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In this thesis I will discuss the effects of shear flow on the Isotropic-Nematic phase

transition in liquid crystals. Shear flow has dramatic orienting effects on the rod-like

constituents of nematic liquid crystals, with the general effects of (1) inducing order

in the high-temperature isotropic phase, and (2) dictating a direction of alignment

for the low-temperature nematic phase. Shear flow also imposes a biaxial symmetry

on both the high and low temperature phases, thereby changing the nature of the

symmetry-breaking at the transition.

We develop coupled deterministic dynamical equations for the 5-component

nematic order parameter and the fluid velocity, which may be considered generaliz-

ations of the Leslie-Ericksen and Navier-Stokes equations, respectively. We examine

the stable stationary solutions to these equations to determine the nature of the non-

equilibrium phases, and discuss the analogies and differences between this system

and equilibrium systems. From homogeneous solutions we obtain a state diagram

analogous to that of a Van der Waals fluid, including a two-state region and a dis-

continuous transition which terminates at a critical point. To resolve the question

of the analog of the Maxwell construction to distinguish locally stable states, we

construct stable inhomogeneous interfacial states. From an analysis of these states

we determine a coexistence line and find exponents characterizing the shape of the

coexistence curve and the interface thickness as the critical point is approached. We
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find mean-field critical behavior, and comment on the possibility of the analogs of

spinodal decomposition and nucleation.

Finally, we develop a formalism for describing light scattering from biaxial steady

state, and investigate the Gaussian level fluctuations about these states. In the

vicinity of the critical point we find singular behavior analogous to critical opalescence

of a simple fluid at its critical point. We also find anisotropic correlations at the

critical point which reflect the manner in which shear flow suppresses fluctuations, as

was found by Onuki and Kawasaki in their studies of a binary fluid under shear flow.

We finish by commenting on the application of these ideas to lyotropic systems, and

combining flow and magnetic field effects in the same system.
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Chapter 1

Introduction

1.1 Motivation

Beginning largely with the work of Gibbs1 near the turn of the century, and con-

tinuing until the present day with the ideas of Einstein,2 Onsager,3 Landau,4 Kadanoff,5

Wilson,6 and many others, the study of equilibrium statistical mechanics has been very

successful in explaining aspects of many of the systems in our world: gases, liquids,

and solids; magnets; superconductors; other-worldly phenomena such as the cosmic

background radiation; and even, some might argue, the behavior of neurons in the

brain. However, much of the world around us is not in an equilibrium state. Many

events involve a relaxation to equilibrium, such as the aftermath of an explosion and

the resulting expansion of gas and heat. Still other systems are, and remain, driven

from equilibrium, such as the ocean tides, water boiling on a stove, or a running

engine.

Whether in equilibrium or not, one of the most vexing, curious, and, many would

argue, important problems is how a system changes its qualitative state. For example,

why can we have water and ice as manifestations of the same substance under different

imposed conditions, and how may we define and distinguish these phases? In the

1



answers to these questions we have found that, while nature is unpredictably diverse

and subtle, it is also very well organized, and the study of one system invariably

provides insights into others. A familiar example of this from statistical physics

is the Ising model which, due to the hypothesis (experimentally verified, at least

approximately) of universality, is a model for such seemingly different systems as

a liquid-gas mixture near its critical point, as well as the magnet it was originally

devised to mimic.5

In this thesis I will discuss the effect of shear flow on the Isotropic-Nematic (IN)

transition of liquid crystals. This system weds the two concepts I have just mentioned;

the IN transition is a well-studied equilibrium phase transition, and shear flow drives

the system out of equilibrium. While there are many non-equilibrium systems that

have been studied, there are several features that make nematics in shear flow a

particularly interesting and attractive system:

1. The order parameter has several coupled degrees of freedom, some of which

become apparent only in the presence of external fields, of which applied shear stress

is an example. The presence of several degrees of freedom provides a rich environ-

ment for exploring different possible macroscopic states and transitions. In addition,

fluctuations of individual modes of the order parameter may be conveniently isol-

ated by polarized light scattering, allowing one to probe in detail the behavior of the

fluctuations of the order parameter.

2. Shear flow brings the system out of equilibrium, which makes the problem a

testing ground for methods of determining and understanding non-equilibrium states.

3. Shear flow has two effects which are very important. First, it provides ad-

vection, which distorts fluctuations. This has a profound effect on the evolution of

fluctuations, favoring some over others, and can thus alter the nature of a critical

point,7 whose properties reflect the fluctuation behavior of the system.
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4. The second effect is that shear flow actually induces ordering in the rod-like

molecules that constitute the liquid crystal.8–10 This point distinguishes nematics in

shear flow from other systems which have been studied under shear flow, and is one

of the main motivations for this study.

This combination of an external agent (the flow field) which can both induce order

and drive the system out of equilibrium, and the multi-component order parameter

of the nematic system, leads us to suspect that shear flow may induce a transition. If

this is so, then the transition happens under non-equilibrium conditions, which means

that we cannot investigate the problem using the standard methods of equilibrium

statistical mechanics. Finally, we would like to know how, if such a transition occurs,

it may resemble, or differ from, equilibrium transitions.

1.2 Outline

This thesis is organized as follows. In the remainder of this Introduction I will discuss

the general problem of non-equilibrium phase transitions.

In Chapter 2 I will review and summarize the theory of equilibrium nematic liquid

crystals and the IN phase transition.11 The important points about the IN transition

for our discussion are that the equilibrium transition is a weak first order transition

(this will discussed in more detail below) and that the order parameter has several

coupled internal degrees of freedom.

In Chapter 3 I will return to the subject of non-equilibrium physics, and try to

clarify the important distinction between the role of shear flow as an ordering field,

and the role of shear in influencing fluctuations, and indicate how these considerations

apply to non-equilibrium systems such as various complex fluids under shear, binary

fluids under shear, and a driven diffusive lattice gas.
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In Chapter 4 I will review the conventional theory of the dynamics of nematic

liquid crystals,12 which is a theory for the coupled dynamics of the director field

(defined below) and the fluid velocity field. I will argue that to effectively describe

the transition under shear flow one needs to consider the dynamics of the entire order

parameter , rather than the director field.8,13,9 We will derive a particular dynamics

which will be used henceforth, and discuss possible alternative approaches to the

dynamics.9,10,14,15

The non-equilibrium phase diagram at the mean-field level (i.e. not allowing the

system to explore any configurations besides the stationary ones) as determined by

these dynamics will be discussed in Chapters 5 and 6. In Chapter 5 we will examine

homogeneous stable steady states and find state structure reminiscent of that ex-

hibited by the van der Waals (VdW) fluid.16 We will pursue this analogy further in

Chapter 6, where we will examine stable stationary interfacial (i.e. inhomogeneous)

solutions to the dynamics, from which we can explore the issues state selection and

critical behavior.

Chapter 7 presents a discussion of the role of Gaussian fluctuations in this non-

equilibrium system in terms of prediction for light scattering experiments. This aspect

of the thesis is related to work by Onuki and Kawasaki and others.7,17 I will focus on

two particularly interesting regimes: (1) the region near equilibrium, where we will

examine how shear flow perturbs the equilibrium behavior, and (2) the region near

the non-equilibrium critical point, where we will find anomalous scattering analogous

to the critical opalescence found at a liquid-gas critical point.

Finally, in Chapter 8 I will briefly discuss possible extensions of this work to

systems such as lyotropic liquid crystals;18 the application of renormalization group

techniques to gain an understanding the non-equilibrium critical point;7 and speculate

on the effects fluid flow and magnetic fields may have when they act together on
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nematics.

1.3 Non-Equilibrium Systems

1.3.1 Non-Equilibrium States

Non-equilibrium systems pose many difficult problems. While equilibrium statistical

mechanics is founded on the assumption of maximum entropy,4,19 which provides a

variational principle with which to determine the equilibrium states, no equivalent

general principle has been found for non-equilibrium systems. The procedure for find-

ing equilibrium states is well-documented: one begins with a formal expression for the

partition function for the system, and then uses whatever mathematical techniques

are available to compute the effective free energy for the system, usually beginning

with a mean-field theory and later improving, if possible, on that. The guiding rule

one always follows is that an equilibrium state is that which maximizes the entropy

of the system, correspondingly minimizing the appropriate free energy.4 However, as

entropy is being produced in a non-equilibrium system, one is certainly not justified

in using a maximum entropy hypothesis for non-equilibrium systems.

Since non-equilibrium steady states may often take the form of stationary solu-

tions to partial differential equations in space and time, many workers have discussed

such states by the method of Lyapunov,20,21 originally developed as a method for de-

termining the mathematical stability of such solutions. I will not explain this method

in detail, but the general idea is to try and construct a Lyapunov functional L. The
Lyapunov functional is constructed from the time-dependent quantities in the sys-

tem (e.g. the fluid velocity and temperature field for the Rayleigh-Benard convection

problem21) and must obey certain convexity properties. If L can be found, then the

steady state is also stable. Because of its convexity properties the Lyapunov func-
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tional bears a resemblance to a non-equilibrium entropy, and has been exploited as

such, most notably by Glansdorff and Prigogine,20 to develop formal stability criteria

for non-equilibrium steady states. The search for such a functional often involves

searching for an ‘effective free energy’, i.e., a functional whose variation with respect

to the dynamical quantities will give the correct equations of motion. Many people

have used this method to examine non-equilibrium problems which admit such a

functional,20,22,15 often attacking the reformulated problem with the same methods

used in equilibrium statistical mechanics.

