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In high school I had a rather idyllic image of physicists.  Physicists in my mind sat 
around brewing over the nature of the universe until they were struck by a revelation at 
which point they would begin writing down equations on whatever happened to be at 
hand.  It was an image inspired by people like Richard Feynman and Stephen Hawking.  
Coming to college I was excited by the prospect of working with real physicists and 
perhaps having an epiphany or two of my own.  My experience thus far, particularly this 
semester, hasn’t shattered these notions so much as revealed them for what they were: the 
fantasies of an outsider looking in at the world of real academic inquiry.  Discovering 
new things, real research, isn’t magic and it isn’t the emotional roller coaster of a poet 
caught up in the moment.  This semester I have discovered that research can be all the 
things I had imagined and much more, but not nearly as romantic as I had once conceived 
it to be. 
 
I was motivated to pursue this in part by my experience in Professor Freericks’ Relativity 
and Quantum Mechanics class.  While I had a layman’s perspective of both subjects, I 
had never investigated either at depth or even seen the underlying mathematics in the 
latter case.  These mathematics, the wave equations, were very accessible to me at least 
from a conceptual level.  The math also led to several revelations concerning quantum 
mechanics.  One of which was the mathematical reasoning behind the Heisenberg 
Uncertainty Principle.  Working out the mixed operators myself and seeing that one could 
not measure both velocity and position at the same was very intellectually satisfying.  
Quantum mechanics spelled the end of scientific determinism and this simple 
mathematical operation was the final nail in the coffin.  At last I understood this principle 
among others in terms of its mathematical basis. 
 
This was of course only a short and relatively simple introduction to quantum mechanics 
and its principles.  I wanted to explore it more.  If physicists have overlooked the 
difficulties of its interpretation for seventy years because it works so well in practice, I 
wanted to witness that practice.  So I approached Professor Freericks about the possibility 
of working with him on a project related to his own work in quantum mechanics.  At the 
beginning of the semester, Professor Freericks introduced me to a simple model of the 
problem I would eventually come to help him visualize.  We started with a one 
dimensional approximation for the motion of electrons.  In this model one has evenly 
spaced lattice sites and electrons are limited to moving from one site to a neighboring 
site.  The question is what is the probability of finding a particle at a specific lattice site 
for a given energy range.  Related to this is the quantity we were after, the density of 
quantum states.  The density of states is a measure of the probability that the electron has 
a given energy when it is located at a particular lattice site.  As energy changes so too 
does this probability (I thought of it terms of the classical Bohr hydrogen atom – an 
electron can only occupy a given range of levels for a given energy).  After explaining 
this model, Professor Freericks turned to the ideal 2-d model of the same system.  The 
essential mechanics of this problem are the same but they require a double integral to 
calculate the density of states.  Through substitution one can reduce the system to a one 
dimensional integral and evaluate the resulting integral as an elliptic integral of the first 



kind.  I worked out the mathematics of this individually after Professor Freericks’ 
presentation and then graphed the solution as a function of the frequency, or energy, of 
the particle. 
 
To generate the graph for the 2-d case, I first had to find a program capable of evaluating 
the elliptic integral.  After finding an appropriate C++ program, I modified the program 
to generate results for different inputs corresponding to the frequency and output the 
results to a file which I then graphed in excel.  The last step was to tackle the ideal 3-d 
system which was the most relevant to the real world problem Prof. Freericks was 
investigating.  Calculating this integral is significantly more difficult, at least from a 
coding perspective, in that the integral has limits that vary with a cosine relationship.  I 
am still working on trying to code a program to evaluate the integral correctly. 
 
