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NOTES AND DISCUSSION

The right way to introduce complex numbers in damped harmonic
oscillators

Jason Tran,a) Leanne Doughty,b) and James K. Freericksc)

Department of Physics, Georgetown University, 37th and O Sts. NW, Washington, District of Columbia 20057

(Received 28 May 2024; accepted 6 February 2025)

The introduction of complex numbers to solve the damped harmonic oscillator in classical

mechanics can seem mysterious to students. We show how an approach based on Born and

Jordan’s 1930 quantum mechanics textbook both demystifies the use of complex numbers in

classical mechanics and makes a strong connection to quantum mechanics. In that work, they

converted the harmonic oscillator equations of motion into two uncoupled first-order equations. In

classical mechanics, this mapping explicitly introduces complex numbers into the motion of the

oscillator and directly shows how to solve for the position and momentum observables. Here, we

explain how this mapping works and show how to demystify the use of complex numbers in

damped-driven harmonic oscillators. As an added bonus, this approach also shows how to

determine the energy as a function of time and makes a strong connection to quantum mechanics.
# 2025 Published under an exclusive license by American Association of Physics Teachers.
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I. INTRODUCTION

Instructors often teach the damped harmonic oscillator by
telling students to use complex exponentials to convert the
differential equation into an algebraic equation, and then
“just take the real part” at the end of the calculation to deter-
mine the position because the position is a real quantity.
Anecdotally, many students are troubled by that last proce-
dure because it is physically, not mathematically argued.
Here, we show a much more natural way to bring complex
numbers into the analysis.

Our inspiration for this work comes from an unlikely
source—the 1930 quantum textbook by Born and Jordan
called Elementare Quantenmechanik.1 In it, Born and Jordan
showed how one can go from the Hamilton equations of
motion (two coupled linear first-order differential equations)
to two decoupled first-order linear differential equations.
They then used this construction to factor the quantum har-
monic oscillator Hamiltonian as a matrix mechanics exer-
cise. This approach should work well with junior level
students either in classical mechanics or quantum mechanics
classes and can be introduced in either of them. The idea has
been rediscovered by others more recently. Gauthier2 used
this idea to provide an alternative solution to the classical
harmonic oscillator, which was further discussed by Tisdell,3

while Alves4 rediscovered the connection to quantum
mechanics. Here, we focus solely on the simple harmonic
oscillator. We examine undamped, damped, and damped-
driven examples and analyze them in this elementary fash-
ion, which introduces complex numbers in a natural way.
Once one has the formalism down, one can discuss more
properties of complex numbers in this context, as recently
illustrated by Close.5

Experts will note that the approach given here is not new
at all—it is just the standard matrix approach used to solve
coupled first-order differential equations with constant

coefficients.6 However, the ideas given here go far beyond
that formal approach. Indeed, it is best done with no matrices
at all, as we now show.

II. COMPLEX NUMBERS AND THE CLASSICAL

HARMONIC OSCILLATOR

In the U.S., nearly every introductory textbook avoids the
use of complex numbers, even for problems such as the
damped harmonic oscillator, for which they are natural. It
does appear in a small number of introductory textbooks,
such as the Feynman Lectures in Physics,7 but its use is not
widespread. Junior-level classical mechanics texts, such as
Marion and Thorton,8 or Taylor,9 commonly cover it. The
treatment tends to take a similar path—when confronted
with the differential equation of motion for the damped-
driven harmonic oscillator the idea of using a complex expo-
nential is motivated by the fact that its derivative does not
change the form of the function and thereby converts the dif-
ferential equation into an algebraic equation. Then, when it
comes time to determine the final motion, the student is often
told by their instructor that “position is a real variable, so we
must take the real part of the solution in order to obtain phys-
ical results”; textbooks usually discuss this in a more
nuanced way.

In our opinion, it is much more natural to have the com-
plex numbers arise directly within the analysis and to have
the “taking of the real part” be an integral yet natural part of
the analysis as we discuss next.

We first consider an undamped classical harmonic oscilla-
tor of mass m and angular frequency x. The equations of
motion are written as coupled first-order differential equa-
tions: _x ¼ p=m and _p ¼ F ¼ �mx2x. Rather than introduce
complex exponentials, we instead work to decouple the
equations. As one can see, each of the differential equations
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has the derivative of x proportional to p and the derivative of p
proportional to x. Decoupling the equations means we find a sin-
gle object A, whose derivative is proportional to A. This can
only be accomplished when A is a linear combination of x and p.
If it involves only one or the other, the derivative will not be pro-
portional to itself, but with a properly chosen linear combination,
we should be able to decouple. Hence, we choose A ¼ pþ ax.
Using the equations of motion, we immediately find that

_A ¼ _p þ a _x ¼ �mx2xþ a
p

m

¼ a
m

p� m2x2

a
x

� �
¼ kðpþ axÞ ¼ kA: (1)

Since decoupling requires us to have _A ¼ kA in Eq. (1), we find
that k ¼ a=m and a is found by equating a ¼ �m2x2=a, or

a2 ¼ �m2x2; (2)

which implies that a ¼ 6imx. The derivative is now propor-
tional to the original function, which is what it means to
decouple the two differential equations.