An alternative phenomenological approach to determining non-equilibrium states

has been developed by Graham. This method involves introducing a generalized

thermodynamic potential which is related to the Onsager-Machlup function of the

system.23

1.3.2 Non-Equilibrium Phase Transitions

While our understanding of equilibrium phase transitions is fairly complete,∗ and the

idea of universality in systems at critical points is generally accepted,5,6,27 the same is

not true for non-equilibrium phase transitions.28,29 Non-equilibrium transitions occur

in systems such as Rayleigh-Benard convection of fluids30 and chemical reactions31,

where the transition is between non-stationary steady states that may be, e.g., chaotic

or oscillatory; and in systems such as complex fluids under flow7 or a driven diffus-

ive lattice gas,32 where the nature of an equilibrium transition between homogeneous

states is qualitatively changed by driving the system into a steady stationary non-

equilibrium state. In the latter systems the non-equilibrium transition may occur

between stable stationary states, and may reduce smoothly to the equilibrium trans-

∗Not all issues of equilibrium phase transitions have, of course, been resolved. First order trans-
itions are still not well-understood,24,25 and there are many delicate issues yet to be resolved when
many fluctuating degrees of freedom come into play, as near the nematic-smectic A-smectic C point
in liquid crystals.26
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ition as the external driving field is removed. In this way the non-equilibrium trans-

ition bears a strong resemblance to the equilibrium transition, and the study of these

systems could be an important step towards the understanding of the more complex

transitions further from equilibrium. We shall discuss this kind of non-equilibrium

transition in this thesis. Of course, it is also possible that such a study will provide

no insight into more complex systems, precisely because they are close related to

equilibrium.
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Chapter 2

The Isotropic-Nematic Transition

2.1 Nematic Liquid Crystals

Nematic phases are the simplest of the myriad liquid crystalline phases.26,33−35 Liquid

crystalline phases are often referred to as mesophases because they are intermediate

between the familiar liquid and solid states of matter. The constituents of these

systems are thus often referred to as mesogens . Nematic liquid crystals comprise

rodlike mesogens either in a melt (thermotropic) or in solution (lyotropic), which

undergo a transition upon cooling (thermotropic) or increasing the concentration

(lyotropic) from a disordered isotropic state to a state with orientational order but

positional disorder. I will discuss primarily thermotropics, for simplicity, but say a few

words about lyotropics. Examples of such systems are N-(p-methoxybenzylidene)-p-

butylaniline (MBBA),33 a thermotropic system with molecules of length ∼ 20Å, and

the Tobacco Mosaic Virus in, e.g., water (TMV),18 a lyotropic system with mesogenic

dimension ∼ 1800Å. Other mesogenic phases include various smectic phases, in

which nematically aligned rods also acquire a one-dimensional density wave, and can

roughly be considered a layered structure; cholesteric phases, whose molecules have a

particular handedness, or chirality, and hence align with an intrinsic twist; and phases

consisting of other kinds of molecules, such as disc shaped or polymeric molecules.26
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Nematic liquid crystals are distinguished experimentally by the defect structures

seen in the nematic state, which look like a tangle of threads (νηµα is the Greek word

for thread), and intense scattering of certain polarizations of light below the transition

temperature which, consequently, is known as the ‘clearing point’.33 We will see that

this scattering is due to low energy fluctuations in the director orientation resulting

from the spontaneously broken rotational symmetry of the nematic state.

The salient aspect of a nematically ordered phase is the direction, on average, in

which the rod-like molecules point. Although the molecules do not generally have an

exact microscopic symmetry under head-to-tail exchange, it is an experimental fact

that the nematic phase is indistinguishable from that obtained upon a rotation by π

about an axis normal to the director. This is due to factors such as fast microscopic

rotation of the molecules and the low energy cost to pack them regardless of sense.

The result is that the statistically preferred orientation is specified by a headless unit

vector ±n̂, called the director .33

2.2 Order Parameter

While the presence of a director distinguishes the nematic phase from the isotropic

phase, order in the system is not measured by the director. Let ψ{ν} be the rod

orientation distribution function for a uniform phase, where ν is the unit vector

denoting the molecular orientation. Any vector order parameter built from averages

over ν vanishes because of the head-tail symmetry mentioned above, i.e. ψ{ν} =

ψ{−ν}. The next simplest choice for an order parameter is a tensor built from an

average over the second moment of the orientational distribution function:11,36

Qαβ(r) =
1

N

N∑

i=1

〈(νiανiβ − 1
3
δαβ) δ(r− ri)〉, (2.1)

where the average is taken over ψ{νi}. The trace is subtracted to give Qαβ = 0 in the

isotropic state. This order parameter has five degrees of freedom, being a traceless
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and symmetric second-rank tensor. In general one may also consider higher moments

of the distribution function,34 but for most purposes Qαβ suffices.

If the equilibrium distribution of rod orientations is isotropic then Qαβ is zero,

as may be easily verified. If the equilibrium state is uniaxially nematic the order

parameter may be written generally as

Qαβ = 3
2
S1(nαnβ − 1

3
δαβ), (2.2)

where the unit vector (or director) n̂ is the non-degenerate eigenvector of Qαβ and S1

is the corresponding eigenvalue. The director indicates the uniaxial alignment and

the amplitude S1 indicates the degree of order. Since {νi} are unit vectors, we see

from eqs. (2.1) and (2.2) that 0 ≤ |S1| ≤ 2/3. The rod distribution is discotic if Qαβ

has two positive eigenvalues, and conventional uniaxial (sometimes called calamitic)

if Qαβ has one positive eigenvalue.

The uniaxial distribution is by far the most common in equilibrium systems. Most

examples of equilibrium biaxial phases (in the absence of external fields) have been

found in lyotropic mixtures such as potassium laurate/1-decanol/D2O.37−39 The more

general biaxial state, which is the natural state in the presence of a biaxial field such

as shear flow, may be written as36

Qαβ =
3S1

2
(nαnβ − 1

3
δαβ) +

S2

2
(mαmβ − lαlβ), (2.3)

where m̂ is a second unit vector (or sub-director) denoting the asymmetry of the

distribution of the rod orientations, S2 is a second amplitude, and l̂ = n̂×m̂.While a

uniaxial state has the symmetry of a cigar (nematic) or a frisbee (discotic), a biaxial

state has the symmetry of a match box: there is a major alignment direction, given

by n̂, and if one looks head-on down this axis one sees not a circle, as in the uniaxial

state, but an ellipse with apogee and perigee along m̂ and l̂ respectively. The biaxial

state is specified by five parameters: the two amplitudes S1 and S2, two angles to
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specify the director n̂, and a third angle to specify the rotation angle of m̂ about n̂.

The uniaxial state is specified by only three parameters, the magnitude S1 and two

angles to locate the director.

The order parameters S1 and S2 may also be written in terms of the rod orientation

distribution function according to

S1 = 〈cos2θ − 1
3
〉 = 〈ν2z − 1

3
〉 (2.4)

S2 = 〈sin2θ cos 2φ〉 = 〈ν2x − ν2y〉. (2.5)

Here the z-axis is taken to be parallel to n̂, and the angle brackets denote an average

over the probability distribution ψ{ν}.

As the order parameter is a measure of the anisotropy in the system, it may be

inferred from various physical measurements. A common example is optical birefrin-

gence measurements.34 In a uniaxial aligned state light will experience two indices of

refraction, no and ne, depending on whether the polarization of the light is perpen-

dicular or parallel to the director. Other examples are the anisotropy in the magnetic

susceptibility tensor χαβ, which will be discussed below,33 and the dielectric tensor

ǫαβ , whose fluctuations may be probed by light scattering (see Chapter 7).

2.3 Landau-de Gennes Theory of the Isotropic-

Nematic Transition

The IN transition is experimentally found to be a weak first order transition (S1 is

typically ∼ 0.3), so we may obtain satisfactory results by assuming that the equilib-

rium free energy is given by minimizing a free energy density which is an expansion

in the order parameter Qαβ :4,11

fL = 1
2
AQαβQβα + 1

3
BQαβQβγQγα + 1

4
C(QαβQβα)

2. (2.6)
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Table 2.1: Characteristics of the I-N Transition within Landau-de Gennes theory (see
Gramsbergen, et al.40).

Transition temperature TIN = T− +
B2

27aC

Upper spinodal temperature T+ = T− +
B2

24aC

Order parameter discontinuity ∆S1 = −2B

9C

Order parameter for T ≤ TIN S1 = So(T ) = − B

6C
+
(4A
3C

)1/2

Entropy jump ∆S =
aB2

27C2

This is known as the Landau-de Gennes free energy density. Note the use of Einstein

summation convention, which will be employed throughout this thesis. The cubic

term is allowed because Qαβ ⇀↽ −Qαβ is not a symmetry of the system, so we see

that the mean-field transition can be first order.4 A negative B gives the conventional

uniaxial nematic state. The important temperature dependence is taken to reside in

A = a(T−T−), while the variation of B and C with T is assumed to be unimportant

and is neglected. Figure 2.1 shows the Landau-de Gennes free energy density as a

function of the order parameter for various temperatures, At high temperatures the

system is isotropic. At T+ (upper spinodal temperature) a metastable ordered state

develops, and at TIN the two states have the same free energy and the transition oc-

curs. For lower temperatures the isotropic state is metastable until T− (lower spinodal

temperature) is reached, at which it becomes unstable. For B < 0 the ordered state is

the conventional nematic state, while for B > 0 the ordered state is discotic. Table 2.1

summarizes some useful information about the first order transition, within a Landau

description.40
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Figure 2.1: Landau-de Gennes free energy fL versus order parameter S1 for the
isotropic-nematic transition.

2.4 Distortions and Fluctuations

In addition to the uniform Landau-de Gennes free energy density, we may also para-

metrize the free energy cost of spatial distortions.41 This may be done in two limits. At

temperatures well below the transition temperature TIN , the system strongly resists

variations in the magnitude of the order parameter (the free energy well is ‘steep’), so

we may limit discussion to variations in the direction of alignment. These distortions

will be allowed in the long wavelength limit, since they are Goldstone modes.42 The

appropriate energy is given by the Frank free energy density, which is an expansion

to quadratic order in gradients of the director n̂(r) :

fF{n̂} = 1
2
K1(∇ · n̂)2 + 1

2
K2(n̂ · ∇ × n̂)2 + 1

2
K3(n̂×∇× n̂)2. (2.7)

Here K1, K2, and K3 parametrize splay , twist , and bend deformations, respectively.

