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As “Stern-Gerlach first” becomes increasingly popular in the undergraduate quantum mechanics

curriculum, we show how one can extend the treatment found in conventional textbooks to cover

some exciting new quantum phenomena. Namely, we illustrate how one can describe a delayed

choice variant of the quantum eraser which is realized within the Stern-Gerlach framework.

Covering this material allows the instructor to reinforce notions of changes in basis functions,

quantum superpositions, quantum measurements, and the complementarity principle as expressed

in whether we know “which-way” information or not. It also allows the instructor to dispel

common misconceptions of when a measurement occurs and when a system is in a superposition of

states. VC 2020 American Association of Physics Teachers.

https://doi.org/10.1119/10.0000519

I. INTRODUCTION

The Stern-Gerlach experiment was originally performed1

by Otto Stern and Walter Gerlach in 1922. While it can be
thought of as simply an experiment to separate an atomic
beam into its different projections of angular momentum,
the Stern-Gerlach experiment also illustrates a number of
different quantum phenomena. One can use it to show that
quantum mechanics requires a probabilistic interpretation.
One can use it to show that quantum states cannot simulta-
neously have definite projections of angular momentum on
two non-collinear axes. It also acts as one of the simplest
paradigms of a two-state quantum system (for the case of a
spin-one-half atom like silver), illustrating the discreteness
of quantum eigenvalues.

Educators have long realized the importance of this
experiment.2–7 It has appeared in many textbooks. Here, we
highlight a few texts that bring this experiment to the forefront,
by employing it as one of the first quantum experiments that a
student encounters. These texts deviate from the far more com-
mon norm of covering quantum mechanics from a historical
perspective8,9 or by starting with the wave equation in coordi-
nate space.10 We believe that there are significant advantages
to proceeding in this Stern-Gerlach first methodology, as it
allows the students to encounter experiments that they can
easily analyze right from the beginning. Furthermore, as we
show here, one can extend those treatments to allow the
students to encounter sophisticated quantum paradoxes even
before they learn what a coordinate-space wavefunction is.

The Feynman Lectures on Physics2 introduces the Stern-
Gerlach experiment quite early in its discussion of quantum
mechanics, actually covering the spin-one case before the
spin-one-half case. This text also describes what we will
call the Stern-Gerlach analyzer loop (following Styer,4 see
below); this device is sometimes called a Stern-Gerlach

quantum eraser by other authors,5 but we will be reserving
that language for the more complex eraser we describe
below. It is at this stage that most educators (including us)
move from the real Stern-Gerlach experiment to more com-
plicated “experiments” that invoke the principles of the
Stern-Gerlach experiment, but do so in a more complex for-
mat than can actually be carried out in a laboratory; we will
use quotes to describe experiments that can in principle be
carried out, but to our knowledge have never actually been
performed in a laboratory. Sakurai employed the Stern-
Gerlach experiment early in his textbook3 and used it to also
discuss the Bell experiments. Our treatment of the subject is
influenced most by Styer’s wonderful text The Strange
World of Quantum Mechanics,4 which introduces a number
of complex quantum ideas with the Stern-Gerlach experi-
ment. These are the two-slit experiment, Wheeler’s delayed
choice, the Einstein-Podolsky-Rosen paradox, and the Bell
experiments. Styer’s text also carefully describes the classi-
cal version of the experiment, which is critical for students
to master in order to appreciate the quantum nature of the
real experiment.

Three recent undergraduate textbooks, Townsend’s A
Modern Approach to Quantum Mechanics,5 McIntyre,
Manogue and Tate’s Quantum Mechanics: A Paradigms
Approach,6 and Beck’s Quantum Mechanics: Theory and
Experiment,7 all adopt the Stern-Gerlach first paradigm, intro-
ducing students to this experiment as their initial (or early)
encounter with quantum mechanics. While these texts move
on to a more conventional style of quantum treatment after-
wards, this critical change allows students to dive into a quan-
tum system that they can understand all aspects of and allows
them to lean on this knowledge as they learn about new and
different quantum phenomena in the remainders of the books.

This article is organized as follows: (i) in Sec. II, we pro-
vide a short history of the Stern-Gerlach experiment, delayed
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choice, the quantum eraser, and their use in quantum
mechanics pedagogy; (ii) in Sec. III, we describe the differ-
ent apparatus needed for the Stern-Gerlach experiments and
how one employs them in instruction; (iii) in Sec. IV, we
describe the details of how to create and analyze a delayed
choice Stern-Gerlach quantum eraser; (iv) in Sec. V, we
discuss possible experimental implementations; and (v) in
Sec. VI, we present our conclusions.

II. BRIEF HISTORY OF STERN-GERLACH

EXPERIMENT PEDAGOGY

Quantum mechanics has seen numerous developments
that have not yet made it into most introductory quantum
texts. For example, in the 1980s, John Wheeler introduced
the notion of delayed choice,11,12 where an experimental
apparatus is modified while the particle is moving through it,
in such a way that the modification post-selects what type of
measurement will be performed. Wheeler hypothesized that
these types of experiments, which can determine whether a
particle goes through just one slit, or two slits at the same
time, in a two-slit experiment, have the spooky behavior of
acting like the quantum particle is able to influence what has
already occurred, by going backwards in time. It turns out
that this awkward notion is easily dispelled when one prop-
erly interprets when the system is in a superposition of states
and precisely when a measurement collapses the wavefunc-
tion.13 Nevertheless, the notion of a delayed choice experi-
ment being employed to change the outcome is a remarkably
powerful demonstration, as can be seen by numerous videos
available on the internet, which illustrate this phenomenon
using crossed polarizers over each slit of the two-slit experi-
ment and an additional polarizer, whose orientation can be
rotated, just before the light hits the detector screen.14 Those
videos are actually showing a delayed-choice quantum-
eraser variant.

The quantum eraser idea of Scully et al.15,16 is even more
fascinating. Here, what is generally done is that the particles
that are input into a two-slit experiment (or a Mach-Zehnder
interferometer) are also entangled with other quantum par-
ticles, which can be employed to provide which-way infor-
mation about how the particle moves through the device. As
long as the entanglement with the other particle persists,
the conventional interference effects are suppressed. But if
the entanglement with the other particle is removed, then the
interference effects also return. What is remarkable about
these experiments is that they often can have the choice for
whether we see the interference or not decided well after the
quantum particles have gone through the device. One can
think of the delayed-choice aspect as providing a filter that
removes the results of the experiment which do not provide
the interference one is trying to “restore.” The interference is
then never fully restored because the entanglement and subse-
quent filtering always remove some particles from the experi-
ment, and so the interference oscillations have a smaller
amplitude than what one would see if there was never any
entanglement in the first place.

If the Stern-Gerlach-first trend continues, an increasing
number of students will be exposed to the Stern-Gerlach
experiment early in the quantum curriculum. It is for this rea-
son that we show how one can employ these experiments to
cover quite advanced and fascinating phenomena, early on in
a course. This then allows students to experience the truly
strange behavior that lies within quantum mechanics and to

know that it can be quantitatively described within the
theory.

