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NOTES AND DISCUSSION

Natural relationship between classical orbits and quantum
Hamiltonians for the Kepler problem

Jason Tran,a) Leanne Doughty,b) and James K. Freericksc)

Department of Physics, Georgetown University, 37th and O Sts. NW, Washington, DC 20057

(Received 28 May 2024; accepted 8 January 2025)

Central force problems involve coupled linear differential equations of motion. By decoupling the

differential equations, we show how to efficiently solve for the orbits of the Kepler problem

without any complicated integrals. Introducing quantization provides a deep connection between

the solution for these classical orbits and the quantum Hamiltonian of hydrogen for states that have

definite total angular momentum. # 2025 Published under an exclusive license by American Association of Physics
Teachers. https://doi.org/10.1119/5.0220799

I. INTRODUCTION

The Hamilton equations of motion for central force prob-
lems are a set of coupled linear differential equations devel-
oped in every upper-division classical mechanics class.
Even though these equations do not usually have constant
coefficients, they can be decoupled using a strategy that
was first described in the 1930 quantum textbook by Born
and Jordan called Elementare Quantenmechanik for the
simple harmonic oscillator.1 The decoupling is closely
related in form to the factorization method, which was
introduced by Schr€odinger in 1940, as an alternative way to
solve for the energy levels of exactly solvable quantum
problems.2 The relationship we develop in this paper
provides a deep connection between the mathematics
of classical mechanical orbits and quantum mechanical
energy eigenvalues, but it is not directly related to the
Bohr–Sommerfeld quantization conditions. It is a different
strategy that reveals an interesting relationship that is valu-
able for both students studying classical mechanics and
quantum mechanics. We show this approach only for the
Kepler problem of an inverse square force law. While it
also works for the isotropic harmonic oscillator, the orbit
equation analysis is significantly more complicated, so we
do not discuss that case further here. A conventional classi-
cal analysis appears in Sec. 11.9 of a Physics Libre
textbook.3

We start our treatment with the Hamilton equations of
motion for central forces. The strategy then involves a
decoupling of the linear differential equations, followed by
the use of the conservation of angular momentum, which
then allows for an immediate solution of the orbit in the
Kepler problem.

Consider a classical particle of mass m moving in a central
potential VðrÞ. The motion is restricted to a plane and can be
described by the radial coordinate r and the angular coordi-

nate h. The kinetic energy becomes T ¼ 1
2

m _r2 þ 1
2

mr2 _h
2

¼ p2
r=2mþ p2

h=2mr2, with the radial momentum pr ¼ m _r

and the angular momentum ph ¼ mr2 _h. The Hamiltonian is

H ¼ T þ V (using the form T ¼ p2
r=2mþ p2

h=2mr2), and the
Hamilton equations of motion become

_r ¼ @H

@pr
¼ pr

m
and _pr ¼ �

@H

@r
¼ mr _h

2 � dVðrÞ
dr

(1)

for the radial degree of freedom and

_h ¼ @H

@ph
¼ ph

mr2
and _ph ¼ �

@H

@h
¼ � dVðrÞ

dh
¼ 0 (2)

for the angular degree of freedom; details can be found in
Goldstein.4 The central force has no angular component,
which is why the angular equations can be solved by
ph ¼ mr2 _h ¼ L, which says that the angular momentum per-
pendicular to the plane is a conserved quantity. The radial
equations have contributions from the central force and the
centrifugal barrier term. By using the conserved angular
momentum, we find

_pr ¼
L2

mr3
� dVðrÞ

dr
: (3)

II. THE KEPLER PROBLEM

For the Kepler problem, we have that VðrÞ ¼ �k=r, and
thus the set of equations

_r ¼ pr

m
and _pr ¼

L2

mr3
� k

r2
: (4)

One of the strategies to solve coupled differential equations
is to decouple them. This means that we wish to combine the
equations in such a way that the time derivative depends on
only the object being differentiated and some multiplicative
factor. For example, the original equations have the deriva-
tive of the position proportional to the momentum and the
derivative of momentum equal to a function of position.
These are coupled equations. The equations are decoupled
by the ansatz