This free energy is, by construction, invariant under simultaneous rotations of n̂ and
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spatial coordinates.

For temperatures near the transition temperature (indeed, we may consider the

system to be slightly above TIN), variations in amplitude may occur much more

easily, since the free energy minimum is ‘flatter’. In this case is more sensible to

parametrize non-uniformities in the system by the entire order parameter Qαβ(r),

which will incorporate both amplitude and orientational variations. To quadratic

order in the order parameter and its gradients we may perform an expansion36

fF{Qαβ} = 1
2
L1 (∂αQβγ)

2 + 1
2
L2 (∂αQαβ)

2, (2.8)

where L1 and L2 are analogs of the Frank constants. This is not the most general

expansion; we have ignored surface terms and terms of the same order in gradients

but higher order in Qαβ , but for bulk properties and systems near TIN (i.e. small Qαβ)

this form is adequate. Notice that, for fF{Qαβ} and fF{n̂} to be consistent with the

relationship between Qαβ and n̂ (eq. 2.2), there must be a correspondence between

the sets {Ki} and {Li}. One finds

K1 = K2 =
9
4
(2L1 + L2)S

2
1 , K3 =

9
2
L1S

2
1 . (2.9)

It is interesting to note that spatial gradients decouple from the tensorial indices

for Qαβ when the modulus L2 vanishes. This is also known as the ‘one-constant

approximation’, for if we set K1 = K2 = K3 = K, we can perform an integration by

parts and write the director version of the Frank free energy density as

fF{n̂} = 1
2
K(∂αnβ)

2 + surface terms. (2.10)

This form of the free energy is invariant under separate rotations of space and n̂,

i.e., the symmetry group is now O(3) ⊗ O(3). At this level of approximation we

expect many properties associated with spatial gradients to be isotropic, and many

calculations can be extensively simplified while retaining the much of the physics of
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the anisotropic fluids. We will employ this approximation later in our calculations of

steady state correlation functions in shear flow.

Using the Landau-de Gennes and Frank free energies, we can now calculate the

correlations of various thermally fluctuating quantities. For simplicity we will con-

sider the one-constant approximation, L2 = 0. At temperatures slightly higher than

TIN the system is isotropic, but because of the weak first order transition there will

generally be nematic fluctuations. These fluctuations will be small in this regime, so

we may safely truncate the Landau expansion after the quadratic term. In terms of

Fourier modes Qαβ(k), the free energy is

F =
∫

d3k

(2π)3
1

2

(
a(T−T−) + L1k

2
)
Qαβ(k)Qαβ(−k), (2.11)

where†

Qαβ(k) =
∫

d3k

(2π)3
Qαβ(r)e

ik·r. (2.12)

The equilibrium fluctuations in the modes of order parameter are therefore

〈Qαβ(k)Qλρ(−k)〉 = kBT

a(T−T−) + L1k2
(δαλδβρ + δαρδβλ − 2

3
δαβδλρ). (2.13)

Here 〈O〉 ≡ Z−1
∫ DQO exp(−F/kBT ), where DQ is the measure for a func-

tional integral over all independent modes of the order parameter and Z ≡
∫ DQ exp(−F/kBT ) is the partition function. From this Ornstein-Zernicke form one

may identify a correlation length which grows as the transition is approached from

above:

ξ2(T ) =
L1

a(T−T−)
. (2.14)

The fluctuations are isotropic and diverge in the k → 0 limit as T− is approached.

Because TIN > T−, one expects a transition before this divergence occurs. Fur-

thermore, this discussion is based on mean field theory, which is incorrect sufficiently

†Note that, since Qαβ(r) is real, Q
∗
αβ(k) = Qαβ(−k).
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near a critical point, as interactions between fluctuations invalidate the Gaussian ap-

proximation. Qualitatively, then, one might expect to see a departure from mean-field

results as T− is approached, provided TIN is close enough to T−. Light scattering ex-

periments have roughly verified this picture, indicating behavior which deviates from

mean-field behavior near TIN .
43,44 However, experimental results are not conclusive,

and there is still much disagreement about the critical nature of the transition, in-

deed, of weak first-order transitions in general.40 In addition to the possibility of

fluctuations controlled by a (fictitious) critical point at T = T−, workers have con-

sidered the possibility of tricritical behavior.45,46 The experimental data fit not only

the simple Landau-de Gennes theory above, but also a free energy which includes a

sixth order term, E (TrQ2)3, which predicts tricritical behavior.47

2.5 Nematics in Magnetic Fields

Before addressing the non-equilibrium system of nematics in flow, it is helpful to

examine the equilibrium system of nematics in a magnetic field.40 The questions we

ask are: (1) How does a magnetic field couple to the order parameter? (2) What is

the effect of a field on the phase transition? It turns out that the phase diagram we

will find for nematics in shear flow is superficially very similar to that for nematics

in a magnetic field.

An anisotropic medium responds to a magnetic field with an anisotropic suscept-

ibility,

Mα = χαβHβ, (2.15)

where M is the induced magnetization in an externally applied field H. The sus-

ceptibility generally reflects the anisotropic nature of the material. If impurities are

negligible and the magnetic interaction between the rods is also negligible,33 then the

order parameter describes all the tensorial properties of the system, Thus, we may
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decompose the tensor χαβ into scalar and traceless-symmetric pieces, according to

χαβ = χo δαβ +∆χmaxQαβ , (2.16)

where ∆χmax is the magnitude of the susceptibility anisotropy in the completely

ordered state. It is now straightforward to write the contribution to the free energy

density δfH = −M · H, and obtain the Landau-de Gennes free energy density for

nematics in a magnetic field:

f = 1
2
AQαβQβα + 1

3
BQαβQβγQγα + 1

4
C(QαβQβα)

2 −∆χmaxHαQαβHβ. (2.17)

The behavior of the system in a magnetic field depends crucially on the sign of the

susceptibility anisotropy ∆χmax. Consider the application of a field H to a uniaxial

system with Qαβ ∼ (nαnβ − 1
3
δαβ). If ∆χmax is positive then the rods prefer to lie

along the magnetic field, and the magnetic field simply enhances the uniaxial order.

The slightest magnetic field induces some uniaxial order in the system, eliminating

the possibility of a symmetry-breaking transition. The absence of symmetry breaking

at a first-order transition implies that the line of first order transitions may end at

either a critical endpoint or a multicritical point.4 As modulated or other complicated

phases are not expected, it is reasonable to anticipate a critical endpoint as the field

is increased. For typical systems this critical field is estimated, within the Landau-

de Gennes theory, to be Hc ∼ 103T.

If ∆χmax is negative the rods prefer to lie normal to an applied field, and the

application of a field will induce a discotic uniaxial state in a system of rods at

high temperatures. As there are now two orthogonal directions in the problem (the

director and the magnetic field), one expects that at lower temperatures a biaxial

phase will result, once the rods have aligned in the plane normal to H. Hence the

transition remains a symmetry-breaking transition, now occurring between biaxial

and uniaxial rather than isotropic and nematic states. As the field is increased from

zero the first order transition may eventually give way, at a tricritical point, to a
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continuous transition. Notice also that in the low temperature biaxial phase, where

the rods are generally aligned normal to the field, there will be a single Goldstone

mode corresponding to the arbitrary choice of nematic alignment within the plane.

The magnetic-field–temperature phase diagram is summarized in fig. 2.2

The overall picture for ∆χmax > 0 is that coupling to a sufficiently strong field con-

spires to cancel the cubic term in the Landau-de Gennes free energy density (eq. 2.17)

at the critical point; physically, the magnetic field forces the transition to occur

between phases of the same symmetry, and suppresses certain configurations of Qαβ

as the field is increased, until the distinction between the two phases vanished as the

critical endpoint. This is the general picture we also find for nematics in shear flow,

though through quite different methods. Of course, there are several other differ-

ences in the nature of the transitions. The shear-induced transition is between biaxial

states, while the field-induced transition leading to the critical endpoint is between

uniaxial states; and we, as yet, know of no analog of the behavior for ∆χmax < 0,

where the transition is still a symmetry breaking transition and a tricritical point

appears for large fields.
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Figure 2.2: Phase diagram for a nematic with ∆χmax > 0 in a magnetic field. NU+

refers to conventional uniaxial states, NU− refers to discotic states, and NB refers to
biaxial states. Note the critical point for positive fields and the tricritical point for
negative fields. Solid lines represent first order transitions and broken lines represent
continuous transitions. After Gramsbergen, et al.40
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Chapter 3

Examples of Fluids and Complex

Fluids in Shear Flow

Before addressing the subject of nematics under shear flow in detail, I will briefly

discuss the effect of external driving fields on some equilibrium transitions, including

the IN transition. There has been a growing interest in the effects of shear flow on

critical behavior and phase transitions in fluids and complex fluids, beginning with

the work of Onuki and Kawasaki in 1979.7 An important motivation for these studies

is the fact that shear flow introduces a new macroscopic time scale into the system:

the inverse of the strain rate D. Fluctuations that have a smaller natural lifetime

than this new time scale will not be affected, while those fluctuations with larger time

scales should be affected—that is, destroyed by the advective nature of the flow. One

then expects that the general effect of shear flow is to suppress fluctuations in the

system, and this is indeed the case, as has been shown both experimentally48 and

theoretically.7 We shall see that the manner in which fluctuations are suppressed, and

the ramifications, differ depending on the nature of the equilibrium fluctuations in the

system. A second motivation for these studies, and perhaps the paramount reason

for our study, is that, in addition to the advective effect on fluctuations, shear flow

can influence the order of the system. This suggests the possibility of flow-induced
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transitions into an ordered state.