We end this section with a brief discussion of the history
of pedagogy of the Stern-Gerlach experiment in particular
and quantum erasers in general. The Stern-Gerlach experi-
ment first entered pedagogy with Wigner’s classic article
where the analyzer loop was introduced in 1963.17 Scully
et al. performed an in-depth analysis of the analyzer loop to
show that it should be thought of as creating a superposition
of states unless a measurement is performed on it to deter-
mine which-way information.18 In addition, a series of
papers have provided detailed calculations of the dynamics
of the Stern-Gerlach experiment, paying particular attention
to the fact that the magnetic field must have a component
perpendicular to the direction where the atomic beam is split
due to the fact that the field is divergenceless.19–24 A tutorial
has also been created to directly confront common miscon-
ceptions about the experiment.25 Finally, an example of a
quantum eraser, using quite different methodology from
what we propose here (crossed Stern-Gerlach analyzers with
a two-slit experiment in between), has also appeared.26

The quantum eraser has been discussed within many dif-
ferent platforms. The simplest demonstrations use polariza-
tion of light within a two-slit experiment27,28 (including an
experimental setup29). Similarly, a Mach-Zehnder interfer-
ometer30 can be used to also illustrate the quantum eraser.
Previous work includes a tutorial31 and descriptions of
undergraduate experimental apparatus without32,33 and
with34 a delayed choice option added. While all quantum
erasers share some form of similarity with each other in
terms of how the which-way information is tagged, the
details for how these different devices work and for the dif-
ferent methodologies employed for pedagogy separate the
different discussions. We complete the cycle with this work
by providing a delayed choice quantum-eraser discussion
within the Stern-Gerlach framework.

III. PRELIMINARIES FOR THE STERN-GERLACH

EXPERIMENT

The idea for an accessible Stern-Gerlach quantum eraser
began when we introduced the concept into a massive open
on-line course (MOOC) entitled Quantum Mechanics For
Everyone which ran on edX from April 2017 until March
2019.35 The MOOC was intended for all audiences and so did
not employ the full abstract quantum formalism. Freericks
was the lead instructor and course developer, Vieira created
over half of the computer-based tutorials that run under
JavaScript,36 and Courtney was in the original student cohort.
Since this MOOC will remain available as an archived
resource on edX, we describe how it covers the Stern-Gerlach
experiment to define the terminology and to introduce the
different devices we need to describe the delayed-choice
quantum-eraser variant. As mentioned above, this treatment
is heavily influenced by both Styer’s4 and Feynman’s2

approaches. The experience with the MOOC showed us that
similar ideas could be presented more broadly within the
undergraduate curriculum and this is our emphasis here.

To begin, students need to understand how a classical
Stern-Gerlach experiment works, which involves shooting a
beam of current loops through an inhomogeneous magnetic
field. Using the right hand rule and curling ones’ fingers in
the orientation of current flow through the loop, the thumb
points toward the north pole of an effective magnet that
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represents the current loop. As Styer shows,4 one can next
develop that a current loop precesses in a magnetic field,
with a constant projection of the effective magnet onto the
field axis, and it feels a force if the magnetic field is inhomo-
geneous in space. It is important that the students recognize
that one needs an inhomogeneous field to apply a force
proportional to the projection and that the projection does
not change during the time the current loop is in the field.
This then means that the net deflection of the current loop
upwards or downwards varies monotonically with the projec-
tion that the effective magnet makes with the magnetic field.

Hence, a classical beam of current loops shot through an
inhomogeneous field will fan out according to the different
projections of the effective magnet onto the field axis, with
the spatial position correlated with the magnitude of the pro-
jection. One can describe such an experiment as analogous
to a triangular prism, which separates white light according
to its color. An example of such a classical Stern-Gerlach
experiment is shown in Fig. 1, where the fan-out path for one
projection of the effective magnet is plotted.

Of course, the quantum experiment does not produce a
continuous beam of separated projections. When run using
silver atoms, it shows just two different projections of the
angular momentum: one corresponding to þ1=2 lB and the
other to �1=2 lB, with lB being the Bohr magneton. This
quantum result motivates a number of follow-up experiments
to understand this phenomenon. We begin by showing how
one packages the Stern-Gerlach analyzer for use in further
experiments (see Fig. 2). Since the quantum Stern-Gerlach
experiment on silver produces only two results, regardless of
the orientation of the analyzer, we think of the experiment as
a separation region where the magnets are positioned and
“tubes” that collect the atoms according to their projections
and direct them to the respective þ and � exits (curving
their velocities to be horizontal). The device is packaged
together so that we have a direction of the field given by the
arrow, the sense of the inhomogeneity of the field also given
by the widening of the arrow’s shaft, and the two exits (one
with a positive projection on the axis, labeled þ, and the
other with a negative projection on the axis, labeled �). The
tubes that curve to the exits can be thought of as being
constructed from an inhomogeneous magnet oriented oppo-
site to the initial separating magnet, which curves the paths
to be horizontal and ejects the atomic beams in a horizontal
direction after emerging from the analyzer.

The Stern-Gerlach analyzer can then be employed in a
series of experiments (see Fig. 3); as far as we know, none of
these experiments have ever been performed in a lab. In
these series of three experiments (all starting from an unpo-
larized atom source), we measure results following one
specific path of atoms through the device, determined by
matching the output of one analyzer into the input of another.
The dotted lines show these paths explicitly. The axis orien-
tation of each analyzer is denoted by the direction oriented
as an angle in the x-z plane of the increasing magnetic field
(or, equivalently, the direction that the positive-projection
exit is oriented in). We use an overbar to denote an analyzer
oriented along the corresponding negative axis—hence, x
denotes an analyzer with a magnetic field in the positive x
direction (horizontal and out of the page), while �z denotes an
analyzer oriented along the negative z direction (vertical and
downward).

In the first “experiment” (see Fig. 3), we measure on z and
on z again (top panel), by taking the beam of atoms emerging
from the negative exit (negative projection on the z-axis) and
measuring their projection again (finding it retains a negative
projection on the z-axis); a similar experiment can be done
with atoms that have a positive projection. The results are
told to the students, and this shows that the Stern-Gerlach
analyzer measurements are reproducible, in the sense that an
atom with a definite projection continues to have the same
definite projection. In the second experiment (see Fig. 3), we
measure on z and then on �z, to see the relationship between
measuring on axes oriented opposite to each other (center
panel). The results of this experiment are also told to the stu-
dents, and this shows that all atoms with a negative projec-
tion on the z-axis will have a positive projection on the
�z-axis and vice versa because all atoms exit the opposite exit

Fig. 1. Schematic of the classical Stern-Gerlach experiment, with an unpo-

larized source of classical current loops, an inhomogeneous magnetic field

generated between the shaped magnetic poles with field lines sketched, and

a screen to detect the projection of the current loops as they move through

the device. The curved dashed line indicates one possible current loop trajec-

tory. This current loop has a maximal projection on the z-axis, and so it is

deflected the furthest upwards.

