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ABSTRACT
Quantum mechanics is often developed in the position representation, but this is not necessary, and one can perform calculations in a
representation-independent fashion, even for wavefunctions. In this work, we illustrate how one can determine wavefunctions, aside from
normalization, using only operators and how those operators act on state vectors. To do this in plane polar and spherical coordinates requires
one to convert the translation operator into those coordinates. As examples of this approach, we illustrate the solution of the Coulomb
problem in two and three dimensions without needing to express any operators in position space.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0021013

I. INTRODUCTION
The quantum-mechanical position-space translation operator

T̂(r⃗) = e−
i
h̵ r⃗⋅ˆ⃗p = e−

i
h̵ (rx p̂x+ry p̂y+rz p̂z) (1)

is normally expressed in terms of Cartesian components,

r⃗ = e⃗xrx + e⃗yry + e⃗zrz , ˆ⃗p = e⃗xp̂x + e⃗yp̂y + e⃗zp̂z , (2)

with e⃗x, e⃗y, and e⃗z being the Cartesian unit vectors. We use hats to denote the operators on the state vector space. Note, in particular, that
the quantities rα in the translation operator are dimensionful numbers, not operators. The position and momentum operators satisfy the
canonical commutation relation

[r̂α, p̂β] = ih̵δα,β, (3)

where α and β run over the Cartesian dimensions.
The translation operator can be employed to determine position eigenstates by translating the position-space eigenvector at the origin,

∣0r⃗⟩, which satisfies
r̂α∣0r⃗⟩ = 0. (4)

One of our assumptions is that such a position eigenvector at the origin exists, without worrying about the details of rigged Hilbert spaces; we
will see that the wavefunction at any position can be determined relative to the wavefunction at the origin. We then have the position-operator
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eigenstates given by
∣r⃗⟩ = T̂(r⃗) ∣0r⃗⟩. (5)

It is easy to verify that
r̂α∣r⃗⟩ = rα∣r⃗⟩ (6)

by using the braiding relation (derived from the Hadamard lemma)

eÂ f (B̂)e−Â = f (B̂ + [Â, B̂] + 1
2!
[Â, [Â, B̂]]+ 1

3!
[Â, [Â, [Â, B̂]]] + ⋅ ⋅ ⋅ ), (7)

which is valid, provided that f (B̂) can be written as a sum of non-negative integral powers of B̂ and the argument of the function on the
right-hand side is a sum of terms consisting of increasingly nested commutators. For the verification of the position eigenstate, one simply
notes that the commutator of position with momentum is a dimensionful number, and so it commutes with all operators, which truncates the
series after the first commutator.

In this work, we discuss how to calculate wavefunctions using a representation-independent approach. This sounds like a contradiction
since a wavefunction is the representation of a quantum state vector in a particular basis. However, because each component of the wavefunc-
tion is constructed from the inner product between the state ket and a basis bra, one can see that each component is an inner product between
two vectors in the state vector space and hence is a representation-independent object. The representation only enters when we compute the
components for all basis vectors in the given representation and represent the quantum state as a linear superposition over the basis vectors of
the representation. Since the wavefunction (or the set of components of the expansion) is constructed from the representation-independent
inner products, it can be found in a representation-independent fashion, as will be illustrated below.

The strategy of the representation-independent approach to quantum mechanics is then to write the position-space wavefunction of a
state ∣ψ⟩ in terms of the position eigenstate at the origin and the translation operator according to

ψ(r⃗) = ⟨r⃗∣ψ⟩ = ⟨0r⃗ ∣T̂ †(r⃗)∣ψ⟩. (8)

This expression provides a route to solely evaluate the wavefunction by manipulating operators. This is because when the position operator
acts on the position eigenstate at the origin, it annihilates the state at the origin [see Eq. (4)]. To carry out these calculations for energy
eigenfunctions, one needs to factorize the Hamiltonian, in order to determine what happens when the momentum operator acts on the state
∣ψ⟩, using the methodology of the Schrödinger factorization method.1–3

We term this approach a representation-independent way to calculate the wavefunctions because one does not need to express the
operators used to determine the state vectors in the specific basis of the wavefunctions. Instead, we only employ the commutation relations of
the operators to determine the wavefunctions (up to overall normalization). For example, when working with the momentum operator, we
only use the canonical commutation relation and how the momentum operator acts on the energy eigenstate. We do not need to use ˆ⃗p = −ih̵∇,
the position-space representation of the momentum operator.

Böhm illustrated an alternate way to calculate wavefunctions in a representation-independent fashion,4 and Merzbacher also used this
approach.5 Matrix elements of the position operator between energy eigenstates of the simple harmonic oscillator were employed to determine
recurrence relations between energy eigenfunctions of different energy eigenvalues, but at the same position. The recurrence relations were
then solved in terms of Hermite polynomials, eventually yielding the usual position-space wavefunctions. The general approach we develop
here instead fixes the eigenfunction and relates the value of the wavefunction at the origin to the value of the wavefunction at r⃗. This latter
approach can be generalized to many different problems other than the simple harmonic oscillator. It is not clear whether the method devel-
oped by Böhm can be extended beyond the simple harmonic oscillator. Moreover, our approach can also be employed for momentum-space
wavefunctions.

We illustrate this process below. However, before doing so, we point out the reason why we need to transform the translation operator
to spherical and plane polar coordinates. Spherically symmetric problems, such as the Coulomb problem, have wavefunctions that are explicit
functions of

r =
√

r2
x + r2

y + r2
z . (9)

Such functions, for odd powers of r, cannot be expanded in a Maclauren series in the Cartesian position components because expansions
about the origin in position space do not exist. Hence, one cannot use the Cartesian-basis representation of the translation operator. A similar
argument applies for plane polar coordinates.

In Sec. II, we provide the details of how to convert the translation operator from the expression in terms of Cartesian components of the
momentum operator to an expression in terms of the components of the momentum operator in spherical and plane polar coordinates. The
exact operator expression can be simplified when it acts on ∣0r⃗⟩, which is the final form we employ to calculate wavefunctions. In Sec. III, we
employ this approach to calculate the position-space wavefunctions for two- and three-dimensional Coulomb problems. This methodology is
based on Schrödinger’s factorization method. We conclude in Sec. IV. In the Appendix, we summarize technical details, primarily related to
computing commutators in a representation-independent fashion.
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II. TRANSLATION OPERATOR IN SPHERICAL COORDINATES
To work with a three-dimensional spherically symmetric system, we express the translation operator, T̂(r⃗), in terms of the spherical

coordinates, r, θ, and ϕ; the corresponding position operators, r̂, cos θ̂, sin θ̂, cos ϕ̂, sin ϕ̂ and p̂r , p̂θ, p̂ϕ, the spherical components of the
momentum operator, ˆ⃗p. We use the spherical components of ˆ⃗p, instead of the canonical momenta, because this is the cleanest way to decom-
pose the inner product r⃗ ⋅ ˆ⃗p. Note that p̂r is a canonical momentum operator because it is the quantum analog of the classical momentum
conjugate to the radial degree of freedom, whereas the same is not true for p̂θ and p̂ϕ. We can still express the translation operator in terms of
p̂r , p̂θ, and p̂ϕ even though p̂r is Hermitian, but not self-adjoint, and thus is not an observable. In addition, the translation operator remains
unitary regardless of the coordinate system in terms of which it is expressed.

There is a subtle point associated with the symbol ∣0r⃗⟩: while r⃗ = 0 implies that rx = ry = rz = 0, it only implies that r = 0 in spherical
coordinates. That is, the values of θ and ϕ are indeterminate until specified by some limiting procedure for how the origin is approached. We
will use what we call a “north-pole” state oriented along the positive z axis for definiteness.

It is well known that defining operators corresponding to the angles θ̂ and ϕ̂ is problematic.6 Instead, we define the values corresponding
to the position eigenstates expressed in spherical coordinates through the cosine or sine of those operators, which are always well defined in
terms of r̂α. In particular,

cos θ̂ = r̂z

r̂
, sin θ̂ = ρ̂

r̂
, cos ϕ̂ = r̂x

ρ̂
, sin ϕ̂ = r̂y

ρ̂
, (10)

where

r̂ =
√

r̂ 2
x + r̂ 2

y + r̂ 2
z and ρ̂ =

√
r̂ 2

x + r̂ 2
y . (11)

These are all well-defined, but care must be taken when these operators act on position eigenstates that approach the origin.
Arguably, the easiest way to go from ∣0r⃗⟩ to ∣r⃗⟩, using spherical coordinates, is to first translate a distance r in the z-direction, rotate

by θ about the y axis, and then rotate by ϕ about the z axis, as illustrated in Fig. 1. Indeed, this is the common way to define the spherical
coordinates r, θ, and ϕ. The operator needed to do this is

T̂(r⃗) = e−
i
h̵ ϕL̂z e−

i
h̵ θL̂y e−

i
h̵ rp̂z e

i
h̵ θL̂y e

i
h̵ ϕL̂z , (12)

and we discuss below the subtleties associated with how it operates on ∣0r⃗⟩. Here, L̂y and L̂z are the y- and z-components, respectively, of
ˆ⃗L = ˆ⃗r × ˆ⃗p, the orbital angular momentum operator.

To establish this result, we use the braiding relation twice. First, we note that

e−
i
h̵ θL̂y e−

i
h̵ rp̂z e

i
h̵ θL̂y = e−

i
h̵ r(sin θ p̂x+cos θ p̂z) (13)

and then

T̂(r⃗) = e−
i
h̵ ϕL̂z e−

i
h̵ r(sin θp̂x+cos θp̂z)e−

i
h̵ ϕL̂z (14)

= e−
i
h̵ r(sin θ cos ϕ p̂x+sin θ sin ϕ p̂y+cos θ p̂z).

Since

rx = r sin θ cosϕ, ry = r sin θ sinϕ, and rz = r cos θ, (15)

Eq. (14) obviously yields the translation operator as expressed in Cartesian coordinates in Eq. (1).
We use Eqs. (A12) and (A13) to express p̂z in terms of the spherical components of momentum according to

p̂z = (p̂r − i
h̵
2r̂
) cos θ̂ − p̂θ sin θ̂. (16)

Note that the ordering is important in the second term because sin θ̂ does not commute with p̂θ, but there is no ordering ambiguity with the
first term. Equations (12) and (16) allow us to eliminate the Cartesian components of momentum from the translation operator and obtain

T̂(r⃗) = e−
i
h̵ ϕL̂z e−

i
h̵ θL̂y e−

i
h̵ r[(p̂r−i h̵

2r̂ ) cos θ̂−p̂θ sin θ̂]e
i
h̵ θL̂y e

i
h̵ ϕL̂z . (17)
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FIG. 1. Three-step process to move from the origin to (rx , ry , rz): (top) first translate a distance r along the z axis, (middle) rotate about the y axis by an angle θ, and (bottom)
rotate by an angle ϕ about the z axis. One can also reach the same point by rotating directly after the translation in the z-direction to the final point, or one can translate in
the θ-direction in the x − z plane and then rotate by ϕ, or one can translate in the θ, ϕ direction a distance r directly (not shown). All these alternatives lead to the same final
point in space. The operators corresponding to each of these different ways to translate and rotate from the origin to the final point are shown in the main text.