3.1 Binary and Critical Fluids Under Shear

A seminal theoretical study of the effects of shear on the binary fluid near its critical

point was published by Onuki and Kawasaki (OK) in 1979.7 This was followed by

the experimental studies of Beysens and coworkers in 1983 and 1984 which confirmed

many of OK’s predictions.48 Wemay regard this system as a paradigm for the advective

effects of shear on equilibrium critical phenomena. Let us consider the effect of

flow on fluctuations. An equilibrium critical point is characterized, according to the

scaling hypothesis,49,50 by a diverging fluctuation correlation length, which means

that at the critical point fluctuations occur on all length scales. Associated with each

fluctuation of a particular wave number k is a characteristic time scale τk over which

the fluctuation relaxes. However, shear flow introduces a new time scale τD = D−1

into the system, where D is the strain rate associated with the macroscopic motion

of the system. This new time scale is a measure of how fast a disturbance may be

advected away by the flow; if τD < τk, the fluctuation will be shorn away before it

can decay. Since long wave length fluctuations have longer equilibrium relaxation

times τk, the afflicted fluctuations are then the long wavelength ones, precisely those

which characterize the critical behavior of the system. Hence, as the strain rate is

increased the contribution of long wavelength fluctuations about the critical point

is reduced, and one might expect to find mean-field instead of critical behavior at

the transition; i.e., the exponents characterizing the transition should have their

mean-field values. In addition, the fact that shear flow frustrates the microscopic

processes (e.g. van der Waals attraction) which induce the equilibrium critical point

leads one to suspect that the critical temperature will be reduced in the presence of

shear. These predictions were made by OK within a renormalization group (RG)

calculation applied to the Fokker-Planck description of the dynamics and verified,
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along with other predictions, by Beysens, et al.48

3.2 The Isotropic-Lamellar Transition Under

Shear

The Isotropic-Lamellar (IL) transition under shear has been studied by Cates and

Milner (1989) and Marques and Cates (1990).17 This system is a level of complexity

higher than the binary fluid, and exhibits many of the same qualitative features as

the IN transition under shear. The IL transition occurs in, e.g., microemulsions and

diblock copolymers,51,52 and is a transition between an isotropic state and a one-

dimensionally ordered, or layered, state. Such order is characterized by a density

wave with a wave vector of magnitude ko but arbitrary direction (neglecting boundary

considerations). The mean-field equilibrium transition, as dictated by symmetry, is

either second order or weakly first order; but strong fluctuations at the transition

associated with the degeneracy in the direction of the ordering wave vector ko have

been predicted by Brazovskii (1975) to induce a first order transition.53

The effect of shear flow on this transition is similar to the binary fluid case, in

that fluctuations are suppressed, but there are important differences. Shear flow will

have the same effect on droplets of the ordered phase that fluctuate out of the iso-

tropic phase, in that shear flow will generally destroy them if their lifetimes are long

enough, thereby reducing their efficacy. But in addition, a special role is played by

the lamellar nature of the ordered phase.17 Fluctuations which form with layers nor-

mal to the flow direction will quickly disappear in flow, while fluctuations with layers

parallel to the flow will be more likely to survive. Hence, shear flow will not only

suppress droplets larger than a given size, as for the binary fluid, but will also limit

the class of fluctuations which may occur and constrain the manifold of potential low

temperature lamellar states. In contradistinction to the binary fluid case, the trans-
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ition temperature in this case will increase in the presence of shear, since fluctuations

which frustrate the equilibrium transition are suppressed by the flow. The nature

of the transition was predicted by Cates and Milner, and by Marques and Cates, to

crossover to mean-field behavior at sufficiently high shear rates. In the case where

fluctuations in the choice of orientation of the layers (Brazovskii fluctuations) induce

an equilibrium first order transition, shear flow was predicted to suppress these fluc-

tuations in the limit of infinite shear gradient, to recover the mean-field continuous

transition.17

3.3 The Nematic to Smectic-A Transition Under

Shear

The Nematic to Smectic-A (NA) transition under shear flow has been studied in detail

experimentally by Safinya and coworkers54 (1990) and theoretically by Bruinsma and

Safinya55 (1991). The transition between the nematic and smectic states is similar

to the IL transition, in that a one-dimensional density wave develops in the system.

Here the density wave may be crudely envisioned as stacked layers of nematically-

aligned rod-like molecules. Similar arguments about fluctuations apply as with the

IL transition under flow: advective effects suppress long-wavelength fluctuations, and

the layering direction is prescribed by the flow. Hence, we expect the transition

temperature to increase in flow, and the behavior to be mean-field-like. We should also

note that the nature of the equilibrium NA transition is controversial; theoretically it

has been argued that, while symmetry predicts a continuous transition, the director

fluctuations within the layers can induce a weak first order transition.56 This weak

first order transition has indeed been verified experimentally.57

The NA transition in shear flow has an additional complication due to the nematic

order which is present in the nematic and smectic phases. We shall see that flow picks
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out a direction for nematic ordering,12,58 as a magnetic field does for a magnet below

its Curie temperature. However, a flowing nematic liquid crystal cannot undergo

a transition to a smectic state in the same way as it does in equilibrium, with the

layer normals parallel to the rod orientation specified by the nematic phase. This is

because shear flow orients the rods roughly parallel to the flow, and we have seen in

the discussion of the IL transition17 that layers normal to the flow will be immediately

destroyed by advection; stable smectic layering can only occur in layers which do not

cut across streamlines. There will then be a crossover in the preferred rod orientation,

which will flip from an alignment roughly parallel to the flow, in the nematic state, to

an alignment normal to the shear plane, in the smectic state.59,55 As a result, the phase

diagram acquires much more structure as shear flow is introduced into the system.54

An additional set of interesting predictions for the NA system under shear concerns

the anisotropic viscosities of the fluid, the Leslie coefficients of the nematic fluid.

3.4 The Isotropic-Nematic Transition Under

Shear

The Isotropic-Nematic (IN) under shear flow has been studied by several research-

ers, beginning with Hess8(1976) and followed by Olmsted and Goldbart9 (1990) and

See, et al.10 (1990). Thirumalai60 (1986), Lee15 (1987), and Wang and Gelbart14

(1987) have studied the related problem of rods in elongational flow. As noted first

by Hess, the propensity of the rod-like mesogens to order in shear flow causes the

transition temperature to occur at a higher temperature in the presence of flow. At

sufficiently high strain rates a transition no longer occurs and the state of the system

remains smooth as the temperature is lowered. How does this occur, and how can we

understand it in light of the other transitions in flow we have discussed?

The equilibrium transition at temperature TIN is a symmetry-breaking transition

24



to a uniaxial nematic state,33 and has the Goldstone modes of director fluctuations

accompanying the broken symmetry.42 Shear flow has two important effects on the

alignment. First, as mentioned, it induces order in the rods and selects a particular

orientation. This must be distinguished from the NA and IL transitions, where flow

affects the layering orientation, but not the magnitude of the order. Second, shear

flow has a biaxial symmetry, and hence both the high and low temperature states of

nematics in shear are biaxial, which renders the transition in flow a non-symmetry-

breaking transition, reminiscent of the liquid-gas transition. This is in contrast to

the IL, NA, and binary fluid transitions, where the nature of the symmetry-breaking

at the transition is not affected by the flow. By analogy with other non-symmetry-

breaking transitions, such as the liquid gas transition, it is reasonable to expect that,

as the applied shear stress is increased, the discontinuous transition will terminate in

a critical endpoint (although, in principle, multicritical points are possible). Further,

because flow suppresses fluctuations which frustrate ordering of the system, we also

expect the transition temperature to increase with increasing strain rate, as with the

IL and NA transitions.

The general picture of this behavior has been show by previous workers.8–10,14,15,60

Hess identified the basic characteristics of the non-equilibrium phase diagram in the

shear-stress–temperature plane: an increasing transition temperature with increasing

shear, and a suppression of a transition at a critical point for large enough strain

rates. These features were also pointed out by Olmsted and Goldbart and by See, et

al., and by Thirumalai, by Lee, and by Wang and Gelbart for elongational flow.

There are several important distinctions among the systems we have briefly ex-

amined, and it is worthwhile to review them. The binary fluid has no internal order,

and the advective action of flow on the fluctuations changes the critical behavior into

mean-field behavior. The NA and IL transitions both have more internal structure

than the binary fluid, namely a one-dimensional density wave. The effect of the
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flow is two-fold: (1) fluctuations are advected away; and (2) the orientation of the

density wave is constrained by the flow gradient direction, with the result being an

increase in the transition temperature. The symmetry-breaking nature (isotropic to

one-dimensional density wave) of these transitions is preserved under shear flow. The

IN transition has even more internal structure, which couples directly to the flow

gradient. Hence flow affects both the magnitude and direction of the order, as well

as changing the symmetry of the transition. Its effect is to again raise the trans-

ition temperature, and to introduce a non-equilibrium critical point into the phase

diagram.

3.5 The Driven Diffusive Lattice Gas

Another related system which has been studied recently is the driven diffusive lat-

tice gas (DDLG).32−62 This was proposed by Katz, et al.,32 as a simple model of a

non-equilibrium system whose behavior under an external driving field could provide

insight into the general subject of non-equilibrium phase transitions. The system is

a lattice gas with conserved particle number, whose particles are free to hop on the

lattice, and an external field is imposed by requiring anisotropic jump rates. Jumps

parallel to the field have a much higher probability than jumps perpendicular to

the field, and periodic boundary conditions are imposed to achieve the steady state.