A ¼ pr þ
a
r
þ b; (5)
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with a having dimensions of angular momentum, and b hav-
ing dimensions of linear momentum. We compute _A and
require it to be equal to kðrÞA in order to decouple the differ-
ential equations. This yields, after using Eq. (4),

_A ¼ _pr �
a _r

r2
¼ L2

mr3
� k

r2
� apr

mr2
: (6)

The coefficient of the radial momentum must be the factor k.
Once that has been determined, the other coefficients follow
directly by matching corresponding terms. We find that

kðrÞ ¼ � a
mr2

; a ¼ � L2

a
; and b ¼ km

a
: (7)

The middle equation is immediately solved by a ¼ 6iL, and
then k ¼ 7iL=mr2 and b ¼ 7ikm=L. We have two solutions,
and they are complex conjugates of each other. We choose A
to be defined with the a ¼ iL case, and A� with the a ¼ �iL
case. This gives

A ¼ pr þ
iL

r
� ikm

L
; (8)

and A� is the complex conjugate, corresponding to the other
independent solution.

The differential equation has now become

_A ¼ � iL

mr2
A (9)

and its complex conjugate for A�. This differential equation
appears as if it cannot be directly solved, because we do not
know rðtÞ. But, by using L=mr2 ¼ _h, we find that

_A ¼ �i _hA; (10)

which is immediately integrated to

AðtÞ ¼ A0e�ih; (11)

with A0 being the “initial value” of A at h ¼ 0. One can think
of the h in the exponent as a function of t or as just h itself
for the equation of the orbit. The complex conjugate equa-
tion also holds.

Now to find the orbit, we eliminate pr by taking the differ-
ence of AðhÞ and A�ðhÞ. We find that

AðhÞ � A�ðhÞ ¼ �2i ReðA0Þ sin hþ 2i ImðA0Þ cos h

¼ 2iL

r
� 2ikm

L
; (12)

by evaluating the difference from the solutions to the differ-
ential equation and from the definitions of A and A� in
Eq. (8). Picking the initial value A0 to correspond to a point
on the orbit with zero radial momentum (and the distance
of the closest approach to the center of the force), we have
Re ðA0Þ¼ 0 and Im ðA0Þ ¼ ðL=r0Þ � ðkm=LÞ, yielding the
orbit equation

1

r
¼ km

L2
þ 1

r0

� km

L2

� �
cos h: (13)

This is an orbit equation for an ellipse with the origin at one
of the foci. To see how it compares with the standard form in

Eq. (3.55) of Goldstein’s textbook, we simply need to re-
express in terms of the energy.4 The (constant) energy can be
evaluated at the distance of closest approach, as given by

E ¼ L2

2mr2
0

� k

r0

; (14)

because there is no radial momentum contribution there.
Solving the quadratic equation for the distance of closest
approach (which requires the plus sign for the specific root)
yields

1

r0

¼ km

L2
þ km

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2EL2

mk2

r
; (15)

which allows us to re-express the orbit equation as

1

rðhÞ ¼
km

L2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2EL2

mk2

r
cos h

 !
: (16)

Note that this derivation is substantially more elementary
than the conventional approach, which requires a compli-
cated derivation of dh=dr, followed by an integration to
determine hðrÞ, and finally, an inversion to obtain rðhÞ as
seen in the study of Goldstein, for example Ref. 4. We dis-
cuss how to obtain the energy directly from A and A� next.

III. TRANSITION TO QUANTUM MECHANICS

We start by examining the energy. We know the energy is
a conserved quantity, and so is A�ðhÞAðhÞ ¼ jA0j2, because
the complex conjugate exponentials cancel when multiplied
together, so there should be a relationship between them.
Using Eqs. (8) and (11), we find that

jA0j2 ¼
L2

r2
0

� 2km

r0

þ k2m2

L2
¼ p2

r þ
L2

r2
� 2km

r
þ k2m2

L2
;

(17)

which is equal to 2mEþ k2m2=L2. By subtracting the con-
stant k2m2=L2 from both sides and dividing by 2 m, we use
Eq. (14) to verify the standard conservation of energy for the
Kepler problem. This shows that the decoupling used to find
the orbits also allows us to derive the conservation of
energy.