Fig. 2. Schematic of the quantum Stern-Gerlach experiment with silver

atoms, which produces only two deflections. Both images start with an unpo-

larized source of silver atoms on the top. The packaging with an inhomoge-

neous magnet and “guiding tubes” on the top image is covered with a

schematic annotation creating the Stern-Gerlach analyzer in the right image,

which also illustrates the coordinate system used to describe the orientation

of the analyzer (here, the orientation corresponds to an angle in the x–z plane

as indicated by the curved arrow). The dotted lines indicate the path an atom

with a negative projection takes through the device (top) and schematically

shows the two possible paths that an initially unpolarized atom can take

(bottom).
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on the second analyzer. Hence, knowing the projection on
one axis means we also know the projection on the axis that
is flipped by 180�. In the third experiment, we measure on z,
then on x, and then on z again. We must also tell the students
the results of this experiment, which is that the atoms emerge
with equal amounts in the up exit and in the down exit. This
experiment shows that atoms can only have a projection on
the last axis on which they were measured (right panel). In
other words, if the atoms always enter the horizontal ana-
lyzer (B) with a positive projection on the z-axis, then they
exit (B) with no definite projection on the z-axis anymore,
for we find they can emerge from the final analyzer (C)
either from the þ or � exit of the vertical analyzer. Since we
cannot predict with certainty which exit each will emerge
from, we are forced into a probabilistic interpretation of
these quantum experiments. We cannot foretell the outcome
of any single experimental trial—theoretically, we only
know the probability for exiting each exit, while experimen-
tally, we require many trials to amass enough data to esti-
mate those probabilities. The third experiment also
illustrates the principle that incompatible operators cannot
have simultaneous eigenvalues—as we learn that we cannot
have a state with a definite z-axis projection and a definite x-
axis projection—the atom has a definite projection on only
one axis (the last one it was measured on).

We illustrate now how one can perform a detailed analysis
of these experiments. We begin by employing Dirac bra-ket
notation, where a bra hwj and a ket jwi are the notations for a
quantum state w. Forming a bra-ket, such as hw0jwi, corre-
sponds to the inner product between the two different states.
One can simply think of the bra and the ket as being place
holders for the labels that denote the different states.

In order to analyze the experiments, we need three postu-
lates: (i) the norm of all quantum states is 1, and so hwjwi
¼ 1; (ii) the measurement by a Stern-Gerlach analyzer corre-
sponds to a projection of jwi onto the state corresponding to
the exit of the analyzer (for example, j "; zi hz; " j is the pro-
jector onto the positive projection atomic state along the z-
axis with the up arrow denoting a positive projection and the
down arrow a negative projection, as is common with spin-
one-half systems); and (iii) the modulus squared of the final
projected wavefunction yields the probability to emerge
from a corresponding exit of a Stern-Gerlach analyzer. Note
that all quantum states are unit norm, but a projected wave-
function corresponds to a quantum state multiplied by a
scalar whose magnitude is less than or equal to one. We
assume that other standard results can be developed as
needed (eigenstates with different eigenvalues are orthogo-
nal, how to express eigenstates of different Pauli matrices,
etc.) and do not discuss them further here.

Using this formalism, we have for experiment 1 (Fig. 3,
top) the following analysis. We think of the unpolarized
source plus Stern-Gerlach analyzer (A) as a polarized source
of atoms. Then, the initial state entering analyzer (B) is a
down spin state j #; zi. After passing through the analyzer
(B), we perform the standard measurement procedure. The
probability to exit the þ exit of the z-oriented analyzer is the
norm squared of the appropriately projected state j "; zihz; "
j #; zi (which is zero). and the probability to exit the � exit of
the z-oriented analyzer is the norm squared of the correspond-
ing projected state j #; zi hz; # j #; zi ¼ j #; zi (which is one).
Hence, all atoms that enter the analyzer (B) exit the �exit.

Using the identities that j "; zi ¼ j #; �zi and j #; zi ¼ j "; �zi
allows us to analyze experiment 2 (Fig. 3, middle). The
wavefunction after emerging through the first analyzer is in
j #; zi because we examine only the atoms exiting the � exit
of (A). Then, we find we need to evaluate j "; �zi h�z; " j #; zi
as the projected state for exiting the þ exit of the �z oriented
analyzer. Replacing the states labeled on the �z axis, by
their z-axis counterparts, yields j #; zi hz; # j #; zi ¼ j #; zi.
Squaring gives a probability of 1, and hence, all atoms that
enter the analyzer (B) exit its þ exit, which can be directly
confirmed by calculating the projected state and probability
to emerge from the � exit of (B).

For the last experiment (Fig. 3, bottom), we need to know
the representation of the x-states in terms of the z-states:
j "; xi ¼ 1=

ffiffiffi

2
p
ðj "; zi þ j #; ziÞ, which can be easily devel-

oped through the spin operators and their properties. Then,
we have that the wavefunction of the system after exiting the
first analyzer (A) is j "; zi; we compute all probabilities
below relative to the atoms entering the analyzer (B). The
wavefunction exiting the þ exit of the x-axis analyzer (B) is
then j "; xi hx;" j "; zi ¼ 1=2 ðj "; zi þ j #; ziÞðhz; " j þ hz;# jÞ
j "; zi; the projection postulate is used because the analyzer
always performs a measurement. Using the fact that hz;" j #
; zi ¼ 0 yields the output projected wavefunction as 1=2
ðj "; zi þ j #; ziÞ. After being measured in the final analyzer
(C), we construct the projected wavefunction 1=2j "; zi hz; "
jðj "; zi þ j #; ziÞ ¼ 1=2j "; zi for the state exiting the þ exit.

Fig. 3. Three different experiments with Stern-Gerlach analyzers all starting

from an unpolarized source. (Top) experiment 1, measure on the z-axis (a),

capture all from the � exit, and then measure on the z-axis again (b). This

experiment shows that measurements on an analyzer are reproducible.

(Middle) experiment 2, measure on the z-axis (a), capture all from the �
exit, and then measure on the �z-axis (b). This experiment shows that a posi-

tive projection on one axis is a negative projection on the inverse axis and

vice versa. (Bottom) experiment 3, measure on the z-axis (a), capture all

from the þ exit, measure on the x-axis (b), capture all from the þ exit, and

then measure on the z-axis again (c). Since we only input atoms with a posi-

tive z-axis projection into (b), one might expect that they will all emerge

with a positive projection on the z-axis from (c), but we find they are equally

likely to emerge with a positive or negative projection on the z-axis, because

the angular momentum operators in different Cartesian directions are incom-

patible operators, and the atom can have a definite projection on only one

axis at any given moment.
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So the probability to emerge from the þ exit of the analyzer
(C) is the norm squared of the projected wavefunction or
1=4 hz;" j "; zi ¼ 1=4. The same probability occurs for exit-
ing the �exit of the analyzer (C). One way of summarizing
this behavior is to say that the atom is stupid—implying it
only remembers the last axis it was projected onto. Hence,
an atom entering with a positive vertical projection will then
assume a horizontal projection after being measured on the
x-axis and thereafter can be found to have a negative projec-
tion on the vertical axis if measured on the z-axis. This is
because the atom cannot have a definite projection on the x-
and z-axes at the same time. What about the total probabil-
ity? If only 25% exit the þ exit and 25% exit the �exit, we
have lost 50% of the atoms. Indeed, we have, as those atoms
emerged from the �exit of the x-oriented analyzer (B) and
were ignored in the experiment.