In the absence of a field the phase diagram is spanned by temperature and aver-

age particle density per site. At half-filling the system segregates into high and low

density regions at an Ising-class critical point, analogous to the binary fluid consolute

point, at a critical temperature Tc. The properties of this continuous transition as the

external field is increased have been studied via numerical simulations,32 mean-field

approximations,62 and field-theoretic techniques.61

The general results are that the transition remains continuous in the external field
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and the critical temperature increases with increasing field, but the universality class

and critical behavior are different from that of the equilibrium critical point. As with

the binary fluid7, correlations become highly anisotropic due to the applied field, and

mean-field behavior is found.
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Chapter 4

Dynamics of Nematic Liquid

Crystals in Flow

Now we turn our attention to the details of nematics in shear flow. It is straightfor-

ward to see that non-uniform flow will have an effect on rodlike molecules, and hence

nematic order. Consider figure 4.1, which shows two possible orientations of a rod

in plane shear flow. The rod on the left is aligned across the flow, and consequently

will experience a strong torque. The rod on the right, however, is parallel to the flow,

and we would expect it to feel much less torque than the first rod. In this way we see

that flow will strongly effect the ordering properties of the nematic comprising these

rods. As with the Frank free energy, there are (at least) two interesting limits: (1)

T ≪ TIN , where one can ignore variations in the amplitude of the order parameter;

and (2) T ∼ TIN , where amplitude variations cost comparatively little free energy

and must be included. We will first examine the Leslie-Ericksen (LE) theory for dir-

ector dynamics,12,63 which is universally used to describe the dynamics of nematics in

flow for T ≪ TIN . We will see that this framework is inadequate for examining the

dynamics near TIN , where flow easily perturbs the uniaxial nematic order, and we will

derive an alternative, rather more complex, dynamics for the entire order parameter

Qαβ .
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Figure 4.1: Two possible orientations for rods in shear flow. The left hand rod will
feel much more torque than the right hand rod, which is nearly aligned with the flow.

4.1 Leslie-Ericksen Theory

As we have seen, flow affects the alignment of the director. Further, distortions in the

alignment will act back on the velocity field, inducing stresses into the Navier-Stokes

equation. LE theory describes the dynamics of the director n̂ in a general flow field,

and is based on the assumptions of local equilibrium and a uniaxial nematic state with

uniform magnitude of order. That is, effects of flow are considered inasmuch as they

effect the alignment of the director for a uniaxial nematic. All other effects, such as

an increase of the ordering or an introduction of biaxiality into the rod distribution,

are assumed to cost so much energy as to be negligible. These assumptions apply far

below TIN .

The relevant variable are then the director field n̂(r, t) and the fluid velocity field

v(r, t). We will not give a derivation of the equations of LE theory. One may derive

these equations by a procedure similar to that we use later to derive the dynamics of
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the entire order parameter coupled to the flow, in Chapter 5. The equations of LE

theory comprise the evolution of the director, and the contribution of director and

flow gradients to the viscous (i.e. irreversible or dissipative) fluid stress tensor.

We first decompose the velocity gradient tensor into symmetric and anti-

symmetric parts,∗

κ
[s]
αβ = 1

2
(∂αvβ + ∂βvα), (4.1)

κ
[a]
αβ = 1

2
(∂αvβ − ∂βvα), (4.2)

ωα = 1
2
ǫαβγ κ

[a]
βγ = 1

2
(∇× v)α, (4.3)

where ω is the vorticity of the fluid, and ǫαβγ is the anti-symmetric Levi-Civita tensor.

The evolution of the director n̂ is given by12,33,63

ṅα ≡ (∂t + v ·∇)nα = (ω × n̂)α +
1

γ1
hα + λ κ

[s]
αβ nβ , (4.4)

where the molecular field h is given by

hβ ≡ − δF

δnα
, (4.5)

Here F is the total Frank distortion free energy of the system, F =
∫
V fF dV , and the

coefficients γ1 and λ are transport coefficients.

The equation for the convective time-derivative ˙̂n (eq. 4.4) has three pieces: (ω×n̂)

describes the rigid body rotation of the director in the velocity field, hα/γ1 describes

the dissipative relaxation of the director field due to distortions in n̂, and Aαβ nβ

represents the (non-dissipative) interaction of n̂ with a purely symmetric velocity

gradient.

∗For any tensor Tαβ we will define the decomposition into its isotropic, symmetric and traceless,
and anti-symmetric pieces by

Tαβ = T o
αβ + T

[s]
αβ + T

[a]
αβ ,

T o
αβ ≡ δαβ

3
Tσσ, T

[s]
αβ ≡ 1

2 (Tαβ + Tβα)− T o
αβ , T

[a]
αβ ≡ 1

2 (Tαβ − Tβα).
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The fluid equation of motion is a generalized version of the Navier-Stokes equa-

tion:33

(∂t + v ·∇) vα = ∂γ σαγ , (4.6)

where

σαβ = σ
i[s]
αβ + σ

i[a]
αβ + σd

αβ − pδαβ . (4.7)

Here σd
αβ is the elastic stress induced on the fluid by the nematic. This is reversible,

and is due to the Frank free energy density. The anti-symmetric part of the irreversible

(i.e. viscous or dissipative) stress tensor, σ
i[a]
αβ , is related to the dissipative torque in

the system Γ through

Γλ = ǫλαβ σ
i[a]
αβ (4.8)

= (n× h)λ. (4.9)

Finally, the irreversible part of the stress tensor, σ
i[s]
αβ , is given by12,33,63

σ
i[s]
αβ = 2ν2 κ

[s]
αβ + 2(ν1 + ν2 − 2ν3)nαnβ nµκ

[s]
µνnν

+2(ν3 − ν2) (nαnµκ
[s]
µβ + nβnµκ

[s]
µα)−

λ

2
(hαnβ + hβnβ). (4.10)

The Onsager transport coefficients ν1, ν2, ν3, and γ1 have dimensions of viscosity, and

λ is a dimensionless kinetic coefficient. The transport coefficients are combinations

of the so-called Leslie coefficients {αi}. There are several versions of these equa-

tions for ˙̂n and σ
i[s]
αβ , and several equivalent definitions of the transport coefficients,

which can lead to some confusion in the literature. I will not explain these different

conventions,33 but note that there are always five independent coefficients. Table 5.2

summarizes the relations among different versions of the transport coefficients in LE

theory. Henceforth we will refer to any coefficient or combination of coefficients arising

in LE theory as a ‘Leslie’ coefficient. The minus sign in front of λ in eq. (4.10) is

required in order to satisfy the Onsager reciprocity relations64 (note the λ appears in

the evolution equation for n̂, eq. (4.4), with a positive sign).
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The irreversible stress is very complicated. It contains the usual viscosity term

found in the Navier-Stokes equation for a simple incompressible fluid (2 ν2 κ
[s]
αβ), com-

plicated interactions of the director with flow gradients, and a contribution from

gradients in the director field (hαnβ + hβnβ). An important feature of the LE equa-

tions is that, within the constraints of (1) local equilibrium, (2) linear departure from

total equilibrium, and (3) a unit vector for the director, equations (4.4) and (4.10)

are exact . They involve an expansion in powers of n̂ which terminates, because n̂ is

a unit vector. This is not a feature of the dynamical equations for Qαβ which will be

derived later.

As we will be interested in the non-equilibrium steady states of the nematic in

shear flow, we will present the steady-state conditions for the director in uniform

shear, v = D y x̂, within LE theory.12,58 The stationary condition is

ṅα = (ω × n̂)α +
1

γ1
hα + λ κ

[s]
αβ nβ = 0. (4.11)

Since stress can only be applied at the boundaries, the bulk torque must also be zero:

Γ = n̂× h = 0. (4.12)

Enforcing this condition for simple shear flow v(r) = Dy x̂ and assuming a form for

the director n̂ = cos θ x̂+sin θ ŷ, we find a simple expression for the alignment of the

director in shear flow:

cos 2θ =
1

λ
, (4.13)

where θ is the angle between the director and the flow velocity (see fig. 4.2). The

kinetic coefficient λ may be expressed as a ratio of rotational viscosities. Note that

for |λ| < 1 there is no stable aligned state. The resulting time-dependent states are

the so-called ‘tumbling states’, and will not be discussed further.65
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Figure 4.2: Geometry of the order parameter in stationary alignment. The director
n̂ lies at an angle θ with respect to x̂ in the shear plane (x̂− ŷ), and the subdirector
m̂ may also be taken to lie in the shear plane. The z-axis is out of the page.
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4.2 Limitations of Leslie-Ericksen Theory

LE theory provides an adequate hydrodynamic description of nematics in flow but, as

noted, it is only valid when the amplitude can be assumed to be uniform and only the

director may vary. Recall that uniform shear flow dictates a preferred alignment for

the director and thus for the molecules. We therefore may expect that in an isotropic

state, applied shear flow will have an ordering effect, however slight, since each rod

will feel a torque unless it is at the equilibrium angle, θ = (1/2) cos−1(λ−1). So, the

assumption that the magnitude is unperturbed by the flow does not hold near the

transition temperature.

Another drawback of applying LE theory to nematics in shear flow is that shear

flow has an intrinsic biaxial symmetry, whereas LE theory assumes that the only

relevant dynamics are those of the director and that the system remains uniaxial.

Again, this consideration manifests itself only near TIN , where flow-ordering effects

are comparable with or larger than the thermodynamic ordering effects which prefer

a uniaxial state.

One may therefore view nematics in shear flow as a system with two competing

ordering effects. Equilibrium thermodynamics favors a low temperature uniaxially

ordered state, while shear flow induces a biaxially ordered state. At low temperatures

the thermodynamics effects dominate, with the flow effects acting only to select the

orientation of n̂; but near TIN the two ordering effects must be considered equally.

To do this we have developed a hydrodynamic theory for the entire order parameter

Qαβ(r, t) and fluid velocity v(r, t).
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4.3 Irreversible Hydrodynamics of Nematics in

Flow

Following the standard prescription of linear (in departure from equilibrium) irrevers-

ible thermodynamics,66,29 we will derive equations of motion for the order parameter

field Qαβ(r, t) and the incompressible velocity field v(r, t). An incompressible fluid

velocity is a proper hydrodynamic variable, as it is conserved and therefore ‘slow.’ Slow

variables result from either conservation laws (mass, momentum, etc.) or broken sym-

metries (long wavelength Goldstone modes), and relax over time scales much longer

than those characterizing microscopic processes.42 The order parameter Qαβ(r, t) is

not entirely a proper slow variable, but is a linear combination of slow modes and

fast variables. In equilibrium the slow modes are director fluctuations (Goldstone

modes). Because shear flow explicitly breaks the symmetry to a biaxial state, there

are no Goldstone modes in shear flow. Nevertheless, we expect there to be order

parameter modes that are ‘almost slow’ and relax over intermediate time scales. This

assumption is further strengthened by the behavior of the fluctuation modes as the

critical point is approached. We shall see that near the non-equilibrium critical point

a slow new mode emerges which is a linear combination of the independent modes

of Qαβ . Hence, to allow for a unified description which encompasses the equilibrium

Goldstone modes and the new slow mode at the critical point, we will treat the

dynamics of the entire order parameter.