We use Eq. (A13) and

ˆ⃗eϕ = −e⃗x sin ϕ̂ + e⃗y cos ϕ̂ (18)

to re-express p̂θ according to

p̂θ =
1
r̂
( ˆ⃗L ⋅ ˆ⃗eϕ + i

h̵
2

cot θ̂) (19)
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and thus transform the translation operator into its final form

T̂(r⃗) = e−
i
h̵ ϕL̂z e−

i
h̵ θL̂y e

− i
h̵ r[(p̂r−i h̵

r̂ ) cos θ̂−
ˆ⃗L ⋅ ˆ⃗eϕ

r̂ sin θ̂]
e

i
h̵ θL̂y e

i
h̵ ϕL̂z . (20)

We emphasize that this is an operator equality. It is the expression of the translation operator in terms of spherical coordinates.
This operator relation can be rewritten in three other forms, which illustrate the different ways that one can derive the translation

operator in spherical coordinates. First, note that L̂z commutes with r̂, cos θ̂, sin θ̂, ˆ⃗L ⋅ ˆ⃗eϕ, and p̂r (or, more simply, it commutes with p̂z). This
means that we can introduce the factor exp( i

h̵ϕL̂z) exp(− i
h̵ϕL̂z) just to the left of the exp( i

h̵θL̂y) term in Eq. (20) and then move the factor
exp( i

h̵ϕL̂z) to the left through the middle exponential factor, yielding

T̂(r⃗) = e−
i
h̵ ϕL̂z e−

i
h̵ θL̂y e

i
h̵ ϕL̂z e

− i
h̵ r[(p̂r−i h̵

r̂ ) cos θ̂−
ˆ⃗L ⋅ ˆ⃗eϕ

r̂ sin θ̂]
e−

i
h̵ ϕL̂z e

i
h̵ θL̂y e

i
h̵ ϕL̂z . (21)

This form of the translation operator expresses it as a similarity transformation of the middle exponential factor with respect to the operator

e−
i
h̵ ϕL̂z e−

i
h̵ θL̂y e

i
h̵ ϕL̂z = e−

i
h̵ θ(−L̂x sin ϕ+L̂y cos ϕ) (22)

= e−
i
h̵ θe⃗ϕ ⋅ ˆ⃗L, (23)

which follows from the braiding relation. Note that

e⃗ϕ ⋅ ˆ⃗L = −L̂x sinϕ + L̂y cosϕ (24)

is a linear combination of the angular momentum operators with numbers, not operators, as coefficients because e⃗ϕ is not an operator here.
The translation operator then becomes

T̂(r⃗) = e−
i
h̵ θe⃗ϕ ⋅ ˆ⃗Le

− i
h̵ r[(p̂r−i h̵

r̂ ) cos θ̂−
ˆ⃗L ⋅ ˆ⃗eϕ

r̂ sin θ̂]
e

i
h̵ θe⃗ϕ ⋅ ˆ⃗L. (25)

In this form of the translation operator, we first translate along the z axis a distance r and then rotate by an angle θ about an axis along e⃗ϕ, i.e.,
an axis rotated an angle ϕ counterclockwise from the y axis.

The final two ways we express the operator comes from a simple brute-force substitution. We solve Eqs. (A12)–(A.14) for p̂x, p̂y, and p̂z

in terms of p̂r , p̂θ, and p̂ϕ and substitute into Eq. (1). Then, we use the inverse of the braiding relation to remove exp(− i
h̵θL̂z) to the left and its

Hermitian conjugate to the right. We also obtain this form by using the braiding relation to move the exp(− i
h̵θL̂y) factor (and its conjugate)

into the exponent in Eq. (20). This yields

T̂(r⃗) = e−
i
h̵ ϕL̂z exp(− i

h̵
r{(p̂r − i

h̵
r̂
) cos(θ̂ − θ) (26)

− 1
r̂

ˆ⃗L ⋅ ˆ⃗eϕ sin(θ̂ − θ) + [(p̂r − i
h̵
r̂
) sin θ sin θ̂

+ 1
r̂

ˆ⃗L ⋅ ˆ⃗eϕ sin θ cos θ̂](cos ϕ̂ − 1) − L̂z

r̂
sin θ sin ϕ̂

sin θ̂
})e

i
h̵ ϕL̂z .

One can interpret this as a translation along the θ direction in the x − z plane, followed by a rotation by ϕ about the z axis. If we use the
braiding operation to move the remaining exponential factor into the exponent, we would have a single translation of length r along the θ, ϕ
direction. We do not write that other final form explicitly here; it is given by the result in Eq. (26) without the exponential factors on the left
and the right and with the substitution ϕ̂→ ϕ̂ − ϕ.

As one can immediately see, these forms for the translation operator are equivalent and are easily related by employing the braiding
relation in different ways. They also have different physical interpretations for how the translation is performed. Of course, the operators in
all four cases are identical and are just expressed in terms of different exponential factors.

The remaining task is to determine the proper limiting procedure to apply this operator on the position eigenstate at the origin. We derive
it explicitly for the form of the translation operator given in Eq. (20), but the generalization for any of the other forms is straightforward to
work out. Our final result is independent of which form is used.

The strategy is to perform a translation along r⃗ so that the indeterminate operators corresponding to cos θ̂ and sin θ̂ [when acting on
∣0r⃗⟩] can be properly defined. (It turns out that the indeterminacy with respect to ϕ need not be resolved in order to determine the final
formula for the translation operator.) To this end, we introduce exp( i

h̵ δ⃗ ⋅ ˆ⃗p) exp(− i
h̵ δ⃗ ⋅ ˆ⃗p) = 1 to the left of T̂(r⃗). The vector δ⃗ is an ordinary

displacement vector, not an operator, and we choose it to be in the same direction as the vector r⃗ in the translation operator. We then move
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the rightmost exponential factor through T̂(r⃗) to the right, which we can do since it commutes with T̂(r⃗), as is easy to see when T̂(r⃗) is
expressed in its Cartesian form in Eq. (1). We then operate on ∣0r⃗⟩, which yields

∣r⃗⟩ = e
i
h̵ δ⃗ ⋅

ˆ⃗pT̂(r⃗)e−
i
h̵ δ⃗ ⋅

ˆ⃗p∣0r⃗⟩. (27)

This equation can be re-expressed as

∣r⃗⟩ = e
i
h̵ δ⃗ ⋅

ˆ⃗pT̂(r⃗)∣δx, δy, δz⟩. (28)

Since the two rotation operators on the right-hand side of Eq. (20) first rotate by an angle −ϕ about the z axis and then by an angle −θ about
the y axis, we find that the final position eigenstate, after the two rotations, points along the +z axis. In other words, the choice that δ⃗ lies in
the same direction as r⃗ implies that

tan ϕ = δy

δx
(29)

so that

e
i
h̵ ϕL̂z ∣δx, δy, δz⟩ = ∣

√
δ2

x + δ2
y , 0, δz⟩ (30)

and further implies that

tan θ =

√
δ2

x + δ2
y

δz
(31)

so that
e

i
h̵ θL̂y e

i
h̵ ϕL̂z ∣δx, δy, δz⟩ = ∣0, 0, δ⟩. (32)

Here,

δ =
√
δ2

x + δ2
y + δ2

z . (33)

Note that the ket ∣0, 0, δ⟩ satisfies

cos θ̂∣0, 0, δ⟩ = r̂z

r̂
∣0, 0, δ⟩ = ∣0, 0, δ⟩ (34)

and

sin θ̂∣0, 0, δ⟩ = ρ̂
r̂
∣0, 0, δ⟩ = 0. (35)

Because this is a state oriented along the north pole, the action of cos ϕ̂ or sin ϕ̂ on this ket is indeterminate, in the sense that one cannot
determine the action of cos ϕ̂ or sin ϕ̂ on this state. Our goal is to simplify the form of the translation operator when it acts on this “north-

pole” state. We expand the exponential function exp{− i
h̵[(p̂r − i h̵

r̂ ) cos θ̂ −
ˆ⃗L⋅ˆ⃗eϕ

r̂ sin θ̂]} in a power series and use the action of cos θ̂ and sin θ̂
on the “north-pole” state [in Eqs. (34) and (35)]. Term by term in the power series expansion, we see that the exponential function simplifies
and can be resummed to the form exp[− i

h̵(p̂r − i h̵
r̂ )] acting on the “north-pole” state. This produces

∣r⃗⟩ = e
i
h̵ δ⃗⋅

ˆ⃗pe−
i
h̵ ϕL̂z e−

i
h̵ θL̂y e−

i
h̵ r(p̂r−i h̵

r̂ )∣0, 0, δ⟩. (36)

At this point, because ˆ⃗L commutes with r̂ and p̂r , we can separate the radial and angular degrees of freedom according to

∣δx, δy, δz⟩ = e−
i
h̵ ϕL̂z e−

i
h̵ θL̂y ∣0, 0, δ⟩ = ∣r = δ⟩⊗ ∣θ,ϕ⟩. (37)

This result for the label of the state with r = δ arises because we define the radial coordinate eigenstates, ∣r⟩, to satisfy

r̂∣r⟩ = r∣r⟩, (38)

with r given by Eq. (9). One can immediately verify that r̂∣δx, δy, δz⟩ = δ∣δx, δy, δz⟩, which establishes the use of the label r = δ in Eq. (37).
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We similarly define the angular state, ∣θ,ϕ⟩, to be the state that satisfies

cos θ̂∣θ,ϕ⟩ = cos θ∣θ,ϕ⟩, sin θ̂∣θ,ϕ⟩ = sin θ∣θ,ϕ⟩, (39)

cos ϕ̂∣θ,ϕ⟩ = cosϕ∣θ,ϕ⟩, sin ϕ̂∣θ,ϕ⟩ = sinϕ∣θ,ϕ⟩, (40)

with one exception. The eigenvalue–eigenvector relations in Eq. (40) cannot be satisfied when the eigenvalues in Eq. (39) correspond to the
cases where θ = 0 or θ = π.

Note that the operators r̂x, r̂y, and r̂z cannot operate solely on the state ∣r⟩, i.e., the domain of those operators lies outside of the space of
the eigenstates of the radial-position operator r̂. Similarly, they cannot act on the state ∣θ,ϕ⟩. Of course, they can act on the tensor-product
state ∣r⟩⊗ ∣θ,ϕ⟩.