Finally, we show how this classical solution is related to
the quantum problem for hydrogen. In quantum mechanics,
the radial momentum is conjugate to the radial coordinate,
so that ½r̂ ; p̂r� ¼ i�h. Furthermore, the angular momentum is
quantized and cannot take on continuous values. The surpris-
ing result is that we can use a quantized version of A to
factorize the Hamiltonian for hydrogen. In the case of hydro-
gen, we take k ¼ e2=4pe0 ¼ �h2=ma0, where e is the charge
on an electron, and a0 is the Bohr radius. Then, we construct
the quantum operator to have the same form as the classical
operator via

Âl ¼ p̂r þ
i�hðlþ 1Þ

r̂
� i�h

a0ðlþ 1Þ (18)

after writing L ¼ �hðlþ 1Þ. The symbol l will become an inte-
ger, but for now, think of it as a real dimensionless number,
so there is no loss in generality. We next compute
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Â
†

l Âl ¼ p̂2
r þ i�hðlþ 1Þ p̂r;

1

r̂

� �
þ �h2ðlþ 1Þ2

r̂2
� 2�h2

a0r̂

þ �h2

a2
0ðlþ 1Þ2

¼ p̂2
r þ

�h2lðlþ 1Þ
r̂2

� 2�h2

a0r̂
þ �h2

a2
0ðlþ 1Þ2

(19)

after evaluating the commutator, which satisfies

p̂r;
1

r̂

� �
¼ i�h

r̂2
: (20)

If we divide by 2m and subtract the constant from both sides,
we find that

Ĥl ¼
1

2m
Â

†

l Âl �
�h2

2ma2
0ðlþ 1Þ2

¼ p̂2
r

2m
þ �h2lðlþ 1Þ

2mr̂2
� �h2

ma0r̂
; (21)

which is the standard radial quantum Hamiltonian when act-
ing on states of definite total angular momentum l, with
l being a non-negative integer. The constant term on the
right-hand side of the top line is the energy of the ground
state for the given l value because the operator part of the
Hamiltonian is a positive semidefinite operator, whose mini-
mal expectation value is 0 for states that satisfy Âljwi ¼ 0.

The Heisenberg equation of motion for Â is found to be

_̂A ¼ i

�h
Ĥ ; Â
� �

¼ i

2m�h
Â

†

; Â

h i
Â ¼ � i�hðlþ 1Þ

mr̂2
Â; (22)

which has the same form as the classical equation of motion
in Eq. (9), with L identified with �hðlþ 1Þ. The general impli-
cations of this are not yet fully understood.

IV. SUMMARY AND CONCLUSIONS

In this work, we showed that a simple decoupling of the
Hamilton equations of motion for the Kepler problem leads
to an efficient solution for bound Keplerian orbits. The
decoupling can also be used to show that the total energy is
constant at each point along the orbit. Finally, we can
take this form for the energy, quantize the canonical

variables in it, and show that it becomes the quantum form
of the Hamiltonian for systems with fixed total angular
momentum.

This connection is quite unexpected. One can ask is it a
general result? We do not know the answer to this. The iso-
tropic harmonic oscillator is another exactly solvable prob-
lem for which one can use the same strategies. It is
somewhat more complicated than the Kepler problem, but
can be solved, yielding the orbits and the conserved
energy, as well as the quantum connection; we leave the
details of exploring that case to another time. It remains
intriguing though to think about the connection of this clas-
sical treatment with the quantum treatment to see whether
there can be new connections made about the semi-
classical limit from this approach to the problem. At the
very least, it does provide a nice way to relate classical
mechanics solutions to quantum solutions that can ease the
transition from one to the other for students studying both
fields by making the two results appear more similar to
each other.
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