Next, we describe the Stern-Gerlach analyzer loop. This
device nominally splits the atomic beam according to its
projection along the orientation of the analyzer loop and
then rejoins it again. But there is no way for us to verify this
behavior unless a measurement is performed (examples of
possible measurements are given below), and so we prefer to
say that the analyzer loop allows us to measure the projec-
tion of an atom in the analyzer loop orientation if we choose
to or to leave the atom in its original state if we choose not
to perform a measurement. (This issue is similar to the situa-
tion in a two-slit experiment where we do not know which
slit the photon goes through or how it “interferes with itself”
if we do not watch at the slits.) Because we created the
Stern-Gerlach analyzer to pipe the atoms into horizontal
beams at the exit, we can make the analyzer loop by attach-
ing (magnetic) “plumbing” after the analyzer to recombine
the two paths (see Fig. 4). As we will see below, we also
could call this a “measurable basis-changer,” but we stick
with the original name from Styer.4

Instead of thinking of the analyzer loop as separating and
rejoining the atomic beams, since this is not a measurement,
the correct way to view the unwatched analyzer loop is that
it places the atoms into a superposition of states according to
the orientation of the analyzer loop. If no measurement is
made, the original state that the atom entered with is
unchanged. We describe this as the situation where the ana-
lyzer loop does nothing. If, on the other hand, we block one
of the analyzer loop paths, then the atom is projected onto
the state that was not blocked because a measurement was
made that gave us which-way information. We describe the
unwatched situation by saying that the action of the analyzer
loop is to change the basis for the quantum state from what-
ever initial basis state the atom enters the analyzer loop into
the basis corresponding to the axis oriented in the direction
of the analyzer loop and then back to the original basis if no
measurement is made.

For example, if the atom starts in an up-state along the
z-axis and enters an unwatched analyzer loop oriented along
the x-axis, then the atomic state can be thought of as initially
being in the state j "; zi, then being expressed in the x-basis
as 1=

ffiffiffi

2
p
ðj "; xi þ j #; xiÞ when the atomic beam “splits into

two branches,” and finally emerging as j "; zi after the
“beams rejoined.” Of course, this means nothing happened
to the atom because the quantum state remained the same
regardless of what basis it was expressed in. It is important
to realize that the state does not collapse unless a measure-
ment is made inside the analyzer loop (by blocking one path,
for example). We feel this point is an important one to make
with students because the notion of a state and the notion of
the basis chosen to represent the state are often confused by
students. The analyzer loop provides a unique opportunity to
clearly describe this subtle distinction.

If, however, we watch at the branches with a device called
a pass-through detector, shown in Fig. 5, then we are per-
forming a measurement, and the results of the experiment
will change. For example, consider the arrangement given in
Fig. 5. The analyzer loop has a j "; zi state input. When an
atom passes through one of the arms of the horizontal ana-
lyzer loop, it is measured by the pass-through detector. This
corresponds to a projection onto the x-axis via j "; xi hx; " j
when detected on the þ branch or via j #; xi hx; # j when
detected on the �branch. If we see an atom on the þ branch,
then we find the measurement due to the pass-through detec-
tor implies we have the projected wavefunction j "; xi hx; "
j "; zi ¼ 1=

ffiffiffi

2
p
j "; xi emerge from the exit of the analyzer

loop. Similarly, if the atom passes through the � branch,
we have the down projected wavefunction along the x-axis.

Fig. 4. Top: schematic of an analyzer loop, which can be thought of as a

Stern-Gerlach analyzer attached to “plumbing” to recombine the two paths.

If no measurement is made, then the analyzer loop does not alter the quan-

tum state of the atom and it emerges with the same state it entered. If one of

the paths is blocked, the atom emerges with the state given by the path that

is not blocked (and the probability to emerge is determined by the state the

atom had when it entered). Bottom: a Stern-Gerlach analyzer loop with a

flow-through gate. The gate can be independently controlled to block zero,

one, or two branches of the analyzer loop. The pictured flow-through gate is

configured to block the lower branch of the analyzer loop (as indicated by

�). Blocking one path is a measurement. For example, if the atom entered in

a state with a positive projection along the x-axis, half of the atoms would

be blocked, and half would exit in the j "; zi state.

Fig. 5. Analyzer loop oriented along the x direction with pass-through detec-

tors, which allow the path to be watched as the atoms move on the þ or �
branches. In this experiment, we have a polarized source of atoms producing

the j "; zi state. We always see a full atom on one branch or the other.

Watching the atoms changes their output state because it acts just like a

measurement.
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A subsequent measurement on a vertical Stern-Gerlach ana-
lyzer will produce an up spin half of the time and a down
spin half of the time. This is completely analogous to the
results from experiment 3 of Fig. 3 (bottom). So watching at
the two branches is the same as measuring along them
because it provides us with which-way information. Note
that at no time do we see half of an atom going on two differ-
ent paths. We always see a full atom on one path or on
another path.

IV. DELAYED-CHOICE QUANTUM-ERASER

STERN-GERLACH EXPERIMENT

We begin by re-iterating the quantum superposition effect
of the analyzer loop. We start with an input atom in a definite
state. The analyzer loop re-expresses the atom in a superpo-
sition of states according to the basis directed along the ori-
entation of the analyzer loop, with no measurement. It then
re-expresses the atomic state in the original basis as it
emerges from the analyzer loop. This analog of quantum
interference effects corresponds to the fact that the atoms all
emerge in the same state they entered even though they were
expressed as a superposition along a different axis when they
were inside the apparatus. Since a basis change does not
change the underlying quantum state, the unmeasured ana-
lyzer loop effectively does nothing to the atom.

We are now ready to start discussing the quantum eraser.
The eraser works by first tagging the atoms via their internal
quantum numbers, which may seem like it is a measurement
when the atoms are on one of the two analyzer loop
branches. But the tagging procedure still leaves the atoms in
a pure superposition of quantum states, and so a measure-
ment via a projection has not yet been made. For example,
we assume there are two internal states, unrelated to the spin
of the atom, which can be excited or de-excited. We attach
an exciter to the þ branch of an �x-oriented analyzer loop, as
depicted in Fig. 6, right and denoted with the lightning bolt
symbol. This device excites the internal structure of the atom
from the ground state to the excited state without affecting
the spin structure. This then can be employed to determine

which path of the analyzer loop the atom takes simply by
measuring the internal state of the atom.