However, we can allow the operator r̂ to act only on ∣r⟩ (and as the identity operator on ∣θ,ϕ⟩) and cos θ̂ (and the other sim-
ilar trigonometric operators) act only on ∣θ,ϕ⟩ (and as the identity on ∣r⟩), as will be seen next. Consider cos θ̂ acting on the state
∣r sin θ cosϕ, r sin θ sinϕ, r cos θ⟩ = ∣r⟩⊗ ∣θ,ϕ⟩, which is given by

cos θ̂∣r⟩⊗ ∣θ,ϕ⟩ = r̂z

r̂
∣r⟩⊗ ∣θ,ϕ⟩ (41)

= e−
i
h̵ ϕL̂z r̂ze−

i
h̵ θL̂y 1

r̂
∣0, 0, r⟩

= e−
i
h̵ ϕL̂z e−

i
h̵ θL̂y e

i
h̵ θL̂y r̂ze−

i
h̵ θL̂y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
braiding

1
r̂
∣0, 0, r⟩

= e−
i
h̵ ϕL̂z e−

i
h̵ θL̂y − sin θr̂x + cos θr̂z

r̂
∣0, 0, r⟩

= cos θ∣r⟩⊗ ∣θ,ϕ⟩.

We can accomplish this because the eigenvalue–eigenvector relationship given above is unchanged when we change the value of r in the radial
ket. Hence, the operator cos θ̂ acts as the identity on the ∣r⟩ ket and can be taken to act solely on the ∣θ,ϕ⟩ ket, yielding cos θ̂∣θ,ϕ⟩ = cos θ∣θ,ϕ⟩.
We can proceed similarly to verify that this separation holds true for the three other trigonometric operators. The argument for the radial
operator acting only on ∣r⟩ can also be easily verified.

We can then take the limit δ → 0+ so that exp( i
h̵ δ⃗ ⋅ ˆ⃗p)→ 1. Gathering the final results together, we have established that

∣r⃗⟩ = e−
i
h̵ r(p̂r−i h̵

r̂ )∣r = 0⟩⊗ ∣θ,ϕ⟩ (42)

and
⟨r⃗∣ = ⟨θ,ϕ∣⊗ ⟨r = 0∣e

i
h̵ r(p̂r+i h̵

r̂ ). (43)

These final expressions are a simplification of the translation operator in spherical coordinates when it acts on the state at the origin.
In order to calculate an energy wavefunction in position space, we must also decompose the energy eigenstate vector of the Hamiltonian

according to a radial and angular momentum tensor-product state via

∣Ψ⟩ = ∣ψr⟩⊗ ∣l, m⟩, (44)

where the eigenvalues of ˆ⃗L2 and L̂z (when acting on the state ∣l, m⟩) are l(l + 1)h 2 and mh , respectively. It follows that we can write the
wavefunction as the product of the radial wavefunction and the angular momentum eigenfunction according to

⟨r⃗∣Ψ⟩ = ⟨r∣ψr⟩⟨θ,ϕ∣l, m⟩ (45)

and
Ψ(r⃗) = ψr(r)Yl,m(θ,ϕ), (46)

where
Yl,m(θ,ϕ) = ⟨θ,ϕ∣l, m⟩ (47)

denotes the standard spherical harmonic. A derivation of the spherical harmonic in a representation-independent way using the rotation
operators of the “north-pole” state can be found in Ref. 7. The radial wavefunction is thus given by

ψr(r) = ⟨r∣ψr⟩ = ⟨r = 0∣e
i
h̵ r(pr+i h̵

r̂ )∣ψr⟩. (48)

This is the relation that we will use to determine the radial wavefunctions for the three-dimensional hydrogen atom.
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We now turn to the expression of the two-dimensional translation operator in plane polar coordinates. In terms of Cartesian coordinates,
we have

T̂(ρ⃗) = e−
i
h̵ ρ⃗⋅

ˆ⃗p = e−
i
h̵ (rx p̂x+ry p̂y), (49)

with
ρ⃗ = e⃗xrx + e⃗yry, ˆ⃗p = e⃗xp̂x + e⃗yp̂y. (50)

We use ∣0ρ⃗⟩ as the position-space eigenvector at the origin for this two-dimensional case. We thus have

∣ρ⃗⟩ = T̂(ρ⃗) ∣0ρ⃗⟩. (51)

Probably the simplest way to go from ∣0ρ⃗⟩ to ∣ρ⃗⟩ is to translate by ρ in the +x-direction and then rotate by ϕ about the +z-direction.
Indeed, this is the usual way of defining plane polar coordinates, ρ and ϕ. The corresponding operator is

T̂(ρ⃗) = e−
i
h̵ ϕL̂z e−

i
h̵ ρp̂x e

i
h̵ ϕL̂z . (52)

To show that this is correct, we use the braiding relation to obtain

T̂(ρ⃗) = e−
i
h̵ ρ(p̂x cos ϕ+p̂y sin ϕ). (53)

Since
rx = ρ cosϕ and ry = ρ sinϕ, (54)

we immediately see that Eq. (53) reduces to Eq. (49).
From Eqs. (A22) and (A23), we obtain

p̂x = (p̂ρ − i
h̵

2 ρ̂
) cos ϕ̂ − p̂ϕ sin ϕ̂ (55)

and

p̂y = (p̂ρ − i
h̵

2 ρ̂
) sin ϕ̂ + p̂ϕ cos ϕ̂. (56)

We use Eqs. (52) and (55) to write

T̂(ρ⃗) = e−
i
h̵ ϕL̂z e−

i
h̵ ρ[(p̂ρ−i h̵

2 ρ̂ ) cos ϕ̂−p̂ϕ sin ϕ̂]e
i
h̵ ϕL̂z . (57)

We note that this is an operator identity.
A second way to express T̂(ρ⃗) in plane polar coordinates is simply to use Eqs. (54)–(56) to substitute for the Cartesian quantities in

Eq. (49). In this way, we obtain

rxp̂x + ryp̂y = ρ[(p̂r − i
h̵

2 ρ̂
)(cosϕ cos ϕ̂ + sinϕ sin ϕ̂) − p̂ϕ(cosϕ sin ϕ̂ − sinϕ cos ϕ̂)], (58)

rxp̂x + ryp̂y = ρ[(p̂r − i
h̵

2 ρ̂
) cos(ϕ̂ − ϕ) − p̂ϕ sin(ϕ̂ − ϕ)], (59)

and

rxp̂x + ryp̂y = e−
i
h̵ ϕL̂zρ[(p̂r − i

h̵
2 ρ̂
) cos ϕ̂ − p̂ϕ sin ϕ̂]e

i
h̵ ϕL̂z . (60)

Upon substitution of this into Eq. (49), we immediately obtain Eq. (57).
Next, we determine how the general operator form of the translation operator in plane polar coordinates simplifies when it acts on the

origin state in two dimensions, ∣0ρ⃗⟩, similar to what we did in the three-dimensional case.
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We introduce the same pair of δ⃗-dependent exponentials to the left of T̂(ρ⃗), where δ⃗ is a two-dimensional vector along ρ⃗, move the
rightmost exponential factor to the right through T̂(ρ⃗), and operate on ∣0ρ⃗⟩. We thus obtain

∣ρ⃗⟩ = e
i
h̵ δ⃗ ⋅

ˆ⃗pT̂(ρ⃗)∣δx, δy⟩. (61)

The choice that δ⃗ lies along the same direction as ρ⃗ implies that Eq. (29) holds and

e
i
h̵ ϕL̂z ∣δx, δy⟩ = ∣δ, 0⟩, (62)

where δ is given by Eq. (33) with δz = 0. Note that

cos ϕ̂∣δ, 0⟩ = r̂x

ρ̂
∣δ, 0⟩ = ∣δ, 0⟩ (63)

and

sin ϕ̂∣δ, 0⟩ = r̂y

ρ̂
∣δ, 0⟩ = 0. (64)

We expand the exponential containing p̂ρ in Eq. (57) and use the action of cos ϕ̂ and sin ϕ̂ on ∣δ, 0⟩ to simplify each term and then re-sum to
obtain exp[− i

h̵ρ(p̂ρ − i h̵
2 ρ̂)] acting on the ket. This yields

∣ρ⃗⟩ = e
i
h̵ δ⃗ ⋅

ˆ⃗pe−
i
h̵ ϕL̂z e−

i
h̵ ρ(p̂ρ−i h̵

2 ρ̂ )∣δ, 0⟩. (65)

Since L̂z commutes with p̂ρ and ρ̂, we can separate the radial and angular degrees of freedom according to

∣δx, δy⟩ = e−
i
h̵ ϕL̂z ∣δ, 0⟩ = ∣ρ = δ⟩⊗ ∣ϕ⟩. (66)

We define the radial coordinate eigenstate to satisfy
ρ̂∣ρ⟩ = ρ∣ρ⟩. (67)

A direct calculation gives ρ̂∣δx, δy⟩ = δ∣δx, δy⟩ justifying the label ρ = δ in Eq. (66). We similarly define the angular state, ∣ϕ⟩, to be the state that
satisfies

cos ϕ̂∣ϕ⟩ = cosϕ∣ϕ⟩, sin ϕ̂∣ϕ⟩ = sinϕ∣ϕ⟩. (68)

Note that the operators r̂x and r̂y cannot operate solely on the states ∣ρ⟩ or ∣ϕ⟩; that is, the domain of those operators lies outside of the
space of the eigenstates of the radial-position operator ρ̂ and of the angle ket ∣ϕ⟩. Of course, they can act on the tensor-product state ∣ρ⟩⊗ ∣ϕ⟩
by decomposing the Cartesian position operators into their polar coordinate counterparts.

However, the operator ρ̂ does act only on ∣ρ⟩, which is its eigenstate, and it acts as the identity operator on ∣ϕ⟩. Similarly, cos ϕ̂ and sin ϕ̂
act nontrivially on ∣ϕ⟩, but as the identity on ∣ρ⟩, as derived below. Consider cos ϕ̂ acting on the state ∣ρ cosϕ, ρ sinϕ⟩ = ∣ρ⟩⊗ ∣ϕ⟩, which is
given by

cos ϕ̂∣ρ⟩⊗ ∣ϕ⟩ = r̂x

ρ̂
∣ρ⟩⊗ ∣ϕ⟩ (69)

= r̂xe−
i
h̵ ϕL̂z 1

ρ̂
∣ρ, 0⟩

= e−
i
h̵ ϕL̂z e

i
h̵ ϕL̂z r̂xe−

i
h̵ ϕL̂z

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
braiding

1
ρ̂
∣ρ, 0⟩

= e−
i
h̵ ϕL̂z cosϕr̂x − sinϕr̂y

ρ̂
∣ρ, 0⟩

= cosϕ∣ρ⟩⊗ ∣ϕ⟩.

Note that the eigenvalue–eigenvector relationship given above is unchanged when we change the value of ρ in the radial ket. Hence, the
operator cos ϕ̂ acts as the identity on the ∣ρ⟩ ket and can be taken to act solely on the ∣ϕ⟩ ket, yielding cos ϕ̂∣ϕ⟩ = cosϕ∣ϕ⟩. Similarly, this
separation also holds for sin ϕ̂. The argument for the radial operator acting only on ∣ρ⟩ can be verified by a similar argument.