The process of decoupling the equations requires us to use
complex numbers in the analysis! We choose the negative
root (both will be used, but we need to start somewhere) so
that A ¼ p� imxx. Then, we have _A ¼ �ixA, which gives
AðtÞ ¼ A0e�ixt, for A0 ¼ p0 � imxx0, with x0 the initial posi-
tion and p0 the initial momentum. Next, we consider the sec-
ond solution, with a ¼ imx, which satisfies A�ðtÞ ¼ p
þimxx ¼ A�0eixt. Using the results for AðtÞ and A�ðtÞ, we can
directly solve for xðtÞ and pðtÞ as

xðtÞ ¼ �AðtÞ þ A�ðtÞ
2imx

¼ x0 cos xtþ p0

mx
sin xt (3)

and

pðtÞ ¼ AðtÞ þ A�ðtÞ
2

¼ p0 cos xt� mxx0 sin xt; (4)

which are the standard solutions. One does not need to take the
real part of anything! The position and momentum are simply
solved for algebraically from the decoupled solutions.

The total energy,

p2ðtÞ
2m
þ 1

2
mx2x2ðtÞ; (5)

can also be analyzed using this approach. We first note that

A�ðtÞAðtÞ
2m

¼ p2ðtÞ
2m
þ 1

2
mx2x2ðtÞ

¼ 1

2m
jA0j2 ¼

p2
0

2m
þ 1

2
mx2x2

0 (6)

by evaluating it once from the AðtÞ ¼ pðtÞ � imxxðtÞ and
once from the form of the solution A ¼ A0e�ixt. Note that
the energy is a constant because the product of the exponen-
tial factors in AðtÞ and A�ðtÞ equals 1. Hence, the total energy
is conserved during the motion.

One of the key ideas students are exposed to here is that
the energy can be written in a factorized form that immedi-
ately shows it is conserved. This result continues to hold for

a number of different problems that can be solved exactly in
quantum mechanics, but are not usually examined in a classi-
cal setting because their equations of motion cannot be
solved analytically. Nevertheless, the factorization process
itself, with the time derivatives of the A and A� terms being
opposite to each other is enough to guarantee energy conser-
vation (for undamped systems). The decoupled equations, in
general, take the following form:

_A ¼ kðtÞA and _A
�ðtÞ ¼ �kðtÞA�; (7)

where the function kðtÞ might be implicitly defined in terms
of the time-dependent position xðtÞ and is always purely
imaginary. The solution can be formally represented as

AðtÞ ¼ A0 exp

ðt

0

kðt0Þdt0
� �

and

A�ðtÞ ¼ A�0 exp �
ðt

0

kðt0Þdt0
� �

: (8)

The exponential factors cancel in A�A, while the product is pro-
portional to the energy up to an additive constant term. Hence,
the argument is quite general. This can help instill in students a
new perspective for these problems, especially as they move into
a quantum setting where a similar result holds for the
Schr€odinger factorization method of solving quantum-mechanical
problems.10 We describe the quantum case in Sec. IV, which
reduces to the standard operator approach used in most quantum
mechanics classes for the harmonic oscillator (even if the
Schr€odinger factorization method is not often taught).

III. DAMPED HARMONIC OSCILLATOR

This decoupling approach can next be applied to the
damped case, where we consider an additional damping
force proportional to the velocity. Then, the equation of
motion changes to _p ¼ �mx2x� c _x ¼ �mx2x� cp=m,
with c > 0. We assume that we are in the underdamped case,
where 2mx > c. The critical and overdamped cases can be
worked out following the same strategy, but we will not dis-
cuss them further here. The analysis follows just as before,
because we still have a linear relationship between the deriv-
atives of position and momentum and the position and
momentum. We define A ¼ pþ ax again and find that

_A ¼ �mx2x� c
p

m
þ a

p

m
¼ a� c

m
p� m2x2

a� c
x

 !
: (9)

As before, requiring _A ¼ kA and solving for a yields

a2 � caþ m2x2 ¼ 0 (10)

or

a ¼ c
2

6imx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

4m2x2

r
: (11)

Finally, choosing the negative sign, we have

k ¼ a� c
m
¼ � c

2m
� ix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

4m2x2

r
; (12)
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and the equations to be solved are _A ¼ kA and _A
� ¼ k�A�

with constants k and k�. These are solved by

AðtÞ ¼ A0e�ðct=2mÞ�ixt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðc2=4m2x2Þ
p