Hence, tagging the atoms on the þ branch by exciting
them allows us to determine which-way information. We
have correlated the internal state of the atom with the spin
projection along the �x-axis by creating what one might want
to call an “internally” entangled quantum state; we will refer
to it as a tagged state so as to not confuse it with more con-
ventional uses of entanglement. After tagging, we have a
number of options available to us. If we measure the internal
state, then we know which path the atom took through the
analyzer loop, in direct analogy to what happened when we
watched at the arms of the analyzer loop with pass-through
detectors. But it is not exactly the same, because we have not
yet actually performed the measurement of the internal
degree of freedom. Our system has only been transformed to
a tagged superposition of states at this stage. We must use a
tensor product notation to describe this. We let jESi denote
the excited internal state and jGSi denote the internal ground
state. Then, the exciter will take an input state of j "; zi
�jGSi ¼ 1=

ffiffiffi

2
p
ðj "; �xi þ j #; �xiÞ � jGSi and transform it to

1=
ffiffiffi

2
p
ðj "; �xi � jESi þ j #; �xi � jGSiÞ, which is a superposi-

tion corresponding to a pure (but tagged) quantum state. If
we measure the internal state of the atom when it is in this
superposition, we collapse the wavefunction and determine
which branch the atom took through the analyzer loop—
hence, we know the projection of its spin along the �x-axis,
even though we did not directly measure the projection of
the spin. Alternatively, if we measured the spin along the
z-axis by passing through a vertically oriented analyzer (see
Fig. 7), we would find half the time the atoms emerge as spin
up and half the time as spin down, indicating we have
which-way information about the paths in the �x-oriented ana-
lyzer loop. Furthermore, if we subsequently measure the
internal state of the atom, we actually can determine which
path the atom took through the �x-oriented analyzer loop,
even after the spin state has been measured in the vertical
analyzer!

The tagging phenomenon is a subtle one. While it is not a
measurement, because it can still be erased, it is also not the
same as if we did nothing. For example, we know that if the
exciter was replaced by a pass through tube, then we would
measure all atoms as being up when they exit the final ana-
lyzer. But after tagging, we recover the same results in the
final detector as we would have if we did measure when in
the horizontal analyzer (half up and half down). This occurs
because the tagging has made the two paths distinguishable.
Analyzing this situation requires an additional measurement
postulate. If we view this from a quantum information per-
spective, we would say we must form what is called a partial

Fig. 6. Top: analyzer loop oriented along the �x direction with pass-through

tubes, which allow the beam to pass without blocking a path or detecting if

an atom went through a path. The source produces polarized j "; zi atoms.

Bottom: analyzer loop with an exciter on the þ branch and a pass through

tube on the � branch.

Fig. 7. “Unerased” version of a quantum eraser experiment with an analyzer

loop-exciter (exciting on the þ path of the �x-oriented analyzer loop) and a

z-oriented analyzer to detect the spin projection of the atoms at the end of

the experiment.
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trace over the internal states of the atom because we are not
measuring them—this produces a mixed state for the spin
degree of freedom, producing half up and half down in the
output of the final analyzer. If we instead view it more tradi-
tionally, this case corresponds to what is called a positive
operator valued measurement (POVM)—here, the rule is
that we add the probabilities for each distinguishable state,
again producing half up and half down at the exit. (The terms
partial trace, mixed state, and positive operator valued mea-
surement are all common terms from quantum information,
which are used to more precisely describe some of the subtle
aspects of quantum measurements.) How much of this detail
the instructor wants to relate to the students depends on how
much they are likely to grasp. It is probably better to revisit
this scenario later in a course, when concepts like density
matrix, partial trace, and mixed states are introduced.

We successfully “untag” the atom if we can completely
restore the atom to its initial state of j "; zi � jGSi. We dem-
onstrate shortly that this can be done only for half of the inci-
dent atoms in the system due to the complex nature of the
tagging, which has correlated the internal degrees of freedom
of the atom with the different spin states into a quantum super-
position. Hence tagging, unlike watching, allows us the possi-
bility to untag the atoms and restore the original state because
tagging does not constitute a measurement. The untagging pro-
cedure is more commonly called a quantum eraser.

We pause for a moment to discuss the nomenclature we
use of “tagging” versus “internal entanglement.” While it is
true that any set of quantum degrees of freedom that can be
represented as tensor products can be employed to create
entangled quantum states via superpositions, we prefer to
use the word tagging to describe this procedure when we are
forming superpositions between internal degrees of freedom
of the same particle (similar to polarization of photons and
their position or momentum) and reserve entanglement for
the many-body entanglement of multiple particles in an
entangled state, as in an EPR pair or a spin-singlet state
formed from two spin-one-half fermions. We do not use any
many-particle entangled states in this work.

We next extend the �x-oriented analyzer-loop with exciter
experiment by having the analyzer-loop output go through a
z-oriented analyzer loop, as shown in Fig. 7. We find that the
exiting atoms emerge half of the time from the þ branch and
half of the time from the � branch. In addition, the atom will
be in the ground state half of the time and in the excited state
half of the time, with no correlation between the spin state
and the internal state after emerging from the vertical Stern-
Gerlach analyzer. Nevertheless, by measuring the internal
state of the atom, we can immediately know whether it went
through the þ or � branch of the �x-oriented analyzer loop,
even though we have “scrambled” the spin projection by
measuring it on the z-axis.

Let’s be sure we understand this by carefully going
through the quantum analysis. We measure the probability to
exit the þ exit of the z-oriented analyzer by projecting the
output state of the analyzer loop onto j "; zi hz; " j and then
finding the norm of the final projected wavefunction. Hence,
this measurement produces

1
ffiffiffi

2
p ðj "; zihz;" j "; �xi� jESiþ j ";zi

� hz;" j #; �xi� jGSiÞ ¼ 1

2
j "; zi� ðjESiþ jGSiÞ: (1)

The norm then becomes 1=4hz; " j "; ziðhESjESi þ hESjGSi
þhGSjESi þ hGSjGSiÞ ¼ 1=2 because the excited and ground
states are orthogonal (hESjGSi ¼ hGSjESi ¼ 0). In addition,
half of the time, the atom exiting the þ exit of the z-oriented
analyzer will be in the ground state and half of the time in the
excited state. The analysis for the � exit yields identical final
probabilities and final internal atomic states.

Next, we would like to erase the which-way information
and restore the initial spin state the atom had before it entered
the analyzer loop-exciter. In other words, we want to untag
the tagged atoms. This requires two stages to work. First, we
must have all atoms that emerge from the analyzer loop-
exciter go through a superpositioner (graphically denoted
with an S label). The superpositioner corresponds to what is
called a Hadamard gate in quantum information and what is
called a p=2 pulse in nuclear magnetic resonance; like the
exciter, it does not perform a measurement. We call it a
superpositioner because it corresponds to half of the exciter
operation—it creates a superposition of ground and excited
states. In other words, it transforms the ground state to the
superposition jGSi ! 1=

ffiffiffi

2
p
ðjGSi þ jESiÞ and it transforms

the excited state to the superposition jESi ! 1=
ffiffiffi

2
p

ðjGSi � jESiÞ. Because these two states remain orthogonal
to each other (and hence completely distinguishable), we can
still tell them apart, and so the superpositioner does not erase
the which-way information. We simply need to measure the
atomic states in the appropriate basis, since measuring just
jGSi or jESi will not be able to provide the which-way infor-
mation. Note that the superpositioner does change the quan-
tum state. This is the difference from a simple change of
basis, which preserves the quantum state.