J. Math. Phys. 62, 072102 (2021); doi: 10.1063/5.0021013 62, 072102-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

We now take the limit δ → 0+ so that exp( i
h̵ δ⃗ ⋅ ˆ⃗p)→ 1. Gathering the final results together, we have established that

∣ρ⃗⟩ = e−
i
h̵ ρ(p̂ρ−i h̵

2 ρ̂ )∣ρ = 0⟩⊗ ∣ϕ⟩ (70)

and

⟨ρ⃗∣ = ⟨ϕ∣⊗ ⟨ρ = 0∣e
i
h̵ ρ(p̂ρ+i h̵

2 ρ̂ ). (71)

These final expressions are the simplification of the translation operator in plane polar coordinates that we sought when it acts on the state at
the origin.

To calculate an energy wavefunction in position space, we decompose the energy eigenstate of the Hamiltonian into the tensor product
of a radial state and an eigenstate of L̂z . This is given by

∣Ψ⟩ = ∣ψρ⟩⊗ ∣m⟩, (72)

with L̂z ∣m⟩ = h̵m∣m⟩. The wavefunction is then expressed as the product of a radial wavefunction and a z-component of angular momentum
eigenfunction according to

⟨ρ⃗∣Ψ⟩ = ⟨ρ∣ψρ⟩⟨ϕ∣m⟩ (73)

or
Ψ(ρ⃗) = ψρ(ρ)Ym(ϕ). (74)

Here,

Ym(ϕ) = ⟨ϕ∣m⟩ = ⟨ϕ = 0∣e
i
h̵ L̂z ∣m⟩ = ⟨ϕ = 0∣m⟩eimϕ = eimϕ

√
2 π

(75)

denotes the standard eigenfunction of L̂z . We used the fact that normalization requires ⟨ϕ = 0∣m⟩ = 1/
√

2π. The radial wavefunction is then
given by

ψρ(r) = ⟨ρ∣ψρ⟩ = ⟨ρ = 0∣e
i
h̵ ρ(p̂ρ+i h̵

2 ρ̂ )∣ψρ⟩. (76)

This is the relation that we use to determine the radial wavefunctions for the two-dimensional hydrogen atom in Sec. III.

III. APPLICATION OF THE FORMALISM TO THE COULOMB PROBLEM
We now show how these translation operators can be used to calculate wavefunctions of the Coulomb problem in three and two

dimensions. We start in three dimensions, where we have

ℋ̂ 3d = p̂2
x + p̂2

y + p̂2
z

2 μ
− e2

r̂
. (77)

Here, μ is the reduced mass for the atom and ∓e are the electronic and nuclear charges, respectively. Using the decomposition of the kinetic
energy into radial and angular degrees of freedom, we find that the Hamiltonian can be re-written as

ℋ̂ 3d = p̂2
r

2 μ
+

ˆ⃗L ⋅ ˆ⃗L
2 μr̂2 −

e2

r̂
. (78)

We use a tensor product to represent the state vector in terms of the angular momentum eigenstate, ∣l, m⟩, and the radial state ∣ψr⟩ via
∣ψ⟩ = ∣ψr⟩⊗ ∣l, m⟩. Then, because ˆ⃗L ⋅ ˆ⃗L∣l, m⟩ = h̵2l(l + 1)∣l, m⟩, we have

ℋ̂ 3d(∣ψr⟩⊗ ∣l, m⟩) = [ p̂2
r

2 μ
+ h̵2l(l + 1)

2 μr̂2 − e2

r̂
]∣ψr⟩⊗ ∣l, m⟩

= (ℋ̂ 3d
l ∣ψr⟩)⊗ ∣l, m⟩, (79)

which defines the Hamiltonian ℋ̂ 3d
l for a specific angular momentum sector. This Hamiltonian acts only on the radial part of the state vector

because all terms in ℋ̂ 3d
l commute with ˆ⃗L.
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The Schrödinger factorization method is used to factorize each of these angular-momentum-sector Hamiltonians via

ℋ̂ 3d
l =

p̂2
r

2 μ
+ h̵2l(l + 1)

2 μr̂2 − e2

r̂
= B̂†

l B̂l + El, (80)

where the correct lowering operator satisfies

B̂l =
1√
2 μ
{p̂r − ih̵[ 1

(l + 1)a0
− l + 1

r̂
]}, (81)

which we can verify with the use of the commutation relation [p̂r , r̂k] = −ih̵kr̂k−1 (which can be derived by induction from the radial momen-
tum canonical commutation relation using the techniques in the Appendix). Note that the reason one can see for those two specific terms in
B̂l is that when we square the term in parentheses and when we commute it with p̂r , the resulting terms are always a constant term, a linear
term in 1/r̂, and a quadratic term (1/r̂2). By adjusting the coefficients, we can arrange for the product B̂†

l B̂l to have the required form. The
symbol a0 = h̵2

μe2 is the Bohr radius, and El = − e2

2(l+1)2a0
.

We denote the eigenstate of ℋ̂ 3d
l , corresponding to eigenvalue El=n−1 as ∣n, l = n − 1⟩. Here, n, which is a positive integer, is the standard

principal quantum number, and the energy is degenerate for all l such that 0 ≤ l ≤ n − 1. We then have

En−1 = −
e2

2 n2a0
, (82)

which, unfortunately, is conventionally denoted as En. To avoid confusion in the equations that follow, we do not redefine it, as is customarily
done. Further note that the choice for the lowering operator in Eq. (81) was made so that the set of energies En−1 form an increasing sequence
for 1 ≤ n <∞. This choice for the increasing sequence guarantees that the eigenfunctions are all normalizable bound states.

Since B̂†
l B̂l is a non-negative semidefinite operator, it follows from Eq. (80) that the ground state ∣n, n − 1⟩ of ℋ̂ 3d

n−1 satisfies

ℋ̂ 3d
n−1∣n, n − 1⟩ = En−1∣n, n − 1⟩, (83)

with
B̂n−1∣n, n − 1⟩ = 0. (84)

As we will see, this condition, which we term the subsidiary condition, facilitates the determination of all the eigenstates ∣n, l⟩.
One can also directly verify that when the raising and lowering operators act in the “wrong” order, we have

B̂lB̂
†
l =

p̂2
r

2 μ
+ h̵2(l + 1)(l + 2)

2 μr̂2 − e2

r̂
− El = ℋ̂ 3d

l+1 − El. (85)

This allows us to derive the intertwining relationship when a B̂†
l operator is moved to the left past a ℋ̂ 3d

l operator. In particular, we have

ℋ̂ 3d
l B̂†

l = (B̂
†
l B̂l + El)B̂†

l

= B̂†
l B̂lB̂

†
l + ElB̂

†
l

= B̂†
l (B̂lB̂

†
l + El)

= B̂†
l ℋ̂

3d
l+1. (86)

Hence, when a B̂†
l operator starts on the right and moves to the left through ℋ̂ 3d

l , it shifts the index l of the Hamiltonian upward by one.
We use this intertwining identity to construct all the energy eigenstates that have energy En−1. Note that this approach is different from

the original Schrödinger approach. It is the simplest way to establish all the energy eigenstates. For each n, we can find a total of n states with
different total angular momenta that are eigenstates. The key observation is that the following set of states are eigenstates:

∣n, l⟩ = CnlB̂
†
l B̂†

l+1 . . . B̂†
n−3B̂†

n−2∣n, n − 1⟩, (87)

where 0 ≤ l ≤ n − 1: note that when l = n − 1, there are no B̂† operators needed and when l = 0, the string runs from l = n − 2 down to l = 0. In
particular, there is no B̂†

−1 operator because El → −∞ as l → −1. This terminates the chain at l = 0. The number Cnl is a normalization constant,
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which we determine below. To prove that ∣n, l⟩ is an eigenstate of energy En−1, we simply operate with ℋ̂ 3d
l on ∣n, l⟩. Using the intertwining

relation, to move the ℋ 3d operator to the right, increasing its index by one with every step, we find that

ℋ̂ 3d
l ∣n, l⟩ = ℋ̂ 3d

l CnlB̂
†
l B̂†

l+1 . . . B̂†
n−3B̂†

n−2∣n, n − 1⟩
= CnlB̂

†
l ℋ̂

3d
l+1B̂†

l+1 . . . B̂†
n−3B̂†

n−2∣n, n − 1⟩
= CnlB̂

†
l B̂†

l+1 . . . B̂†
n−3ℋ̂

3d
n−2B̂†

n−2∣n, n − 1⟩
= CnlB̂

†
l B̂†

l+1 . . . B̂†
n−3B̂†

n−2ℋ̂
3d

n−1∣n, n − 1⟩

= − e2

2n2a0
∣n, l⟩ (88)

since the state ∣n, n − 1⟩ is an eigenstate of ℋ̂ 3d
n−1 with eigenvalue −e2/2n2a0. We see that for a given n, all the states ∣n, l⟩, with 0 ≤ l ≤ n − 1,

belong to the eigenvalue En−1. Hence, we have constructed eigenstates of each of the lth angular-momentum-sector Hamiltonians with 0 ≤ l ≤
n − 1. When we make a tensor product of such a state with an ∣l, m⟩ angular momentum state, it becomes an eigenstate of the full Coulomb
Hamiltonian.

Before further moving in the derivation, we illustrate schematically what the energy levels are and how the different eigenstates interrelate.
This is depicted in Fig. 2.

We also use the intertwining relation to normalize the state and determine Cnl. This is done by simply computing the norm

1 = ⟨n, l∣n, l⟩ = ∣Cnl∣2⟨n, n − 1∣B̂n−2 . . . B̂lB̂
†
l

±
. . . B̂†

n−2∣n, n − 1⟩. (89)

We start with the innermost pair of raising and lowering operators and note that B̂lB̂
†
l = ℋ̂

3d
l+1 − El. If we move this operator through to the

right, increasing its index by one with each step, until it acts directly on the state ∣n, n − 1⟩, we see that the intertwining relation will convert
the Hamiltonian to the one corresponding to l = n − 1. This can be immediately evaluated against the state ∣n, n − 1⟩, yielding the eigenvalue
En−1. The net effect is we remove the product of the two operators B̂lB̂

†
l and replace it with the factor (En−1 − El). Repeating n − l − 2 more

times, we find that

Cnl =
1√

∏n−2
k=l (En−1 − Ek)

(90)

=

¿
ÁÁÀ(2a0n2

e2 )
n−l−1 (n + l)![(n − 1)!]2

(2n − 1)!(n − l − 1)!(l!)2 . (91)

Note that this final result requires that the initial state ∣n, n − 1⟩ be normalized, i.e., ⟨n, n − 1∣n, n − 1⟩ = 1. We will ensure that this is true.