¼ pðtÞ þ c
2
� imx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

4m2x2

s0
@

1
A

xðtÞ; (13)

with

A0 ¼ p0 þ
c
2
� imx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

4m2x2

r !
x0 (14)

and the complex conjugate of these results for A�ðtÞ. Solving
for xðtÞ and pðtÞ gives the usual results of

xðtÞ ¼ �AðtÞ þ A�ðtÞ
a� � a

¼ x0 cos xctþ
p0 þ

cx0

2
mxc

sin xct

0
@

1
A

e�ct=2m (15)

and

pðtÞ þ c
2

xðtÞ

¼ AðtÞ þ A�ðtÞ
2

¼ p0 þ
cx0

2

� �
cos xct� mxcx0 sin xct

� �
e�ct=2m;

(16)

with xc ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc2=4m2x2Þ

p
. Finally using Eq. (15) to

subtract cxðtÞ=2 from both sides of Eq. (16) gives us

pðtÞ ¼ p0 cos xct� mxc 1þ c2

4m2x2
c

 !
x0 sin xct

"

� c
2mxc

p0 sin xct

#
e�ct=2m; (17)

which is the standard result.
The energy analysis is more complicated here. We have

A�ðtÞAðtÞ ¼ jA0j2e�ct=m, but it is no longer proportional to
just the sum of the kinetic and potential energies in Eq. (5).
It has an extra term given by cxðtÞpðtÞ. By removing that
term, one can see that the energy does decay as e�ct=m, but
with complicated behavior. It is given by

E ¼ A�ðtÞAðtÞ
2m

� cxðtÞpðtÞ
2m

¼ p2
0

2m
þ cx0p0

2m
þ 1

2
mx2x2

0

� �
x2

x2
c

e�ct=m

� c2

4m2x2
c

p2
0

2m
þ 2mx2x0p0

c
þ 1

2
mx2x2

0

 !

� cosð2xctÞe�ct=m

� c
2mxc

p2
0

2m
� 1

2
mx2x2

0

� �
sinð2xctÞe�ct=m; (18)

which can be found after some lengthy algebra.

The damped-driven oscillator can also be solved directly.
The equations of motion become _A ¼ kAþ FðtÞ and its com-
plex conjugate. This is an inhomogeneous linear first-order
differential equation, solved by

AðtÞ ¼ A0e�ct=2m�ixct

þ e�ct=2m�ixct

ðt

0

dt0ect0=2mþixct0Fðt0Þ; (19)

with A0 ¼ p0 þ ðc=2Þ � imxc
� �

x0, just as before. One can
find the position and momentum in the same way as we did
previously, but without a concrete function to integrate, the
expressions are rather formal and will not be written down.
Even solving for the steady state this way is much more
tedious than the standard way to do it, so this approach is not
recommended for driven problems.

IV. TRANSITION TO QUANTUM MECHANICS

We now return to the undamped oscillator to explore the
connection to quantum mechanics. As we saw previously,
the energy for an undamped oscillator is given by
E ¼ A�ðtÞAðtÞ=2m. To make the transition to quantum
mechanics, we must elevate position and momentum to oper-
ators, which satisfy ½x̂; p̂� ¼ i�h. Here, a hat denotes an opera-
tor, as is usually done in quantum mechanics. Then, using

the same definitions of Â and Â†, with the dagger denoting a
Hermitian conjugate instead of a complex conjugate for the
operators, we find that

Â†Â

2m
¼ p̂2

2m
þ 1

2
mx2x̂2 � i

2
x p̂; x̂½ �;

¼ p̂2

2m
þ 1

2
mx2x̂2 � �hx

2
: (20)

Thus, we have

Ĥ ¼ p̂2

2m
þ 1

2
mx2x̂2 ¼ 1

2m
Â

†

Â þ �hx
2
; (21)

which we recognize as being essentially the standard result.
(One simply needs to rescale to obtain the conventional lad-
der operators via â ¼ iÂ=

ffiffiffiffiffiffiffiffiffiffiffiffi
2m�hx
p

, and similarly for â
†

.)
What about the damped case? Can it be related to dissipa-

tive quantum mechanics? There is no way to make that hap-
pen with a conventional Hamiltonian. In quantum
mechanics, dissipation is approximately described via a mas-
ter equation and cannot be discussed at a Hamiltonian level
(unless one introduces complex and non-Hermitian
Hamiltonians). So, there is no way to make a direct link to
the dissipative quantum case using these results. It does
motivate looking into the master equation to see if there are
similarities there, but that is for future work.

V. CONCLUSIONS

The decoupling method just described provides a more
natural way to analyze the harmonic oscillator and provides
a simple way to connect quantum mechanics to traditional
classical mechanics problems. It introduces complex num-
bers in a natural way to the analysis and never requires one
to “just take the real part at the end.” There is an added
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benefit that it eases the transition into quantum mechanics
with a simple and direct connection between the classical
energy and the quantum Hamiltonian for the harmonic
oscillator.

These ideas can also be employed to efficiently determine
Kepler orbits, which we will discuss separately. The connection
to quantum mechanics continues with this example as well.
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