The procedure we follow is based on de Gennes’ derivation of LE theory,33 which

in turn follows the general framework of classical linear irreversible thermodynamics,

as discussed, e.g., by de Groot and Mazur.66 The steps are:

(1) From the local conservation laws and the assumption of local thermodynamic

equilibrium (LTE), calculate the entropy production in the system in terms of the

relevant quantities in the system, including Qαβ. LTE means that we can define local
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thermodynamic quantities as an average over a length scale large with respect to

microscopic lengths and small with respect to the length scales of typical gradients

characteristic of the non-equilibrium processes.3,29 These quantities are then assumed

to obey standard thermodynamic relations.

(2) Identify the relevant thermodynamic forces and fluxes in the system from the

conjugate pairs that appear in the entropy production. Different choices of fluxes and

forces may be convenient for different applications.33

(3) Assume that the system is ‘close’ to equilibrium so that we may expand the

fluxes linearly in the forces.

(4) From the resulting force-flux relations we use conservation laws to obtain the

equations of motion for Qαβ(r, t) and v(r, t).

Entropy production can be understood as the conversion of long wavelength energy

into small scale microscopic motion, which in statistical mechanics is represented by

heat. Energy is put into the nematic under shear flow via, e.g., the work done at

the boundaries (we will not consider external potentials acting on the bulk), and is

converted into heat, which may flow out of the system. By using the thermodynamic

relations that follow from the assumptions of LTE, we can arrive at a form for the rate

at which this entropy is produced in the bulk. An important assumption of LTE is that

local thermodynamic quantities may be defined over sufficiently large length scales

so as to maintain a clear separation between these long wavelength quantities, which

constitute a thermodynamic description, and the short wavelength quantities which

define entropy. In addition to the requirement that the thermodynamic quantities be

defined on long length scales compared to microscopic variables, these variables must

be defined over small scales compared to the length scales which characterize the

gradients associated with the dissipative forces (e.g. ∇T , ∇v, etc.). The assumptions

of LTE therefore break down when the gradients are so severe that microscopic scales
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are needed to obtain gradual variations.

The largest velocity gradients we will consider in this work are of order ∇v ∼
105 s−1, which corresponds to a time scale of 10µs. From the speed of sound in

nematics (vs ∼ 105 cm/s), one obtains a characteristic length scale of 1 cm, which is

much longer that any microscopic length scale. Hence we remain within the domain

of validity of LTE.

We have also made the assumption that the independent variables are local ver-

sions of equilibrium quantities, such as temperature, pressure, and density, and that

the dissipative fluxes relax quickly. This need not be the case, as with the dissipative

stress tensor in certain polymer systems.67,68 ‘Generalized irreversible thermodynam-

ics’ has been devised as a way of handling this type of issue (as well as others),

where a modified version of the local equilibrium hypothesis is adopted in which the

non-equilibrium entropy is a function of the dissipative fluxes as well as intensive

thermodynamic quantities.69

4.3.1 Calculation of Entropy Production

To derive the entropy production we follow de Gennes’ procedure.33 We will assume

that temperature variations relax faster than variations in Qαβ(r, t) and v(r, t), and

calculate the entropy production from the rate of change in the free energy of a fluid

of nematogens in an arbitrary flow field:

dF

dt
≡ Ḟ = Ė − T Ṡ. (4.14)

Energy, being a conserved quantity, can only be transported through the surface (in

the absence of external long-range forces). However, the entropy S can change by

both transport through the surface and by production in the bulk. Hence we may

37



find the entropy production θ by identifying the volume integral in Ḟ ,

Ḟ =
∫

Σ
jEγ dΣγ − T

∫

Σ
jSγ dΣγ − T

∫

V
θ dV (4.15)

where jE and jS are, respectively, the energy and entropy fluxes through the surface.

Here dΣγ is the surface element normal to rγ. For the free energy of the system in

flow we include, in addition to the Landau-de Gennes and Frank free energy densities

in terms of Qαβ and its gradients, the kinetic energy of the fluid:

F =
∫

V

{
1
2
ρ|v(r, t)|2 + fL + fF

}
dV, (4.16)

where ρ is the uniform density of the fluid. The fluid is assumed to be incompressible:

∇ · v(r, t) = 0, (4.17)

and obeys the equation of motion

ρ (∂t + v · ∇) vα(r, t) = ∂β σβα(r, t) , (4.18)

where σβα(r, t) is the stress tensor. Note that, according to this definition, the stress

tensor is only specified up to an additive function whose divergence vanishes.

To calculate the rate of change of the free energy we examine the behavior of F

under, separately, a local change in the order parameter, and a material distortion of

the fluid which leaves the form of Qαβ invariant. Any change in the system may be

decomposed into these independent changes.

1. Variation in order parameter . We first consider the variation Qαβ(r) →
Qαβ(r) + δQαβ(r), which must preserve the traceless and symmetric character of Qαβ .

Introducing Lagrange multipliers κ(r) for tracelessness and µ(r) for symmetry, we

obtain the equilibrium conditions

δF

δQαβ(r)
+ κ(r) δαβ + µν(r) ǫναβ = 0. (4.19)
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We solve for the multipliers by separately contracting this set of equations with δαβ

to obtain κ and with ǫλαβ to obtain µ. Substituting the resulting expressions back

into (4.19), we find the set of conditions

H
[s]
αβ = 0, (4.20)

where

Hαβ ≡ − δF

δQαβ

(4.21)

is the local molecular field, analogous to the field h in LE theory (eq. 4.5). Equa-

tion (4.20) is the equilibrium condition for the nematic. The change in free energy

due to a variation in Qαβ is then

δFQ = −
∫

V
H

[s]
αβ δQαβ dV. (4.22)

2. Material Distortion. Now we consider a distortion of the material which pre-

serves the value of the order parameter:

r → r′ = r+ u(r), Q′
αβ(r

′) = Qαβ(r). (4.23)

Under this variation the term
(
Q′

αβ(r
′)−Qαβ(r)

)
∂F/∂Qαβ vanishes, and the change

in the free energy comes about from inducing a change in the gradients of Qαβ(r),

resulting from non-uniformities in the deformation u(r). Hence,

δF ′
u =

∫

V
dV

δF

δ ∂γQαβ

(
∂′γQ

′
αβ(r

′)− ∂γQαβ(r)
)
. (4.24)

Now we use ∂′γQ
′
αβ(r

′) = ∂λQαβ(r)
[
δλγ − ∂γuλ(r) + O((∂u)2)

]
to write

∂′γQ
′
αβ(r

′)− ∂γQαβ(r) = −∂γuλ(r) ∂λQαβ(r). (4.25)

At this stage we have not yet enforced the incompressibility condition for the

fluid. This is accomplished by introducing another multiplier, the pressure p arg, via
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Fp = F − ∫
V dV p(r)∇ · u(r). Incorporating this constraint into eq. (4.24), we find

the total change in F upon an incompressible distortion to be

δFu =
∫

V
(σd

αβ − p δαβ) ∂αuβ dV , (4.26)

where

σd
αβ ≡ πα

ρµ ∂βQρµ, (4.27)

πγ
αβ ≡ − δF

δ∂γQαβ
. (4.28)

Here σd
αβ is the distortion stress tensor, often called the Ericksen stress. It comprises

elastic stresses induced in the fluid (via the Frank energy) by distortions of the nematic

order.

Finally, to compute the total time rate-of-change of the free energy, Ḟ , we must

add the time rate-of-change of the kinetic energy:

d

dt

∫

V

1
2
ρ v2 dV =

∫

V
ρ vα ∂tvα dV =

∫

V
vα ∂β σαβ dV (4.29)

=
∫

Σ
dΣα σαβ vβ −

∫

V
σαβ ∂β vα dV (4.30)

where we have used the equation of motion for the fluid (eq. 4.18). Next we express

the total stress tensor σαβ as the sum of a reversible (i.e. elastic) piece, σr
αβ , and an

irreversible (i.e. dissipative or viscous) piece, σi
αβ , viz .

σαβ = σr
αβ + σi

αβ , (4.31)

where

σr
αβ = σd

αβ − p δαβ . (4.32)

Using eqs. (4.15), (4.22), (4.26), and (4.30), we find the rate of change of the total

entropy of the system to be

T Ṡ =
∫

Σ
jSγ dΣγ + T

∫

V
θ dV

=
∫

Σ

(
jEγ − σαβ vβ

)
dΣγ +

∫

V

(
σi
αβ ∂βvα +H

[s]
αβ Q̇αβ

)
dV. (4.33)

40



It is possible to stop here and identify, e.g., σi
αβ and Q̇αβ as the dissipative fluxes

and ∂βvα and H
[s]
αβ as the dissipative forces, but a more physical choice will become

apparent if we separate the stress σi
αβ into symmetric and anti-symmetric pieces,

and examine the behavior of the system under a rigid-body rotation. We will see

that invariance of the system under this rotation (which cannot change the total free

energy) will enable us to identify the internal torques acting in the system, and hence

to develop a more physical description of the dissipative processes in the system.

4.3.2 Invariance Under Rotation: Torque Balances

The free energy of the system is invariant under rigid body rotations, which is re-

sponsible for the conservation of angular momentum. We will calculate the variation

of the free energy under such a rotation and obtain a condition which, together with

conservation of angular momentum, will lead to an expression for the dissipative

torque in the system due to the internal structure of the fluid. This relation will then

enable us to choose a physically appealing set of forces and fluxes from the entropy

production.