FIG. 2. Plot of the energy levels of the three-dimensional Coulomb problem up to n = 4. The states ∣n, n − 1⟩ are the rightmost states in each row. Each additional B̂† operator
moves us one step to the left (there are no more B̂† operators to apply after l = 0). All energies in a given row are degenerate. The dashed line shows where E = 0.
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The next step is to show that the string of B̂† operators acting on ∣n, n − 1⟩ is proportional to a Laguerre polynomial in r̂ (multiplied by
a power of 1/r̂) acting on the same state. To do this, we need to go through a proof by induction. Our starting point is to observe that the
subsidiary condition in Eq. (84) can be rewritten as

p̂r ∣n, n − 1⟩ = ih̵( 1
na0
− n

r̂
)∣n, n − 1⟩. (92)

This allows us to replace the radial momentum operator acting on the state ∣n, n − 1⟩ by the sum of a constant and a term that goes like 1/r̂
(acting on the same state). Given that the commutation relation of the radial momentum with an inverse power of r̂ increases the power by
one as well, one can immediately see that the string of B̂† operators acting on ∣n, n − 1⟩ will be a polynomial of degree n − l − 1 in 1/r̂. By
factoring out 1/r̂n−l−1, we are left with a polynomial of degree n − l − 1 in r̂. Recognizing that the dimensionality of a B̂† operator is h̵/(√μa0)
and using 2r̂/na0 as the expansion parameter for the polynomial, we have that

B̂†
l . . . B̂†

n−2∣n, n − 1⟩ = ( 2ih̵√
2μna0

)
n−l−1

(na0

2r̂
)

n−l−1 n−l−1

∑
j=0

b(l)j (
2r̂

na0
)

j
∣n, n − 1⟩. (93)

Note that we are suppressing a label of n corresponding to the principal quantum number in the notation for the b coefficients to streamline
the notation; one must remember that a set of b coefficients is generated for each principal quantum number n. We choose the base case to
correspond to l = n − 2, where the polynomial is just equal to

B̂†
n−2∣n, n − 1⟩ = ih̵√

2 μ
[ 2n − 1

n(n − 1)a0
− 2n − 1

r̂
]∣n, n − 1⟩

= ( 2ih̵√
2μna0

)(na0

2r̂
)[−2n + 1 + 2n − 1

2(n − 1)(
2r̂

na0
)]∣n, n − 1⟩, (94)

so that b(n−2)
0 = −2n + 1 and b(n−2)

1 = (2n − 1)/2(n − 1). (One could have taken the base case as l = n − 1, with b(n−1)
0 = 1, but we chose not

to because that is a trivial base case.) To evaluate the induction step, we remove the leftmost B̂†
l and collect what remains in terms of the

polynomial for l + 1. Then, we operate the p̂r operator to the right, commuting it through the r̂ operators until it can act on the state ∣n, n − 1⟩,
where we can use Eq. (92) to replace it by a binomial in 1/r̂. After collecting the coefficients of powers of r̂, we find that

n−l−1

∑
j=0

b(l)j (
2r̂

na0
)

j
=

n−l−1

∑
j=0
( 2r̂

na0
)

j
[−( j + 2l + 3)b(l+1)

j + n + l + 1
2(l + 1) b(l+1)

j−1 ], (95)

where we set b(l+1)
−1 = b(l+1)

n−l−1 = 0. The key to determining that these results yield associated Laguerre polynomials is to compute the ratio of
successive coefficients of the lth polynomial using the two formulas we have. This gives

b(l)j+1

b(l)j

=
(j + 2l + 4)( b(l+1)

j+1

b(l+1)
j
) − n+l+1

2(l+1)

(j + 2l + 3) − n+l+1
2(l+1)(

b(l+1)
j

b(l+1)
j−1
)
−1 for 0 ≤ j ≤ n − l − 2. (96)

Here, again, we note that b(l+1)
−1 = b(l+1)

n−l−1 = 0. This brings us to the induction hypothesis. The ratio is given by

b(l)j+1

b(l)j

= j − n + l + 1
(j + 1)(j + 2l + 2) . (97)

One can immediately see from Eq. (94), for l = n − 2, that the base case gives b(n−2)
1 /b(n−2)

0 = −1/2(n − 1), which agrees with the induction
hypothesis in Eq. (97) for l = n − 2 and j = 0. Hence, we assume that it holds for l + 1 and substitute into Eq. (96) to show it holds for l. This
yields

b(l)j+1

b(l)j

=
(j−n+l+2)
(j+1) − (n+l+1)

2(l+1)

(j + 2l + 3)[1 − (n+l+1)j
2(l+1)(j−n+l+1) ]

. (98)
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Putting everything over common denominators yields

b(l)j+1

b(l)j

= (j − n + l + 1)[2(l + 1)(j − n + l + 2) − (j + 1)(n + l + 1)]
(j + 2l + 3)(j + 1)[2(l + 1)(j − n + l + 1) − j(n + l + 1)] . (99)

Expanding the terms in the numerator and denominator in the square brackets, factorizing the expansion, and simplifying then reduces this
result to the one in Eq. (97), which establishes the induction proof. It turns out that the coefficients of a polynomial that satisfy Eq. (97) are
associated Laguerre functions. We use the definition of the associated Laguerre function given by Powell and Crasemann in their quantum
mechanics textbook,8

Lαk(x) =
m

∑
j=0

(−1)j

j!
(k + α

k − j) xj =
k

∑
j=0

a(α,k)
j xj, (100)

which defines the coefficients of the polynomial a(α,k)
j . We immediately see from Eq. (100) that

a(α,k)
j+1

a(α,k)
j

= j − k
(j + 1)(α + j + 1) . (101)

This then tells us that the polynomial given by the string of B̂† operators acting on ∣n, n − 1⟩ is proportional to the associated Laguerre function
with argument given by 2r̂/na0, α = 2l + 1, and k = n − l − 1. To find the constant of proportionality [in addition to the power (2r̂/na0)n−l−1,
which we already knew from Eq. (93)], we evaluate the constant term (no r̂ dependence or the maximal power of r̂ in the sum) in Eq. (93). It
is given by

( 2ih̵√
2μna0

)
n−l−1

b(l)n−l−1 = (
ih̵√
2 μ
)

n−l−1 n−1

∏
k=l+1
( 1

na0
+ 1

ka0
), (102)

where the right-hand side is found from the constant terms in each B̂† and from each p̂r in each B̂† when it acts on ∣n, n − 1⟩. This constant
term is not modified by the commutators of the radial momentum with inverse powers of r̂. From this, we learn that

b(l)n−l+1 = (
1
2
)

n−l−1 l!(2n − 1)!
(n − 1)!(n + l)! . (103)

However, if we instead express b(l)n−l−1 in terms of the maximal coefficient of the Laguerre polynomial, we find that

b(l)n−l+1 = C′a(2l+1,n−l−1)
n−l−1 = C′

(−1)n−l−1

(n − l − 1)! , (104)

where C′ is the proportionality constant we need to determine. We immediately learn that

C′ = (−1
2
)

n−l−1 l!(n − l − 1)!(2n − 1)!
(n + l)!(n − 1)! . (105)

Putting this all together, we have derived the identity that

B̂†
l B̂†

l+1 . . . B̂†
n−3B̂†

n−2∣n, n − 1⟩ = (− ih̵√
2μna0

)
n−l−1 l!(n − l − 1)!(2n − 1)!

(n + l)!(n − 1)!

×(na0

2r̂
)

n−l−1
L2l+1

n−l−1(
2r̂

na0
)∣n, n − 1⟩. (106)

Finally, we multiply by Cnl from Eq. (91) and find that

∣n, l⟩ = (−i)n−l−1

¿
ÁÁÀ(n − l − 1)!(2n − 1)!

(n + l)! (na0

2r̂
)

n−l−1
L2l+1

n−l−1(
2r̂

na0
)∣n, n − 1⟩. (107)

Since the eigenvector is defined only up to a complex phase, we choose to remove the factor of (−i)n−l−1 in the following.
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We are now ready to compute the wavefunction. We take the overlap of the position eigenstate with the energy eigenstate or

(⟨θϕ∣⊗ ⟨r∣)(∣n, l⟩⊗ ∣l, m⟩). (108)

Using the fact that7

Ylm = ⟨θϕ∣lm⟩, (109)

we find that

ψnlm(r, θ,ϕ) =
¿
ÁÁÀ(n − l − 1)!(2n − 1)!

(n + l)! ⟨r∣(na0

2r̂
)

n−l−1
L2l+1

n−l−1(
2r̂

na0
)∣n, n − 1⟩Ylm(θ,ϕ). (110)

Because r̂∣r⟩ = r∣r⟩, we immediately find that

ψnlm(r, θ,ϕ) =
¿
ÁÁÀ(n − l − 1)!(2n − 1)!

(n + l)! ⟨r∣n, n − 1⟩(na0

2r
)

n−l−1
L2l+1

n−l−1(
2r

na0
)Ylm(θ,ϕ). (111)

What remains is to determine the first wavefunction in the chain, ϕn(r) = ⟨r∣n, n − 1⟩. This is where we need to use the translation operator
in spherical coordinates. The radial translation operator is an exponential of i r(p̂r + ih̵

r̂ )/h̵ when acting on the position eigenvector at the
origin. While one can evaluate the exponential of an operator acting on a state via expanding the power series term by term, a more efficient
evaluation can be accomplished if one evaluates the operator acting on one of its eigenvectors—then, the exponentiation becomes trivial. This
is the strategy we adopt here.

We start with some additional operator identities. First, note that [p̂r , r̂−n+1] = ih̵(n − 1)/r̂n. (See the Appendix for details.) Hence, we
use Eq. (92) and the commutator to find that

p̂r
1

r̂n−1 ∣n, n − 1⟩ = ih̵( 1
na0 r̂n−1 −

1
r̂n )∣n, n − 1⟩, (112)

or

(p̂r +
ih̵
r̂
) 1

r̂n−1 ∣n, n − 1⟩ = ih̵
na0

1
r̂n−1 ∣n, n − 1⟩. (113)

Note that this says that the state (1/r̂n−1)∣n, n − 1⟩ is an eigenvector for the operator (p̂r + ih̵
r̂ )with eigenvalue ih/na0. An imaginary eigenvalue

is possible because this operator is not Hermitian.
We are now ready to use the translation operator in spherical coordinates. Since ⟨θϕ∣ = ⟨0, 0, 1∣ exp(iθL̂y/h̵) exp(iϕL̂z/h̵), we have that

⟨r∣ = ⟨0r ∣ exp[ ir
h̵
(p̂r +

ih̵
r̂
)]. (114)

The wavefunction ϕn(r) then becomes

ϕn(r) = ⟨r∣n, n − 1⟩ = ⟨r∣ r̂
n−1

r̂n−1 ∣n, n − 1⟩ = rn−1⟨r∣ 1
r̂n−1 ∣n, n − 1⟩

= rn−1⟨0r ∣ exp[ ir
h̵
(p̂r +

ih̵
r̂
)] 1

r̂n−1 ∣n, n − 1⟩. (115)

Because the state on the right is an eigenvector for (p̂r + ih̵
r̂ ), we immediately find that

ϕn(r) = rn−1 exp(− r
na0
)⟨0r ∣

1
r̂n−1 ∣n, n − 1⟩. (116)

Note that the term ⟨0r ∣ 1
r̂n−1 ∣n, n − 1⟩ is a constant because Eq. (116) shows that

lim
r→0

1
rn−1 ϕn(r) = ⟨0r ∣

1
r̂n−1 ∣n, n − 1⟩. (117)
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Its precise value is determined by normalization. We find that

1 = (⟨0r ∣
1

r̂n−1 ∣n, n − 1⟩)
2

∫
∞

0
dr r2ne−

2r
na0 , (118)

which yields

ϕn(r) = (
2

na0
)

n+ 1
2 1√
(2n)!

rn−1 exp(− r
na0
). (119)

While this result can be calculated in many different ways, one cannot calculate this wavefunction using the translation operator in Cartesian
coordinates; the translation operator must be expressed in terms of spherical coordinates because it involves a power series in r that includes
odd powers.

