz +

[(
λ kx − 4 h̄2 	β

m λ
ky

)
σy −

(
λ ky + 4 h̄2 	β

m λ
kx

)
σx

]
. (E5)

The light-induced magnetization is halved due to the 45◦ rotation. Additionally, such a 45◦ rotation induces Dirac-like spectrum
�k · �σ in a 2D d-wave altermagnet.

In this case, retarded real-space Green’s functions G0(R, E ) and Gz(R, E ) remain unchanged, while the other two off-diagonal
components are modified as

G̃x(R, E ) = −meiφ

4h̄4
√

1 − β2

[(
i λ + 4h̄2 	β

λ

)
H (1)

1 (k+R)

k+
−
(

i λ − 4h̄2 	β

λ

)
H (1)

1 (k−R)

k−

]
, (E6a)

G̃y(R, E ) = −meiφ

4h̄4
√

1 − β2

[(
λ − i

4 h̄2 	β

λ

)
H (1)

1 (k+R)

k+
+
(

λ + i
4h̄2 	β

λ

)
H (1)

1 (k−R)

k−

]
. (E6b)

Accordingly, the interactions J̃xx(R) and J̃zz(R) remain unchanged, while for the DM interactions, we find

J̃ 45◦
DM,x(R) ≈ + 1

R2(1 − β2)

{
λ̃1(1 + β ) sin

(
2k+

F R − π
2

) − λ̃2(1 − β ) sin
(
2k−

F R − π
2

)}
, (E7a)

J̃ 45◦
DM,y(R) ≈ + 1

R2(1 − β2)

{
λ̃3(1 + β ) sin

(
2k+

F R − π
2

) + λ̃4(1 − β ) sin
(
2k−

F R − π
2

)}
, (E7b)

where λ̃1 = [−λ sin(φ) + 4 h̄2 	 β

λ
cos(φ)], λ̃2 = [−λ sin(φ) − 4 h̄2 	 β

λ
cos(φ)], λ̃3 = [λ cos(φ) − 4 h̄2 	β

λ
sin(φ)], and λ̃4 =

[λ cos(φ) + 4 h̄2 	 β

λ
sin(φ)].

In driven-gated 45◦-rotated 2D d-wave altermagnets (with λ = 0.2 eV Å and β = 0.1) the application of light induces a
modulation of the DM interactions that yields enhanced components relative to the 0◦ configuration, as demonstrated in Figs. 7(a)
and 7(b). Moreover, systematic variation of the light energy and the strength of altermagnetism in Figs. 7(c) and 7(d) results in
multiple rotational reversals in both components, in marked contrast to the uniaxial modifications observed at 0◦ rotation. This
complex behavior underscores the sensitivity of the external light field to the crystallographic orientation of the altermagent,
offering new avenues for tuning spin textures in altermagnetic materials.

APPENDIX F: SHORT-RANGE RKKY INTERACTIONS

In this Appendix, we present the short-range RKKY interactions using the following series expansions:

H (1)
0 (kR � 1) ≈ 1 + 2i

π
ln(kR/2), H (1)

1 (kR � 1) ≈ kR

2
− 2i

πkR
, H (1)

2 (kR � 1) ≈ k2R2

8
− 4i

πk2R2
+ 1

2
. (F1)

These expressions should first be applied in Eqs. (14) to obtain the short-range real-space Green’s functions. Then, we substitute
them into Eqs. (13) to determine the RKKY exchange interactions, which involve an energy integration. We stress that the energy
integration of the Hankel function itself, from −∞ to 0, is finite, meaning that the full expression, without approximation, does
not require regularization, even if it can not be done analytically. However, with the above approximated asymptotic forms, we
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FIG. 8. Short-range RKKY interactions in a gated 2D d-wave altermagnet with λ = 0.1 eV Å. The dotted lines show the evolution with
respect to β (blue axes), while in (a) and (b), we set β = 0.1 to display the RKKY interaction evolution with respect to the impurity separation
R (solid lines). (c) shows the variation of short-range DM interactions with light 	, where β = 0.4 and λ = 0.2 eV Å are used for this analysis.

use high-energy D and a low-energy Ec in numeric for the energy integration. Finally, we find

J̃xx(R) ≈ J̃zz(R) = mD

h̄2(1 − β2)

{
1 − ln

(
mDR2

2h̄2
√

1 − β2

)}
, (F2a)

J̃DM,x/y(R) = −βλy/x sin(φ)

R(1 − β2)
ln(D/Ec), (F2b)

where J̃ = J /Js with Js = J2m
2π2 h̄2 . Both the Heisenberg and Ising interactions exhibit a similar logarithmic trend with respect to

the impurity separation R, while the DM interactions decay with a rate of R−1, as illustrated in Figs. 8(a) and 8(b). However, the
evolution with the altermagnetism strength β is governed by a factor of 1/(1 − β2) for all interactions, as shown in the same
panels with blue axes and dotted lines. We also check the evolution of DM interactions with the light energy 	 in Fig. 8(c).
Similar to the long-range responses, the DM interactions exhibit anisotropic modulation, with J̃DM,y vanishing at 	c = λ2/2 β.
However, in contrast to the long-range responses [as seen in Fig. 6(a) in the main text], the DM components do not intersect at
short-range responses.
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