Consider a rotation of the coordinates and a concomitant rotation of the tensor or-

der parameter Qαβ . We emphasize that the ‘internal’ (tensorial indices) and ‘external’

(cartesian indices) spaces are the same space here, and do not transform independ-

ently. An infinitesimal rotation by an arbitrary angle |ω| about the axis ω̂ induces

the following variations in r and Qαβ :

δrα = uα = ǫαβγ ωβ rγ (4.34)

δQαβ = ωµ (ǫµαγ Qγβ + ǫµβγ Qαγ). (4.35)

The change in the free energy under this rotation is given by

δF =
∫

V

(
σr
αβ ∂αuβ +

∂f [s]

∂Qαβ
δQαβ +

∂f [s]

∂ ∂γQαβ
δ∂γQαβ

)
dV, (4.36)
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where f is the total free energy density and σr
αβ is the reversible stress tensor. Now

we use the following:†

H
[s]
αβ = −δF

[s]

δQαβ
(4.37)

= − ∂f [s]

∂Qαβ
+ ∂γ

∂f [s]

∂ ∂γQαβ
(4.38)

= − ∂f [s]

∂Qαβ
− ∂γπ

γ[s]
αβ . (4.39)

Inserting the variations u and δQαβ (eqs. 4.34 and 4.35) into eq. (4.36), we find

δF =
∫

V
ωλ

{
σr
αβ ǫαβλ − (H

[s]
αβ + ∂γ π

γ[s]
αβ )(ǫλαρQρβ + ǫλβρQαρ)

− π
γ[s]
αβ ∂γ (ǫλαρQρβ + ǫλβρQαρ)

}
dV. (4.40)

Now we note that the parameter ω is both arbitrary and spatially uniform, and

that the variation in free energy must be zero for such a rotation. We can identify a

total differential in the last term and obtain the following condition, which must hold

at all times:

∫

V
ǫλαβ (σ

r
αβ +QαρH

[s]
ρβ −H [s]

αρQρβ) dV =
∫

Σ
ǫλαβ (π

γ[s]
αρ Qβρ −Qαρ π

γ[s]
βρ ) dΣγ. (4.41)

Another useful form of this identity which gives more insight into its physical meaning

results upon integrating the first term on the left hand side by parts (we can write

ǫλαβ = ǫλρβ δαρ = ǫλρβ ∂αrρ and integrate) to obtain

∫

V
ǫλαβ (rα ∂ρσ

r
βρ+H

[s]
αρQρβ−QαρH

[s]
ρβ) dV =

∫

Σ
ǫλαβ (rα σ

r
βγ+Qαρ π

γ[s]
βρ −πγ[s]

αρ Qβρ) dΣγ.

(4.42)

This equation expresses a balance between torques applied at the surface and torques

in the bulk. The first term in the volume integral is the bulk orbital torque in the

system, i.e., that due to center of mass motion of the fluid. The second two terms

†The expressions (4.38) and (4.39) follow from our expression of the free energy in terms of Qαβ

and its gradients. Note also that an integration by parts and neglect of the surface term is implicit

in the definition of H
[s]
αβ according to eq. (4.38).
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comprise the bulk torques due to the internal structure of the fluid. Recalling that

H
[s]
αβ is zero in equilibrium, there can evidently be no equilibrium bulk torques due to

the internal degrees of freedom. The first term in the surface integral is the torque

applied at the boundary of the system; recall that σαβ dΣβ is the force applied at

the surface. The last two terms are surface torques applied to the internal degrees

of freedom; this could result if, e.g., some twist which did not influence the center-

of-mass motion of the rods was applied to the molecules at the surface. Finally, we

stress that the above remarks refer only to elastic torques in the system, and that

the relation (4.41) holds at all times, whether or not the system is in equilibrium.

4.3.3 Identification of Torques

Remembering our program to separate the dissipative stress into symmetric and anti-

symmetric pieces, we may use the torque balance equation (eq. 4.41) to identify the

anti-symmetric part of the dissipative stress tensor. We begin by considering the

total torque Γapp exerted on the system. This has contributions from: (1) torques

exerted by the total stress tensor at the surface: (2) torques exerted by external fields

which couple to the bulk (we will ignore these); and (3) torques exerted on the order

parameter field at the surface. We will assume that no dissipation is induced at the

surface (strong-anchoring condition), so that the contribution to (3) is the surface

integral in eq. (4.41).33 Assembling these torques we find that Γapp is given by

Γapp
λ =

∫

Σ
ǫλαβ (rασγβ +Qαρ π

γ
βρ − πγ

αρQβρ) dΣγ. (4.43)

This torque must equal the time rate-of-change of the total angular momentum L of

the system which, in general, includes both fluid center-of-mass and rod rotational

contributions. However, we can ignore the spin contributions, because the product

of the moment of inertia and typical rotational frequencies of the director is small

compared to the fluid orbital angular momentum.36 The rate of change of the angular
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momentum is therefore

L̇λ =
d

dt

∫

V
(r× ρv)λ dV (4.44)

=
∫

V
ǫλαβ rα ∂γσγβ dV (4.45)

=
∫

Σ
ǫλαβ rα σγβ dΣγ −

∫

V
ǫλαβ σαβ dV, (4.46)

where we have used the fluid velocity equation of motion and integrated by parts.

Equating L̇ to the total applied torque, eq. (4.43), we cancel a surface term and

find
∫

V
ǫλαβ σαβ dV =

∫

Σ
ǫλαβ (π

γ[s]
αρ Qβρ −Qαρ π

γ[s]
βρ ) dΣγ. (4.47)

Recalling that that‡ σαβ = σi
αβ + σd

αβ from eqs. (4.31) and (4.32), we substitute for

σd
αβ from eq. (4.41) and cancel the surface term on the right hand side, leaving

∫

V
ǫλαβ σ

i
αβ dV =

∫

V
ǫλαβ (QαρH

[s]
ρβ −H [s]

αρQρβ) dV. (4.48)

Finally, the dissipative torque Γλ is defined by

Γλ = ǫλαβ σ
i
αβ , (4.49)

whence, from eq. (4.48), we can identify this torque in terms of the order parameter

by

Γλ = ǫλαβ (QαρH
[s]
ρβ −H [s]

αρQρβ). (4.50)

Note, as mentioned before, that the torque Γ vanishes in equilibrium.

4.3.4 Identification of Entropy Production

After this rather lengthy digression we return to the expression for the entropy pro-

duction, eq. (4.33), and elucidate an appealing set of forces and fluxes. First, we

‡Equality holds up to the pressure term −p δαβ, which vanishes when contracted against ǫλαβ .
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decompose the irreversible stress tensor σi
αβ and the velocity gradient tensor ∂αvβ

into symmetric-traceless and anti-symmetric pieces.§ The entropy production is then

given by

Tθ = σ
i[s]
αβ κ

[s]
αβ + σ

i[a]
αβ κ

[a]
αβ +H

[s]
αβ Qαβ . (4.51)

Using eq. (4.48) for σ
i[a]
αβ , we rewrite this in the more compact form

Tθ = σ
i[s]
αβ κ

[s]
αβ +H

[s]
αβ Kαβ. (4.52)

The flux Kαβ conjugate to the molecular field H
[s]
αβ is defined by

Kαβ ≡ Q̇αβ − (κ[a]αγ Qγβ −Qαγ κ
[a]
γβ), (4.53)

and may be physically interpreted as the rate of change of the order parameter relative

to the fluid motion. From this expression we can understand the sources of dissipation

in the fluid. There is dissipation associated with a velocity gradient in the fluid, just

as in an isotropic fluid, and there is also dissipation if the order parameter is rotating

relative to the rotation of the fluid, i.e., friction between the rods and the fluid motion.

4.3.5 Irreversible Forces and Fluxes and Equations of Motion

The next step in obtaining the equations of motion is to identify the forces and

fluxes in the system and perform the Onsager expansion .66 While there is no unique

prescription for determining which to call forces and which to call fluxes, we have

found it convenient to choose κ
[s]
αβ and H

[s]
αβ as the forces and σ

i[s]
αβ and Kαβ as the

fluxes. Expanding the fluxes to linear order in the forces we obtain the relations

σ
i[s]
αβ = Λ

[1]
αβλρ κ

[s]
λρ +M

[1]
αβλρH

[s]
λρ (4.54)

Kαβ = M
[2]
αβλρ κ

[s]
λρ + Λ

[2]
αβλρH

[s]
λρ. (4.55)

§The isotropic part of the stress tensor in T Ṡ vanishes since the fluid is compressible, ∇ · v = 0.
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In accordance with the Onsager reciprocity relations, the transport coefficient

matrices Λ
[i]
αβλρ and M

[i]
αβλρ satisfy

M
[1]
αβλρ = −M

[2]
λραβ , Λ

[i]
αβλρ = Λ

[i]
λραβ , (4.56)

the minus sign arising because the forces κ
[s]
αβ and H

[s]
αβ transform differently under

time-reversal.66 As the fluxes are traceless and symmetric, the matrices also satisfy

the constraints

M
[i]
ααλρ= Λ

[i]
ααλρ= 0, (4.57)

M
[i]
αβλρ= M

[i]
βαλρ= M

[i]
αβρλ , (4.58)

Λ
[i]
αβγρ= Λ

[i]
βαγρ= Λ

[i]
αβργ . (4.59)

Finally, the entropy production must satisfy the Second Law of Thermodynamics,

namely,

Tθ = Λ
[1]
αβγρ κ

[s]
αβ κ

[s]
γρ + Λ

[2]
αβγρH

[s]
αβ H

[s]
γρ ≥ 0. (4.60)

The transport matrices M
[i]
αβλρ and Λ

[i]
αβλρ are general tensors built from the avail-

able tensors in the problem: δαβ and powers of Qαβ . The order parameter Qαβ has

three orientational and two amplitude modes (see discussion under eq. 2.3), and there-

fore has two scalar invariants, which may be taken to be T2 ≡ TrQ2 and T3 ≡ TrQ3,

where Tr (·) denotes the trace. This in turn implies that any polynomial (Qn)αβ may

be written in terms of δαβ , Qαβ , (Q
2)αβ , and the two invariants. Hence to construct