We can now summarize our final wavefunction by combining all our results together,

ψnlm(r, θ,ϕ) = ( 2
na0
)

3
2

¿
ÁÁÀ(n − l − 1)!

2n(n + l)! (
2r

na0
)

l
L2l+1

n−l−1(
2r

na0
)e−

r
na0 Ylm(θ,ϕ), (120)

which is the standard result for the three-dimensional Coulomb bound-state wavefunctions using the Laguerre polynomial definition in
Eq. (100). We want to stress that the entire calculation was based on the representation-independent approach described in the introduction.
All the steps in the derivation used operator algebra. We never needed to represent momentum operators in terms of spatial derivatives. It is
comforting to know that wavefunctions can be calculated in such a representation-independent way.

Having completed our first example, we now move on to the second. We will expedite the description because many of the techniques
for the two-dimensional case are similar to those of the three-dimensional case. However, the two-dimensional case does illustrate some
interesting new twists, so it is important to describe it carefully.

The Coulomb Hamiltonian in two dimensions is given by

ℋ̂ 2d = p̂2
x + p̂2

y

2μ
− e2

ρ̂
. (121)

The kinetic energy can again be decomposed into radial and angular components (see the Appendix),

ℋ 2d = p̂2
ρ

2μ
+ L̂2

z − h̵2

4
2μρ̂2 −

e2

ρ̂
, (122)

with

p̂ρ =
1
ρ̂
(r̂xp̂x + r̂yp̂y −

ih̵
2
). (123)

Note that in two dimensions, we do have a quantum correction to the kinetic energy (given by the −h̵2/8μρ̂2 term). Here, the angular momen-
tum states are given by eigenstates of L̂z , which satisfy L̂z ∣m⟩ = h̵m∣m⟩. Therefore, we form the energy eigenstates as a tensor product of radial
and angular momentum states via ∣ψ⟩ = ∣ψρ⟩⊗ ∣m⟩. Operating the Hamiltonian onto the tensor-product state yields

ℋ 2d(∣ψρ⟩⊗ ∣m⟩) = [
p̂2
ρ

2μ
+ h̵2(m2 − 1

4)
2μρ̂2 − e2

ρ̂
]∣ψρ⟩⊗ ∣m⟩

= (ℋ 2d
m ∣ψρ⟩)⊗ ∣m⟩, (124)

where the second line defines the set of Hamiltonians, ℋ 2d
m , that operate only on the radial state ∣ψρ⟩. Note here that the index m can be a

positive or negative integer, unlike in the three-dimensional case, where l is a non-negative integer. Since each of these Hamiltonians depends
on m only through m2, we immediately learn that the radial eigenfunctions and the energy eigenvalues depend only on the magnitude of m,
that is, on ∣m∣.

We continue to use the Schrödinger factorization method for m ≥ 0 via

ℋ 2d
m =

p̂2
ρ

2μ
+

h̵2(m2 − 1
4)

2μρ̂2 − e2

ρ̂
= B̂†

mB̂m + Em. (125)
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A quick calculation tells us that

B̂m =
1√
2μ
{p̂ρ − ih̵[ 1

(m + 1
2)a0

−
(m + 1

2)
ρ̂

]} (126)

and

Em = −
e2

2a0(m + 1
2)

2 . (127)

Note that for m ≥ 0, the energies form an increasing sequence, which is required for all the energy eigenstates to be normalizable. While the
algebra above holds for all m, we first focus on working with non-negative m; we will describe how to handle negative m later. In particular,
we already know that the radial part of the eigenvectors will be identical, as will the energies, so we will not be using the above formulas with
negative m to solve these problems.

Computing the product of the two operators in opposite order gives us

B̂mB̂†
m + Em =

p̂2
ρ

2μ
+

h̵2[(m + 1)2 − 1
4 ]

2μρ̂2 − e2

ρ̂
=ℋ 2d

m+1. (128)

This relation is essentially the same relation as we had in three-dimensions, Eq. (85), so that we immediately find the corresponding
intertwining relation (for m ≥ 0)

ℋ 2d
m B̂†

m = B̂†
mℋ

2d
m+1, (129)

which can be employed to find eigenstates in the same fashion: we have the eigenvectors given by

∣n, m⟩ = CnmB̂†
mB̂†

m+1 . . . B̂†
n−3B̂†

n−2∣n, n − 1⟩, (130)

for m ≥ 0, with the eigenvalues equal to

En−1 = −
e2

2a0(n − 1
2)

2 (131)

and Cnm being a normalization constant. The state ∣n, m = n − 1⟩ = ∣n, n − 1⟩ satisfies

B̂n−1∣n, n − 1⟩ = 0. (132)

As seen in the three-dimensional case, the normalization constant (for m ≥ 0) is given by

Cnm =
1√

∏n−2
k=m(En−1 − Ek)

= (
√

a0(n − 1
2)√

2e
)

n−m−1¿ÁÁÀ (n +m − 1)![(2n − 3)‼]2
(2n − 2)!(n −m − 1)![(2m − 1)‼]2 . (133)

We now discuss some interesting observations about what happens when m < 0. For example, one can see from Eq. (126) that
B̂−∣m∣ = B̂†

∣m∣−1. Hence, if we extend the eigenstates in Eq. (130) for m < 0, then, because we have that

B̂†
−∣m∣ . . . B̂†

−1B̂†
0 . . . B̂†

∣m∣−1 = B̂∣m∣−1 . . . B̂0B̂†
0

±
. . . B̂†

∣m∣−1

= B̂∣m∣−1 . . . B̂1(ℋ 2d
1 − E0)B̂†

1 . . . B̂†
∣m∣−1

= B̂∣m∣−1 . . . B̂1B̂†
1 . . . B̂†

∣m∣−1(ℋ
2d
∣m∣ − E0)

= (ℋ 2d
∣m∣ − E∣m∣−1) . . . (ℋ 2d

∣m∣ − E0), (134)

we can show the equivalence of the radial component of the eigenvectors for negative m with positive m. If we let the product of operators in
Eq. (134) act on ∣n, ∣m∣⟩, then each ℋ 2d

∣m∣ yields E∣m∣, so we find that

∣n,−∣m∣⟩ = ∣n, ∣m∣⟩ (135)

directly from the operator identities. This confirms our statement before that the radial component of the eigenvector for −∣m∣ is identical
to the eigenvector for ∣m∣ (with the same principal quantum number n). Further note that the product of numerical factors is precisely the
numerical factors to guarantee that Cn−∣m∣ = Cn∣m∣, which is why we have an equality in Eq. (135) rather than a proportionality.
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FIG. 3. Plot of the energy levels of the two-dimensional Coulomb problem up to n = 4. The states ∣n, n − 1⟩ are the rightmost states in each row. Each additional B̂† operator
moves us one step to the left (there are no more B̂† operators to apply after m = −n + 1). All energies in a given row are degenerate. The dashed line shows where E = 0.

At this stage, we show the spectra along with the operator representation of the radial components of the eigenvectors in Fig. 3. All the
states in a horizontal row (fixed n, −n + 1 ≤ m ≤ n − 1) are degenerate with energy En−1. The column with m = 0 has the largest number of
eigenstates. As ∣m∣ increases, the number of total eigenstates decreases by 1 for each step moving further away from m = 0 (to the right or to
the left).

Our next goal is to find the wavefunctions in position space, and we now assume m ≥ 0 again. As mentioned before, we see that the string
of B̂† operators acting on the state ∣n, n − 1⟩ will create a polynomial of degree n −m − 1 in 1/ρ̂. If we factor out the term 1/ρ̂n−m−1, then the
polynomial is an order n −m − 1 polynomial in ρ̂. Just as we saw happen in three dimensions, it turns out to be a Laguerre polynomial for the
two-dimensional case too.

To see this, we start with a definition of the coefficients of the nth polynomial (for m ≥ 0, without loss of generality),

B̂†
m . . . B̂†

n−2∣n, n − 1⟩ =
⎡⎢⎢⎢⎣

2ih̵√
2μ(n − 1

2)a0

⎤⎥⎥⎥⎦

n−m−1

[
(n − 1

2)a0

2ρ̂
]

n−m−1n−m−1

∑
j=0

b(m)j [ 2ρ̂
(n − 1

2)a0
]

j

∣n, n − 1⟩. (136)

Again, we suppress the index n in the labeling of the b coefficients for notational simplicity. We consider the base case first, corresponding
to m = n − 2. First, we need to determine a modification of the subsidiary condition in Eq. (132) to determine what happens when the radial
momentum acts on ∣n, n − 1⟩,

p̂ρ∣n, n − 1⟩ = ih̵[ 1
(n − 1

2)a0
− n − 1

2
ρ̂
]∣n, n − 1⟩. (137)

Next, we have that the base case is

B̂†
n−2∣n, n − 1⟩ = ih̵√

2μ
[ 2n − 2
(n − 1

2)(n −
3
2)a0

− 2n − 2
ρ̂
]∣n, n − 1⟩

=
⎡⎢⎢⎢⎣

2ih̵√
2μ(n − 1

2)a0

⎤⎥⎥⎥⎦
[
(n − 1

2)a0

2ρ̂
][−(2n − 2) + 2n − 2

2n − 3
2ρ̂

(n − 1
2)a0
]∣n, n − 1⟩ (138)

so that b(n−2)
0 = −(2n − 2) and b(n−2)

1 = (2n − 2)/(2n − 3). This means that b(n−2)
1 /b(n−2)

0 = −1/(2n − 3), a fact we shall use momentarily.
After establishing the base case for the proof by induction, we next examine the m-th polynomial by splitting off the operator B̂†

m and
having it act on the (m + 1)st polynomial. This yields

n−m−1

∑
j=0
[−(j + 2m + 2)b(m+1)

j + m + n
2m + 1

b(m+1)
j−1 ][ 2ρ̂

(n − 1
2)a0
]

j

=
n−m−1

∑
j=0

b(m)j [ 2ρ̂
(n − 1

2)a0
]

j

. (139)