The which-way information is finally erased by measuring
only the atoms in the ground state. This is accomplished by
employing a de-exciter (denoted by the electrical “ground”
symbol). The de-exciter will force the excited state to transi-
tion to the ground state and emit a photon, but it does noth-
ing if the atom enters it in the ground state. If a photon is
detected, the de-exciter then blocks the atom and does not
allow it to exit. Hence, the de-exciter acts like a pass-
through filter, which only allows atoms that entered it in their
ground-state to pass through; hence, an equivalent name
would be “ground-state filter.” We can perform this measure-
ment any time before the atom enters the final z-oriented
analyzer or any time after the atom has emerged from an exit
of the z-oriented analyzer (see Fig. 8). This allows us to
make a delayed choice for whether we erase the (tagged)
quantum information or not. The choice can be made after
all other measurements have been completed! To be clear,
the de-exciter does perform a projective measurement, but
only on the internal state of the atom, not on the spin.
Nevertheless, it does collapse the wavefunction.

The quantum analysis including the de-exciter is com-
pleted as follows: begin with the state emerging from the
analyzer loop-exciter, given by 1=

ffiffiffi

2
p
ðj "; �xi � jESi

þ j #; �xi � jGSiÞ. After passing through the superpositioner,
this state becomes

1

2
ðj "; �xi þ j #; �xiÞ � jGSi þ ð�j "; �xi þ j #; �xiÞ � jESi½ �:

(2)

Next, we re-express this quantum state in the z-basis for the
spin, instead of the �x-basis. This yields 1=

ffiffiffi

2
p
ðj "; zi � jGSi

þ j #; zi � jESiÞ. Hence, we have shifted the entanglement
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to now be the superposition of an up spin along the z-axis
correlated with the ground state and the down spin along the
z-axis correlated with the excited state. We continue the
analysis for the scenario depicted in the bottom of Fig. 8.
Measuring in the z-oriented analyzer requires the projections
onto the j "; zi or j #; zi states, respectively. We find half the
time, the atom emerges in the j "; zi � jGSi state and half the
time in the j #; zi � jESi state. Now, if we decide to record
the measurements only for atoms that emerge from the de-
exciter (that is, entered the de-exciter in the ground state),
we remove all j #; zi � jESi atoms. This has then erased the
which-way information, and we find the atom emerges from
the quantum eraser with the same state it first entered the
analyzer loop, namely, the positive projection of spin along
the z-axis in the ground state!

Note that we lose half of the atoms when we do this. This
behavior is typical of quantum eraser measurements. We
must remove the atoms that have the wrong quantum behav-
ior, and hence, we lose signals when we restore the original
quantum coherence that we lost by tagging the system to
allow us to determine the which-way information. While, in
principle, one might be able to devise a clever way to over-
come this issue by using interaction-free measurements, it
appears to be an issue with all quantum eraser measure-
ments. The full quantum state is not restored by the eraser
because we must remove the “bad” measurements from the
experiment. Note, on the other hand, if we do not measure
the internal state of the final atom, then we find half of the
atoms emerge from the þ exit and half from the � exit of
the z-oriented analyzer. This is exactly what happens when
the atoms are watched or whenever we have which-way
information.

Wheeler originally suggested11,12 that perhaps the delayed
choice measurement implies that the quantum particles infer
their behavior by moving backwards in time. But we see this
is not necessary at all when one performs a careful quantum
analysis. Indeed, the eraser works by carefully manipulating
the correlations and entanglement between the different
quantum states of the quantum particle (ground or excited
state and spin). Similarly, in a two-slit experiment it arises

from which slit the photon went through and its polarization.
Hence, all of the information is in the linear combinations of
tensor products of the wavefunction, and that is all one needs
to understand and analyze these experiments.

There are a number of variants one can include for further
discussion or as problems for the students. These include the
following possibilities: (1) change the orientation of the
analyzer loop from a horizontal direction to a different angle
with respect to the vertical such as 45�; (2) place the
de-exciter in front of the final z-oriented analyzer, so that all
of the atoms that emerge from the final analyzer are ground-
state atoms in the þ state along the z-axis; (3) allow the stu-
dents to complete the delayed choice analysis on their own
instead of doing it for them, and (4) have the students discuss
whether the superpositioner could be placed after the
z-oriented analyzer but before the de-exciter.

In addition to providing a neat exercise in working with
tensor-product states, the analysis of the delayed choice
Stern-Gerlach quantum eraser allows the students to fully
understand a complex experiment with a rather elementary
analysis, which requires applying just a few quantum rules.
When coupled with videos of the quantum eraser for the
two-slit experiment, this can be a powerful way to help stu-
dents understand quantum phenomena early in the curricu-
lum and to build confidence that this material can be
understood easily if one simply analyzes the behavior
according to the quantum rules.

V. POSSIBLE IMPLEMENTATION IN A REAL

ATOMIC SYSTEM

We briefly describe how one might actually perform such
an experiment in a lab because we believe it enriches the
discussion if the experiment has a possibility to actually be
realized. The main challenge with implementing the delayed
choice Stern-Gerlach quantum eraser in a real system is that
the transition between the internal states of the atom must
not change the total electronic angular momentum of the sys-
tem, which determines the projection of the angular momen-
tum onto the axis of the Stern-Gerlach device. Electronic
transitions between different atomic energy levels are likely
to affect such states as the total angular momentum usually
changes for these transitions. Furthermore, such excited
states are very short-lived (few nanoseconds to microsec-
onds) and would not survive long enough for an experiment
to be completed.

Instead, we propose to perform experiments with the
171Yb atom, a species known to enable an ultra-accurate
optical frequency atomic clock.37 The Ytterbium atom has
two J¼ 0 atomic clock states, the 1S0 and the 3P0 states, each
of which has angular momentum zero. The 171Yb isotope
also has a nuclear spin one-half and can be prepared and
detected in either its positive or negative projection states.
Although the 1S0!3P0 clock transition near a laser wave-
length of 578 nm is strictly forbidden, the presence of the
nuclear spin breaks the symmetry and permits laser excita-
tion to the excited state, so that any superposition of ground
and excited states could be prepared in the atomic clock
experiment. Since the coupling of these J¼ 0 electronic
states to the nuclear spin is extremely weak, the excited state
lifetime is quite long, and the nuclear spin constants are
nearly the same in the ground and excited states. Thus, the
electronic and nuclear spin degrees of freedom can be taken
as essentially independent.

Fig. 8. Fully erased quantum eraser experiment with the eraser elements

(superpositioner and de-exciter) either both positioned before the final ana-

lyzer (top) or one before and the other after (bottom). In the second case, the

de-exciter can be placed as far from the analyzer as desired. Note how in the

latter case, atoms emerge from both exits of the z-oriented analyzer, but only

those that are in the j "i � jGSi state can pass through the de-exciter and be

detected. The delayed choice corresponds to whether the de-exciter is

inserted or not; we have pictured the case where it is inserted.
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While one might think that the 171Yb atom provides a
nearly ideal system to realize our various Stern-Gerlach
schemes, there is one problem. The nuclear magnetic
moment,38 0.49367 lN for 171Yb, is much smaller than the
electron magnetic moment used for a typical Stern-Gerlach
separation of spin states. Electronic magnetic moments are on
the order of one Bohr magneton (lB=�h ¼ 14.0 GHz/T),
whereas the nuclear magneton (lN=�h ¼ 7.62 MHz/T) is
nearly 2000 times smaller. The original experiment of Stern
and Gerlach used a beam of silver atoms, which have a single
unpaired electron. They were able to separate the two elec-
tronic spin projections by several tenths of a millimeter using
a quite strong field gradient of a few T/cm. Thus, achieving
practical separations with a small nuclear magnetic moment
requires impractically large magnetic field gradients. This
certainly creates a challenge with implementing such an
experimental system in practice, but it does show that in prin-
ciple, such a system can be used in these experiments.