At this point having introduced me to an 
abstract model of the types of data that 
he was investigating, Professor 
Freericks showed me the problem at 
hand.  He was attempting to graph the 
variation in the density of states of a 
nanoscale multilayered metal-barrier-
metal device.  The resistance of the 
device is related to the density of states 
at each plane in the device and thus one 
can determine something of the current 
flow through the device, given knowledge 
of its density of states (at least at the 
atomic level where quantum effects reveal 
themselves).  The structure was split into 
some 80 planes, 30 metallic, 20 planes of 
an insulator material, and then 30 more 
metallic.  As one moves through the 
metal, from one side to the other, the 
density of states changes subtly.  However, trying to visualize these fluctuations, which 
were akin to ripples in a pond, proved difficult.  The ripples are like the superposition of 
the quantum states of the electrons within the material itself.  In the ideal case, as in the 
figure to the right, these ripples are nonexistent as there are effectively in infinite number 
of waves superimposed to generate the image. In order to tease out the fluctuations 
themselves, Professor Freericks thought to subtract the ideal density of states from the 
calculated value for the material.   
 
This was to be my project, to take the raw data for different planes, subtract the ideal 
density of states from the raw data, and visualize the results employing an open source, 
freeware program called Paraview.  While a seemingly simple operation, this often 
proved maddeningly complex in execution.  I had just started learning C++ and so the 
programming tools necessary to perform calculations of this scale were still new to me.  I 
began to tackle the problem by writing several small programs to take the raw data and 



strip it of extraneous information, leaving a more formatted data set with which to work.  
With these new data sets, I then constructed a program to make the necessary subtraction.  
This proved somewhat difficult as the material is not consistent throughout the 80 planes; 
the insulator had its own ideal density of states which I initially had to interpolate in order 
to use with the data sets.  For the two months or so that I worked on this project, I rewrote 
the program I used to make the data correction several times as I learned more advanced 
concepts in C++ which proved useful.  The programming became a project in and of 
itself for me, and perhaps was the most valuable part of the experience.  I was able to 
apply these new principles that I was learning to a real world problem of some 
significance which motivated me to code as accurately and elegantly as possible.  The 
final iteration of my program was completely object oriented, utilizing pointers, and 
containing all the various formatting program/subprograms I had written to make the data 
presentable. 
 
With the new corrected data, I began the visualization process in Paraview.  Paraview, 
like many open source programs, suffers from an initially unintuitive interface.  I first had 
to spend several hours working through 
online tutorials in order to get 
acquainted to the tools and how to 
manipulate the data to get presentable 
results.  Far more important, and 
initially harder, was formatting the data 
to be read by the program.  Paraview 
allows for a wide variety of different 
data types but they must be formatted 
according to an open source 
specification called VTK.  Tracking 
down the specification and 
implementing it was only the initial 
challenge.  Having formatted the data 
and done a rudimentary visualization of 
the data, it was now time to tinker with the settings to produce the best image possible.  
Since the data had been corrected against the ideal density of states, the resulting 
residuals were small and the vast majority grouped having a magnitude smaller than 
0.002.  In order to get the best image, I had to change the color scaling values, use 
different interpolation options and eventually symmetrize the corrected data after it was 
discovered that the initial data was not fully symmetric. The final images that I created 
will be used in a publication. 
 
Throughout this project I was always cognizant of the need for accuracy, which 
necessitated going back and manually calculating values throughout the data numerous 
times.  This need for careful review was made especially apparent when I discovered, 
quite by accident, a limitation of C++ that had never been discussed in my programming 
class.  The C++ language only allows for five significant digits in floating point numbers.  
Trying to work beyond this will result in errors, some of which I encountered while 
computing the raw data.  These and other subtleties were perhaps my greatest revelation 



during the semester.  The attention to detail in doing a task seemingly as simple as mine 
made the famous discoveries and theories all the more awe inspiring.  I can only imagine 
the effort that went into the initial formulation of quantum mechanics or Einstein’s 
general theory of relativity.  I am not dissuaded though by the difficulty but inspired by 
the challenge.  I found this project to be both rewarding and inspiring and I look forward 
to continuing it in the future.  