Then, we determine the ratio of subsequent coefficients of the polynomials, just like before, and find that

b(m)j+1

b(m)j

=
(j + 2m + 3)[ b(m+1)

j+1

b(m+1)
j
] − m+n

2m+1

(j + 2m + 2) − m+n
2m+1[

b(m+1)
j

b(m+1)
j−1
]
−1 for 0 ≤ j ≤ n −m − 2, (140)

where we again use b(m+1)
−1 = b(m+1)

n−m−1 = 0.
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The induction hypothesis is that

b(m)j+1

b(m)j

= j − n +m + 1
(j + 1)(j + 2m + 1) . (141)

Recalling the base case, with m = n − 2 and j = 0, we have that the ratio equals −1/(2n − 3), which is what we already calculated above for the
base case. Substituting the induction hypothesis for m + 1 (evaluated for j and for j − 1) into Eq. (140) yields

b(m)j+1

b(m)j

= (j − n +m + 1)[(2m + 1)(j − n +m + 2) − (m + n)(j + 1)]
(j + 1)(j + 2m + 2)[(2m + 1)(j − n +m + 1) − (m + n)j] . (142)

Expanding the terms in the square brackets, factorizing them, and simplifying produces the results in Eq. (141), which completes the induction
proof. Given the ratio of the consecutive coefficients in the Laguerre polynomial in Eq. (101), we see that the string of B† operators acting on
∣n, n − 1⟩ yields the Laguerre polynomial (with α = 2m and k = n −m − 1) multiplied by a power of ρ̂ multiplied by a constant, or

B̂†
m ⋅ ⋅ ⋅ B̂†

n−2∣n, n − 1⟩ = C′
⎡⎢⎢⎢⎣

2ih̵√
2 μ(n − 1

2)a0

⎤⎥⎥⎥⎦

n−m−1

[
(n − 1

2)a0

2ρ̂
]

n−m−1

L2m
n−m−1(

2ρ̂
(n − 1

2)a0
)∣n, n − 1⟩. (143)

Using the same approach as described before, we compute the coefficient of the term that has no ρ̂ dependence. We express the result in
terms of the b coefficients and equate it to the constant term found from using the subsidiary condition when the string of B̂† operators acts
on ∣n, n − 1⟩. We have

⎡⎢⎢⎢⎣
2ih̵√

2 μ(n − 1
2)a0

⎤⎥⎥⎥⎦

n−m−1

b(m)n−m−1 = (
ih̵√
2μ
)

n−m−1 n−2

∏
k=m
[ 1
(n − 1

2)a0
+ 1
(k + 1

2)a0
], (144)

which can be solved for b(m)n−m−1 with

b(m)n−m−1 =
(2n − 2)!(2m − 1)‼
(n +m − 1)!(2n − 3)‼ . (145)

We also can calculate this coefficient from the Laguerre polynomial form. We have

b(m)n−m−1 = C′a(2m,n−m−1)
m−n−1 = (−1)n−m−1

(n −m − 1)! . (146)

Hence, we have

C′ = (−1)n−m−1 (n −m − 1)!(2n − 2)!(2m − 1)‼
(n +m − 1)!(2n − 3)‼ (147)

and

∣n, m⟩ = (−i)n−m−1

¿
ÁÁÀ(n −m − 1)!(2n − 2)!

(n +m − 1)! [
(n − 1

2)a0

2ρ̂
]

n−m−1

L2m
n−m−1(

2ρ̂
(n − 1

2)a0
)∣n, n − 1⟩. (148)

As mentioned before, we drop the irrelevant phase factor, (−i)n−m−1. Now, we are ready to compute the wavefunctions. We need to determine
the overlap of ⟨ϕ∣⊗ ⟨ρ∣ with ∣n, m⟩⊗ ∣m⟩. Since ⟨ϕ∣m⟩ = exp(imϕ)/

√
2π and ρ̂∣ρ⟩ = ρ∣ρ⟩, we find that

ψnm(ρ) =
¿
ÁÁÀ(n −m − 1)!(2n − 2)!

(n +m − 1)! ⟨ρ∣n, n − 1⟩[
(n − 1

2)a0

2ρ
]

n−m−1

L2m
n−m−1(

2ρ
(n − 1

2)a0
). (149)

This leaves us with the task of computing the wavefunction for maximal m with a given n, that is, with m = n − 1.
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Here is where we need to use the translation operator in polar coordinates. We derived the translation operator when acting on the
⟨0ρ⃗∣ bra in Eq. (76). Hence, we have that

ϕn(ρ) = ⟨ρ∣n, n − 1⟩ = ⟨0ρ∣ exp[ i
h̵
ρ(p̂ρ +

ih̵
2ρ̂
)]∣n, n − 1⟩. (150)

As mentioned before, the best way to evaluate this expression is to find the eigenvector of (p̂ρ + ih̵
2ρ̂). Using Eq. (137), we see that

p̂ρ
1

ρ̂n−1 ∣n, n − 1⟩ = ih̵[ 1
(n − 1

2)a0
− 1

2ρ̂
] 1
ρ̂n−1 ∣n, n − 1⟩, (151)

which leads to the eigenvalue/eigenvector relationship

(p̂ρ +
ih̵
2ρ̂
) 1
ρ̂n−1 ∣n, n − 1⟩ = ih̵

(n − 1
2)a0

1
ρ̂n−1 ∣n, n − 1⟩. (152)

Hence, we have that

ϕn(ρ) = ⟨0ρ∣
1

ρ̂n−1 ∣n, n − 1⟩ρn−1 exp[− ρ
(n − 1

2)a0
]. (153)

Normalizing gives us

⟨0ρ∣
1

ρ̂n−1 ∣n, n − 1⟩ = [ 2
(n − 1

2)a0
]

n 1√
(2n − 1)!

. (154)

Summarizing, we find that the normalized wavefunction is

ψnm(ρ,ϕ) = [ 2
(n − 1

2)a0
]
∣m∣+1
¿
ÁÁÀ (n − ∣m∣ − 1)!
(2n − 1)(n + ∣m∣ − 1)! ρ

∣m∣ exp[− ρ
(n − 1

2)a0
]L2∣m∣

n−∣m∣−1(
2ρ

(n − 1
2)a0
) eimϕ
√

2π
. (155)

This completes the calculation of the wavefunctions of the two-dimensional Coulomb problem.

IV. CONCLUSIONS
In this paper, we have shown how one can calculate wavefunctions in a representation-independent manner. The strategy starts from

the origin in position space, translates to the position r⃗, and then computes the inner product with the energy eigenstate. Doing this for
some central-potential problems requires us to convert the translation operator from Cartesian coordinates to spherical or polar coordinates
because a Taylor series expansion for the wavefunctions of some problems does not exist in terms of the Cartesian coordinates. (This is true,
for example, in the Coulomb problem but is not true for the two- or three-dimensional simple harmonic oscillator.) We illustrated how
to convert from Cartesian coordinates to spherical (or polar) coordinates and then illustrated how the operator expression simplifies when
it acts on the position-space eigenvector at the origin. Finally, we showed how such a procedure works by solving for the wavefunctions
of the Coulomb problem in three and two dimensions. To do this requires us to use Schrödinger’s factorization method, but we do so at
the operator level only and do not convert the operators into the position-space representation. We want to emphasize that performing
calculations in a representation-independent fashion illustrates that essentially all quantum properties are derived from the existence of a
few eigenvectors (such as the position-space eigenvector at the origin and the ground-state eigenvector of the Coulomb problems) and the
canonical commutation relations, [r̂α, p̂β] = ih̵δαβ. No other assumptions are needed. This methodology is quite general, but it is simpler for
position-space wavefunctions than for momentum-space wavefunctions. This is because the generic factorization method has raising and
lowering operators that are linear in momentum operators but often are nonlinear in the position operators. Hence, it is easier to determine
how the momentum operator acts on an energy eigenstate than to determine how a position operator acts. Nevertheless, this approach can be
used in both position and momentum space and explicitly shows that these two wavefunctions are constructed in similar ways. The approach
to determine them from “differential equations” is often quite different as the general formulation in momentum space is an integral equation
rather than a differential equation, which is what is used in position space. This is true even though the two wavefunctions are directly related
to each other via a Fourier transformation.
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APPENDIX: REPRESENTATION-INDEPENDENT CALCULATION OF COMMUTATORS

In the early years of quantum mechanics, Pauli9 and Dirac10 showed how to use the canonical commutation relation to compute com-
mutators of functions of r̂α and p̂α. We use the same method to compute the commutators needed in this work. To start, we compute the
commutator of momentum with r̂2 = r̂2

x + r̂2
y + r̂2

z . Using the Leibniz rule for the commutator of a product, we immediately find that

[p̂α, r̂2] = r̂α[p̂α, r̂α] + [p̂α, r̂α]r̂α = −2ih̵r̂α. (A1)

Note that we never use the Einstein summation convention in this paper. Similarly, defining r̂ =
√

r̂2
x + r̂2

y + r̂2
z , the Leibniz rule shows that

[p̂α, r̂2] = r̂[p̂α, r̂] + [p̂α, r̂]r̂ = −2ih̵r̂α (A2)

after using the result in Eq. (A1). The commutator [p̂α, r̂] commutes with r̂ as described by Böhm,4 which follows from the triple commutator
with r̂2,

[r̂2, [p̂α, r̂]] = r̂[r̂, [p̂α, r̂]] + [r̂, [p̂α, r̂]]r̂, (A3)

and moving the r̂ operator into the second element of the outermost commutator to multiply the term [p̂α, r̂] for both nested commutators
(which is valid because [r̂, r̂] = 0) yields

[r̂, r̂[p̂α, r̂] + [p̂α, r̂]r̂] = [r̂, [p̂α, r̂2]] = [r̂, (−2ih̵r̂α)] = 0 (A4)

after substituting Eq. (A1) into the innermost commutator. Because the square root of an operator is uniquely defined to have the same
eigenvectors as the original operator (but all eigenvalues are equal to the positive square roots of the eigenvalues of the original operators), if an
operator Â commutes with another operator B̂, then the square root of Â also commutes with B̂. Hence, from Eq. (A4), we have [r̂, [p̂α, r̂]] = 0.
Combining this with Eq. (A2) gives us

[p̂α, r̂] = −ih̵
r̂α
r̂

. (A5)

One uses the Leibniz rule again to compute the commutator with 1/r̂ via

0 = [p̂α, 1] = [p̂α,
r̂
r̂
] = −ih̵

r̂α
r̂2 + r̂[p̂α,

1
r̂
], (A6)

which can be re-arranged to give

[p̂α,
1
r̂
] = ih̵

r̂α
r̂3 . (A7)