It may be possible to use the optical Stern-Gerlach (OSG)
effect to achieve large enough separations in order to imple-
ment our scheme. The separation of nuclear spin components
using the OSG method has already been demonstrated39

with 171Yb and 173Yb and the similar atomic clock species
(Ref. 40) 87Sr. The latter species has a nuclear spin of 9/2,
which could be separated into 10 separate spin projection
states using the OSG effect with ultracold atoms. The optical
separation is based on using the strong light intensity gradi-
ent in a focused laser beam to separate the different spin
components, which couple differently to the laser field and
experience differential optical forces. Whether a practical
OSG experiment could be designed for our scheme would
need to be carefully considered, since the ground and excited
electronic states do not in general experience the same
optical forces, although it is often possible to find “magic
wavelengths” where they are the same.

One should also note that it can be quite challenging to
create the analyzer loop, as discussed in the so-called
“Humpty-Dumpty” series of papers,41–43 since one needs to
maintain the magnetic fields to a high level of tolerance and
some decoherence is almost certainly going to occur. It is
not clear, however, whether this also holds in the situation
where one creates the Stern-Gerlach experiment optically, as
we proposed here.

VI. APPLICATION TO OTHER EXPERIMENTS

One of the most common examples of a delayed choice
quantum eraser is to perform the two-slit experiment with
crossed polarizers over the slits and a polarizer that is
employed at the screen before measuring the pattern of
light.27 If the polarizers at the slits are horizontal and verti-
cal, respectively, then a horizontal polarizer at the screen
will see a single slit pattern, as will a vertical polarizer. But
if the polarizer at the screen is rotated to 45�, then the inter-
ference pattern emerges. Numerous YouTube videos of this
experiment exist, and it can be implemented rather easily at
home using just a laser pointer and polarizers from 3D movie
glasses.14

Because this paper is focused on the Stern-Gerlach experi-
ment, we do not go through the full analysis of the conven-
tional two-slit experiment here, but it should be clear that a
quite similar analysis can be done of this experiment, and it
reinforces the concepts covered for the Stern-Gerlach experi-
ment. Depending on when one wants to discuss polarization

in the quantum mechanics class, this might come later in the
curriculum than the Stern-Gerlach experiment.

In addition, the same techniques employed here for the
delayed choice Stern-Gerlach experiment can also be
employed to examine other interesting experiments, as Styer
does in his text.4 These include a modified version of the
Einstein-Podolsky-Rosen experiment and of the Bell experi-
ments. We feel including all of these additional topics
greatly enhances the undergraduate quantum curriculum and
would not take too much time away from more standard
topics. We feel the benefits that the student gains from hav-
ing contact with modern quantum experiments and from
understanding concepts such as the superposition and mea-
surement in a more concrete fashion far outweighing the cost
in time to other subjects that might need to be dropped from
the course.

VII. CONCLUSIONS

As more and more quantum classes embrace the Stern-
Gerlach-first curriculum, it becomes possible to employ this
experiment to cover a range of interesting modern quantum
experiments that showcase the fascinating nature of quantum
mechanics while strengthening the students’ abilities in
understanding concepts such as the superposition, tensor
products, and measurement. Tackling these concepts early on
will help ground the students in the fundamentals of quantum
mechanics and better prepare them for the rest of the quantum
curriculum they will cover in their course. Given the fact that
they already have all of the prerequisite knowledge needed
from current textbook coverage of the Stern-Gerlach experi-
ment, the extension we have described provides students with
an easy entry into more sophisticated material. We hope other
quantum mechanics instructors will agree.

ACKNOWLEDGMENTS

Initial stages of this work were supported by the National
Science Foundation under Grant No. PHY-1620555 and final
stages under Grant No. PHY-1915130. In addition, J.K.F.
was also supported by the McDevitt bequest at Georgetown
University.

1W. Gerlach and O. Stern, “Der experimentelle Nachweis des magnetische

Moments des Silberatoms,” Z. Phys. 8, 110–111 (1922); “Das

Magnetische Moment des Silberatoms,” 9, 349–352 (1922); “Der

Experimentelle Nachweis der Richtungsquantelung im Magnetfeld,” 9,

353–355 (1922).
2Richard P. Feynman, Robert B. Leighton, and M. Sands, The Feynman
Lectures on Physics (Addison-Wesley, Reading, MA, 1964), Vol. 3.

3J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, Reading,

MA, 1985).
4D. Styer, The Strange World of Quantum Mechanics (Cambridge U. P.,

Cambridge, 2000).
5J. S. Townshend, A Modern Approach to Quantum Mechanics (University

Science Books, Sausolito, CA, 2000).
6D. McIntyre, C. A. Manogue, and J. Tate, Quantum Mechanics: A
Paradigms Approach (Pearson-Addison-Wesley, San Francisco, 2012).

7M. Beck, Quantum Mechanics: Theory and Experiment (Oxford U. P.,

New York, 2012).
8A. P. French and Edwin F. Taylor, An Introduction to Quantum Physics
(W. W. Norton & Co., New York, 1978).

9S. Weinberg, Lectures on Quantum Mechanics, 2nd ed. (Cambridge U. P.,

Cambridge, 2015).
10David J. Griffiths, Introduction to Quantum Mechanics, 2nd ed.

(Cambridge U. P., Cambridge, 2017).

306 Am. J. Phys., Vol. 88, No. 4, April 2020 Courtney et al. 306

https://doi.org/10.1007/BF01329580
https://doi.org/10.1007/BF01326983
https://doi.org/10.1007/BF01326984


11J. A. Wheeler, “The ‘past’ and the ‘delayed-choice double-slit

experiment,” in Mathematical Foundations of Quantum Theory, edited by

A. R. Marlow (Academic Press, New York, 1978), pp 9–48.
12J. A. Wheeler, “Law without law,” in Quantum Theory and Measurement,

Princeton Series in Physics, edited by J. A. Wheeler and W. H. Zurek

(Princeton U. P., Princeton, 1983), pp. 182–213.
13D. Ellerman, “Why delayed choice experiments do not imply retro-

causality,” Quantum Stud. 2, 183–199 (2015).
14One example video is <https://www.youtube.com/watch?v¼R-

6St1rDbzo>.
15M. O. Scully, B.-G. Englert, and H. Walther, “Quantum optical tests of

complementarity,” Nature 351, 111–116 (1991).
16B.-G. Englert, Marlan O. Scully, and H. Walther, “Quantum erasure in

double-slit interferometers with which-way detectors,” Am. J. Phys. 67,

325–329 (1999).
17Eugene P. Wigner, “The problem of measurement,” Am. J. Phys. 31, 6–15

(1963).
18Marlan O. Scully, R. Shea, and J. D. McCullen, “State reduction in quan-

tum mechanics: A calculational example,” Phys. Rep. 43, 485–498 (1978).
19A. R. Mackintosh, “The Stern-Gerlach experiment, electron spin and inter-

mediate quantum mechanics,” Eur. J. Phys. 4, 97–106 (1983).
20Daniel E. Platt, “A modern analysis of the Stern-Gerlach experiment,”

Am. J. Phys. 60, 306–308 (1992).
21S. H. Patil, “Quantum mechanical description of the Stern-Gerlach

experiment,” Eur. J. Phys. 19, 25–30 (1998).
22M. Gondran and A. Gondran, “A complete analysis of the Stern-Gerlach

experiment using Pauli spinors,” preprint arXiv:05111276 (2005).
23G. B. Roston, M. Casas, A. Plastino, and A. R. Plastino, “Quantum entan-

glement, spin-1/2 and the Stern-Gerlach experiment,” Eur. J. Phys. 26,

657–672 (2005).
24E. B. Rodr�ıguez, L. M. A. Aguilar, and E. P. Mart�ınez, “A full quantum

analysis of the Stern-Gerlach experiment using the evolution operator

method: Analyzing current issues in teaching quantum mechanics,” Eur. J.

Phys. 38, 025403 (2017).
25G. Zhu and C. Singh, “Improving students’ understanding of quantum

mechanics via the Stern-Gerlach experiment,” Am. J. Phys. 79, 499–507

(2011).
26T. Qureshi and Z. Rahman, “Quantum eraser using a modified Stern-

Gerlach setup,” Prog. Theor. Phys. 127, 71–78 (2012).
27W. Holladay, “A simple quantum eraser,” Phys. Lett. A 183, 280–282

(1993).

28Thomas F. Jordan, “Choosing and rechoosing to have or have not inter-

ference,” Am. J. Phys. 69, 155–157 (2001).
29W. Rueckner and J. Peidle, “Young’s double-slit experiment with single

photons and quantum eraser,” Am. J. Phys. 81, 951–958 (2013).
30C. Ferrari and B. Braunecker, “Entanglement, which-way measurements,

and a quantum erasure,” Am. J. Phys. 78, 792–796 (2010).
31E. Marshman and C. Singh, “Interactive tutorial to improve student under-

standing of single photon experiments involving a Mach-Zehnder inter-

ferometer,” Eur. J. Phys. 37, 024001 (2016).
32Mark B. Schneider and Indhira A. LaPuma, “A simple experiment for dis-

cussion of quantum interference and which-way measurement,” Am. J.

Phys. 70, 266–271 (2002).
33T. L. Dimitrova and A. Weis, “Single photon quantum erasing: A demon-

stration experiment,” Eur. J. Phys. 31, 625–637 (2010).
34James M. Ashby, Peter D. Schwarz, and M. Schlosshauer, “Delayed-

choice quantum eraser for the undergraduate laboratory,” Am. J. Phys. 84,

95–105 (2016).
35Quantum Mechanics for Everyone, EdX MOOC <https://www.edx.org/

course/quantum-mechanics-everyone-georgetownx-phyx-008-01x> (2017).
36Simulations and their compute and visualization engines can be found at

<https://github.com/quantum-mechanics-for-everyone/simulations> and

are distributed under the LGPL 2.1 license.
37N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams,

Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates,

“Spin-1/2 optical lattice clock,” Phys. Rev. Lett. 103, 063001 (2009).
38N. J. Stone, “Table of nuclear magnetic dipole and electric quadrupole

moments,” At. Data Nucl. Data Tables 90, 75–176 (2005).
39S. Taie, Y. Takasu, S. Sugawa, R. Yamazaki, T. Tsujimoto, R. Murakami,

and Y. Takahashi, “Realization of SU(2) � S(6) system of fermions in a

cold atomic gas,” Phys. Rev. Lett. 105, 190401 (2010).
40S. Stellmer, R. Grimm, and F. Schreck, “Detection and manipulation of

nuclear spin states in fermionic strontium,” Phys. Rev. A 84, 043611

(2011).
41B.-G. Englert, J. Schwinger, and M. O. Scully, “Is spin coherence like

Humpty-Dumpty? I. Simplified treatment,” Found. Phys. 18, 1045–1056

(1988).
42J. Schwinger, M. O. Scully, and B.-G. Englert, “Is spin coherence like

Humpty-Dumpty? II. General theory,” Z. Phys. D 10, 135–144 (1988).
43M. O. Scully, B.-G. Englert, and J. Schwinger, “Is spin coherence like

Humpty-Dumpty? III. The effects of observation,” Phys. Rev. A 40,

1775–1784 (1989).

307 Am. J. Phys., Vol. 88, No. 4, April 2020 Courtney et al. 307

https://doi.org/10.1007/s40509-014-0026-2
https://www.youtube.com/watch?v=R-6St1rDbzo
https://www.youtube.com/watch?v=R-6St1rDbzo
https://www.youtube.com/watch?v=R-6St1rDbzo
https://doi.org/10.1038/351111a0
https://doi.org/10.1119/1.19257
https://doi.org/10.1119/1.1969254
https://doi.org/10.1016/0370-1573(78)90210-7
https://doi.org/10.1088/0143-0807/4/2/008
https://doi.org/10.1119/1.17136
https://doi.org/10.1088/0143-0807/19/1/005
http://arxiv.org/abs/05111276
https://doi.org/10.1088/0143-0807/26/4/012
https://doi.org/10.1088/1361-6404/aa51ad
https://doi.org/10.1088/1361-6404/aa51ad
https://doi.org/10.1119/1.3546093
https://doi.org/10.1143/PTP.127.71
https://doi.org/10.1016/0375-9601(93)90456-A
https://doi.org/10.1119/1.1290253
https://doi.org/10.1119/1.4819882
https://doi.org/10.1119/1.3369921
https://doi.org/10.1088/0143-0807/37/2/024001
https://doi.org/10.1119/1.1450558
https://doi.org/10.1119/1.1450558
https://doi.org/10.1088/0143-0807/31/3/020
https://doi.org/10.1119/1.4938151
https://www.edx.org/course/quantum-mechanics-everyone-georgetownx-phyx-008-01x
https://www.edx.org/course/quantum-mechanics-everyone-georgetownx-phyx-008-01x
https://github.com/quantum-mechanics-for-everyone/simulations
https://doi.org/10.1103/PhysRevLett.103.063001
https://doi.org/10.1016/j.adt.2005.04.001
https://doi.org/10.1103/PhysRevLett.105.190401
https://doi.org/10.1103/PhysRevA.84.043611
https://doi.org/10.1007/BF01909939
https://doi.org/10.1007/BF01384847
https://doi.org/10.1103/PhysRevA.40.1775

	s1
	s2
	s3
	f1
	f2
	f3
	f4
	f5
	s4
	f6
	f7
	d1
	d2
	s5
	f8
	s6
	s7
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43