Similarly, using ρ̂ =
√

r̂2
x + r̂2

y , we find that [p̂α, ρ̂] = −ih̵r̂α/ρ̂ for α = x or y and it vanishes for α = z. We also find that [p̂α, 1/ρ̂] = ih̵r̂α/ρ̂3

with the same conditions on α.
Similarly, we define cos θ̂ = r̂z/r̂, sin θ̂ = ρ̂/r̂, cos ϕ̂ = r̂x/ρ̂, and sin ϕ̂ = r̂y/ρ̂. Then, using the Leibniz rule, we find that

[p̂x, cos θ̂] = ih̵
r̂x r̂z

r̂3 , [p̂y, cos θ̂] = ih̵
r̂y r̂z

r̂3 , [p̂z , cos θ̂] = −ih̵
ρ̂2

r̂3 , (A8)

[p̂x, sin θ̂] = −ih̵
r̂x r̂2

z

ρ̂r̂3 , [p̂y, sin θ̂] = −ih̵
r̂y r̂2

z

ρ̂r̂3 , [p̂z , sin θ̂] = ih̵
ρ̂r̂z

r̂3 , (A9)

[p̂x, cos ϕ̂] = −ih̵
r̂2

y

ρ̂3 , [p̂y, cos ϕ̂] = ih̵
r̂x r̂y

ρ̂3 , [p̂z , cos ϕ̂] = 0, (A10)

and

[p̂x, sin ϕ̂] = ih̵
r̂x r̂y

ρ̂3 , [p̂y, sin ϕ̂] = −ih̵
r̂2

x

ρ̂3 , [p̂z , sin ϕ̂] = 0. (A11)
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Of course, these “trigonometric function” operators commute with themselves and with ρ̂ and r̂ because all position operators commute with
each other. Note that the angle operators are well defined only when they are arguments of the trigonometric functions. We never work with
angle operators by themselves.

As described in the main text, we use the unit-vector operators (ˆ⃗er = sin θ̂ cos ϕ̂e⃗x + sin θ̂ sin ϕ̂e⃗y + cos θ̂e⃗z , ˆ⃗eθ = cos θ̂ cos ϕ̂e⃗x

+ cos θ̂ sin ϕ̂e⃗y − sin θ̂e⃗z , and ˆ⃗eϕ = − sin ϕ̂e⃗x + cos ϕ̂e⃗y) to define the components of momentum in spherical coordinates; in spherical coor-
dinates, the unit vectors must be operators, while in Cartesian space, they are not. Using the symmetric combination of the dot product of
momentum with these unit vectors (given schematically as 1

2
ˆ⃗e ⋅ ˆ⃗p + 1

2
ˆ⃗p ⋅ ˆ⃗e) and after computing the “quantum corrections” (proportional to

ih), we find that

p̂r = sin θ̂ cos ϕ̂p̂x + sin θ̂ sin ϕ̂p̂x + cos θ̂p̂z −
ih̵
r̂

, (A12)

p̂θ = cos θ̂ cos ϕ̂p̂x + cos θ̂ sin ϕ̂p̂y − sin θ̂p̂z − ih̵
cot θ̂

2r̂
, (A13)

and

p̂ϕ = − sin ϕ̂p̂x + cos ϕ̂p̂y. (A14)

Note that p̂ϕ does not have a quantum correction due to reordering. This is because it is equal to L̂z/ρ̂.
Now that we have the components of momentum along the different spherical coordinate directions, we can use the commutation

relations of the Cartesian components of momentum with the radial and angular operators to find that

[p̂r , r̂] = −ih̵, [p̂r , ρ̂] = −ih̵ sin θ̂ (A15)

and the commutator of p̂r with any trigonometric function of angles θ̂ and ϕ̂ is zero. We also have that p̂θ commutes with functions of r̂ and
ϕ̂. However, we have

[p̂θ, cos θ̂] = ih̵
sin θ̂

r̂
and [p̂θ, sin θ̂] = −ih̵

cos θ̂
r̂

. (A16)

In addition, we have

[p̂θ, ρ̂] = −ih̵ cos θ̂. (A17)

Finally, for p̂ϕ, we find that it commutes with trigonometric functions of θ̂ and arbitrary functions of r̂ and ρ̂. We also find that

[p̂ϕ, cos ϕ̂] = ih̵
sin ϕ̂
ρ̂

and [p̂ϕ, sin ϕ̂] = −ih̵
cos ϕ̂
ρ̂

. (A18)

Surprisingly, because the projections of the momentum operator onto non-Cartesian unit-vector operators are not canonical momenta,
we need to compute their commutators, which do not vanish, in general. We find that

[p̂r , p̂θ] =
ih̵
r̂

p̂θ, (A19)

[p̂r , p̂ϕ] =
ih̵
r̂

p̂ϕ, (A20)

and

[p̂θ, p̂ϕ] = ih̵
cot θ̂

r̂
p̂ϕ. (A21)

In two dimensions, there are only a few changes. We define ˆ⃗eρ = (r̂x e⃗x + r̂ye⃗y)/ρ̂ and ˆ⃗eϕ = (−r̂ye⃗x + r̂x e⃗y)/ρ̂, the latter vector being the
same as in three dimensions. Using the trigonometric operators, these become

p̂ρ = cos ϕ̂p̂x + sin ϕ̂p̂y −
ih̵
2ρ̂

(A22)
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and
p̂ϕ = − sin ϕ̂p̂x + cos ϕ̂p̂y (A23)

after evaluating the quantum correction for the radial momentum operator. The commutators are similar, and we report them here: first, for
the radial momentum, which satisfies

[p̂ρ, ρ̂] = −ih̵, (A24)

while p̂ρ commutes with cos ϕ̂ and sin ϕ̂, and next, for the ϕ-component of the momentum

[p̂ϕ, cos ϕ̂] = ih̵
sin ϕ̂
ρ̂

and [p̂ϕ, sin ϕ̂] = −ih̵
cos ϕ̂
ρ̂

. (A25)

We also have [p̂ϕ, ρ̂] = 0. Finally, we compute the commutation relation between the components of the momentum operator. This yields

[p̂ρ, p̂ϕ] =
ih̵
ρ̂

p̂ϕ. (A26)

The last set of identities we derive in this appendix is the conversion of the kinetic-energy operator into its radial and angular components.
Beginning in three dimensions, we find that

p̂2
r =

1
r̂
(r̂xp̂x + r̂yp̂y + r̂zp̂z − ih̵)1

r̂
(r̂xp̂x + r̂yp̂y + r̂zp̂z − ih̵)

= 1
r̂2 [r̂

2
xp̂2

x + r̂2
y p̂2

y + r̂2
z p̂2

z + 2r̂x r̂yp̂xp̂y + 2r̂y r̂zp̂yp̂z + 2r̂z r̂xp̂xp̂x − 2ih̵(r̂xp̂x + r̂yp̂y + r̂zp̂z)]. (A27)

Next, using the standard definition of orbital angular momentum,

L̂α =∑
βγ
ϵαβγ r̂βp̂γ, (A28)

we find that

ˆ⃗L ⋅ ˆ⃗L
r̂2 =

1
r̂2 [(r̂xp̂y − r̂yp̂x)(r̂xp̂y − r̂yp̂x) + (r̂yp̂z − r̂zp̂y)(r̂yp̂z − r̂zp̂y) + (r̂zp̂x − r̂xp̂z)(r̂zp̂x − r̂xp̂z)]

= 1
r̂2 [(r̂

2
y + r̂2

z)p̂2
x + (r̂2

x + r̂2
z)p̂2

y + (r̂2
x + r̂2

y)p̂2
z − 2r̂x r̂yp̂xp̂y − 2r̂y r̂zp̂yp̂z − 2r̂z r̂xp̂xp̂x + 2ih̵(r̂xp̂x + r̂yp̂y + r̂zp̂z)]. (A29)

Adding together our results for p̂2
r and ⃗̂L ⋅ ⃗̂L/r̂2 yields

1
2 μ
(p̂2

x + p̂2
y + p̂2

z) =
1

2 μ
⎛
⎝

p̂2
r +

ˆ⃗L ⋅ ˆ⃗L
r̂2

⎞
⎠

. (A30)

Note that there are no quantum corrections in this case.
In two dimensions, we find that

p̂2
ρ =

1
ρ̂
(r̂xp̂x + r̂yp̂y −

i
2

h̵)1
ρ̂
(r̂xp̂x + r̂yp̂y −

i
2

h̵) (A31)

= 1
ρ̂2 [r̂

2
xp̂2

x + r̂2
y p̂2

y + 2r̂x r̂yp̂xp̂y − ih̵(r̂xp̂x + r̂yp̂y) +
h̵2

4
]

and
L̂2

z

ρ̂2 =
1
ρ̂2 [r̂

2
y p̂2

x + r̂2
xp̂2

y − 2r̂x r̂yp̂xp̂y + ih̵(r̂xp̂x + r̂yp̂y)]. (A32)

Again, adding these two together yields
1

2 μ
(p̂2

x + p̂2
y) =

1
2 μ
(p̂2

ρ +
L̂2

z − 1
4 h̵2

ρ̂2 ). (A33)

In this case, there is a quantum correction (namely, the term proportional to h2).

J. Math. Phys. 62, 072102 (2021); doi: 10.1063/5.0021013 62, 072102-23

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

DATA AVAILABILITY

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

REFERENCES
1E. Schrödinger, “A method of determining quantum-mechanical eigenvalues and eigenfunctions,” Proc. R. Ir. Acad., Sect. A 46, 9–16 (1940), available at
https://www.jstor.org/stable/20490744.
2H. S. Green, Matrix Mechanics (P. Noordhoff, Ltd., Groningen, The Netherlands, 1965).
3H. C. Ohanian, Principles of Quantum Mechanics (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1990).
4A. Böhm, Quantum Mechanics Foundations and Applications, 3rd ed. (Springer-Verlag, Inc., New York, 1993).
5E. Merzbacher, Quantum Mechanics, 3rd ed. (John Wiley & Sons, Inc., New York, 1998).
6P. Carruthers and M. M. Nieto, “Phase and angle variables in quantum mechanics,” Rev. Mod. Phys. 40, 411–440 (1968).
7M. Weitzman and J. K. Freericks, “Calculating spherical harmonics without derivatives,” Condens. Matter Phys. 21, 33002 (2018).
8J. L. Powell and B. Crasemann, Quantum Mechanics (Addison-Wesley, Reading, MA, 1961).
9W. Pauli, “On the hydrogen spectrum from the standpoint of the new quantum mechanics,” Z. Phys. 36, 336–363 (1926).
10P. A. M. Dirac, “The elimination of the nodes in quantum mechanics,” Proc. R. Soc. London, Ser. A 111, 281–305 (1926).

J. Math. Phys. 62, 072102 (2021); doi: 10.1063/5.0021013 62, 072102-24

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp
https://www.jstor.org/stable/20490744
https://doi.org/10.1103/RevModPhys.40.411
https://doi.org/10.5488/cmp.21.33002
https://doi.org/10.1007/bf01450175
https://doi.org/10.1098/rspa.1926.0068