M
[i]
αβλρ and Λ

[i]
αβλρ we may use the tensors δαβ, Qαβ , and (Q2)αβ, scalars which may

include arbitrary functions of T2 and T3, and we must respect the constraints (4.57-

4.60). Because of the functions of T2 and T3, this expansion of the transport matrices

does not generally close. This is in contrast to the case of director dynamics, the

LE theory, in which one obtains similar expressions for the entropy production and

forces and fluxes, with the unit vector n̂ replacing Qαβ . An expansion of the stress

and rate of change of n̂ closes because n̂ · n̂ = 1, yielding the Leslie-Ericksen equations

(eqs. 4.4-4.10). We are interested in the behavior of the system for T ∼ TIN , where
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Qαβ is small, so we will truncate the expansion of the transport matrices at a low

order in Qαβ and its invariants. For example, an expansion to linear order yields

Kαβ =
1

β2
H

[s]
αβ + β6

{
Qαγ H

[s]
γβ +H [s]

αγ Qγβ − 2
3
δαβ H

[s]:Q
}

β1κ
[s]
αβ + β5

{
Qαγ κ

[s]
γβ + κ[s]αγ Qγβ − 2

3
δαβ κ

[s]:Q
} (4.61)

σ
i[s]
αβ = β3κ

[s]
αβ + β4

{
Qαγ κ

[s]
γβ + κ[s]αγ Qγβ − 2

3
δαβ κ

[s]:Q
}

−β1H [s]
αβ − β5

{
Qαγ H

[s]
γβ +H [s]

αγ Qγβ − 2
3
δαβ H

[s]:Q
} (4.62)

Higher orders in Qαβ may be included systematically. In the following, we have

calculated the phase diagram obtained from the equations of motion with the Onsager

coefficients expanded to cubic order in Qαβ , and have found qualitatively the same

results as for an expansion to zeroth order in Qαβ . Henceforth, we will only consider

the zeroth order expansion of the Onsager matrices. We can now write the equations

of motion for the order parameter and fluid velocity by combining the expansion of

the transport coefficients to zeroth order with the fluid equation of motion and the

definition of Kαβ. Thus, we obtain

(∂t + v ·∇)Qαβ = κ[a]αγQγβ −Qαγκ
[a]
γβ + β1κ

[s]
αβ +

1

β2
H

[s]
αβ (4.63)

(∂t + v ·∇) vα = ∂γ σαγ , (4.64)

where

σαβ = σ
i[s]
αβ + σ

i[a]
αβ + σd

αβ − pδαβ (4.65)

σ
i[s]
αβ = β3κ

[s]
αβ − β1H

[s]
αβ (4.66)

σ
i[a]
αβ = H [s]

αγ Qγβ −Qαγ H
[s]
γβ, (4.67)

σd
αβ = −L1 ∂αQµν ∂βQµν − L2 ∂βQαµ ∂νQνµ. (4.68)

The distortion contribution to the stress tensor, σd
αβ, has been calculated from the

Frank free energy (eq. 2.8) and the definition for σd
αβ (eq. 4.68). It is interesting to
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note that while the elastic stresses are generally not symmetric, they become sym-

metric in the one-constant approximation, when the modulus L2 vanishes. Finally,

the condition that T θ̇ ≥ 0 implies the constraints β3 > 0 and β2 > 0, and the minus

sign in eq. (4.66) is chosen to satisfy the Onsager reciprocity relations.

4.3.6 Correspondence with Leslie-Ericksen Theory

The fluid velocity equation is a generalized Navier-Stokes equation with a stress tensor

that reflects the intrinsic anisotropy of the fluid. The order parameter equation of

motion is a generalization of the Leslie-Ericksen equation of motion for the director.

Note that there are two Onsager coefficients with dimensions of viscosity, β3 and

β2, and one dimensionless kinetic coefficient β1. Our theory has three transport

coefficients, while LE theory has five transport coefficients. We have fewer because

we have truncated the expansion of the transport matrices at zeroth order in Qαβ .

We can see the correspondence with LE theory by comparing, e.g., the results from

the linear expansion (eqs. 4.61 and 4.62) with LE theory. If we follow the assumptions

of LE theory and assume the uniaxial form for the order parameter,

Qαβ = 3
2
S1 (nαnβ − 1

3
δαβ), (4.69)

then we find that the symmetric part of the irreversible stress tensor (eq. 4.62) be-

comes

σ
i[s]
αβ = 3

2
β4S1(nαnµκ

[s]
µβ + nβnµκ

[s]
µα) + (β3 − β4S1)κ

[s]
αβ + (− β1

3S1
− β5

6
)(nαhβ + nβhα).

(4.70)

Here h is the molecular field for the director, in terms of the Frank energy fF{n̂}, and
we have neglected an isotropic contribution which can be absorbed into a redefinition

of the pressure. Similarly, we can reduce the equation for Kαβ (eqs. 4.53 and 4.61) to

an equation for nα by substituting for Qαβ with eq. (4.69) and contracting with nβ,
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giving

ṅα = (ω × n̂)α + (
2

9β2S
2
1

+
β6
9S1

)hα + (
2β1
3S1

+
β5
3
)κ

[s]
αβ nβ . (4.71)

In obtaining this result we have enforced the condition that n̂ remain a unit vector.

Comparing these two expressions with the LE equations, eqs. (4.4) and (4.10), we

find the correspondences

S1λ = 2
3
β1 +

1
3
β5 S1 +O(S2

1) (4.72)

S2
1

γ1
= 2

9
β2 +

1
9
β6 S1 +O(S2

1) (4.73)

2 (ν3 − ν2) = 3
2
β4 S1 +O(S2

1) (4.74)

2 ν2 = β3 − β4 S1 +O(S2
1) (4.75)

2 (ν1 + ν2 − 2 ν3) = O(S2
1). (4.76)

Notice that, in the absence of any nematic order, 2ν2 reduces to precisely the viscosity

found in the Navier-Stokes equation for a simple incompressible fluid. Notice also that

the combination of Leslie coefficients 2(ν1+ν2−2ν3) does not appear, to the order in

Qαβ in which we have expanded the transport matrices. A straightforward calculation

shows that keeping terms in the Onsager expansion to the next order in Qαβ yields a

non-zero contribution to this combination of viscosities.

4.4 Flow Alignment in Steady Shear

As an application of these equations of motion we consider uniform flow alignment

in shear flow, analogous to the alignment condition for the director within LE theory

(eq. 4.13). Again we consider homogeneous flow,

v(r) = Dy x̂, (4.77)

and impose the stationary conditions

Q̇αβ = κ[a]αγ Qγβ −Qαγ κ
[a]
γβ + β1 κ

[s]
αβ +

1

β2
H

[s]
αβ = 0. (4.78)
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As noted before, the torque vanishes, so

Γα = ǫλαβ (HαρQρβ −QαρHρβ) = 0. (4.79)

We assume that the n̂ lies in the shear plane (we will see later that this is indeed a

stable configuration) and that the order parameter has the diagonal form ¶

Q{n̂, m̂, ẑ} =



S1 0 0
0 −1

2
(S1 + S2) 0

0 0 −1
2
(S1 − S2)


 . (4.80)

The director will be rotated at an angle θ with respect to the {x̂, ŷ, ẑ} coordinate

system defined by the flow (see fig. 4.2), so that the representation of the order

parameter in this frame is

Q{x̂, ŷ, ẑ} = R(θ) ·Q{n̂, m̂, ẑ} ·R−1(θ) , R(θ) =




cos θ sin θ 0
−sin θ cos θ 0

0 0 1


 . (4.81)

It is straightforward to contract eq. (4.78) with Qαβ and the Levi-Civita tensor and,

making use of eq. (4.79), obtain the flow alignment condition for nematics in steady

shear flow:

2 β1 cos 2θ = 3S1 + S2. (4.82)

Using the correspondence between our coefficients and the Leslie coefficients, we see

that in the uniaxial limit (S2 = 0) this expression reduces to eq. (4.13). This cor-

respondence between the alignment and the degree of biaxiality should be observable

from, e.g., birefringence measurements.

4.5 Alternative Formulations of the Dynamics

Our treatment of the dynamics is similar to that of Hess,8 who also followed irreversible

thermodynamics to arrive at the dynamical equations, and parallels Leslie-Ericksen

¶The expression Q{n̂, m̂, ẑ} signifies the representation of the tensor Q in the basis {n̂, m̂, ẑ}.
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theory.12 It is similar in spirit and in practice to the approach to hydrodynamics

discussed by Kadanoff and Martin70 and by Martin, Parodi, and Pershan,71 relying

on thermodynamic relations to obtain dynamic equations for slow variables in the

limits of weak non-equilibrium processes. I will briefly discuss other approaches to

obtaining the dynamics for the order parameter. The two most common alternatives

are the Poisson bracket approach, first stressed by Dzyhaloshinski and Volovik72 and

Volovik and Kats,73 and developed further for complex fluids by Edwards and Beris;74

and a more microscopic approach studied separately by Wang and Gelbart,14 and See,

et al.10

4.5.1 Poisson Bracket Method

The Poisson Bracket (PB) approach is similar in spirit to classical irreversible thermo-

dynamics in that it deals only with the symmetries, conserved quantities, and broken

symmetry variables of the system.72 The time evolution of a quantity in a classical

system is given by the PB of the quantity in question with the system Hamiltonian75.

The PB is defined in terms of the canonical coordinates of the system, which include

fast microscopic variables as well as slow macroscopic quantities such as the density

and entropy. From the PB one obtains the reversible parts of the equations of motion

for macroscopic quantities, while the irreversible parts are introduced as derivatives

of a dissipative function, a scalar quantity which represents the entropy production

and is constructed, much like the Onsager expansion, to respect the symmetries of

the system and to be positive definite. The resulting equations are actually coupled

equations of motion for the fast and slow variables in the system. While one usually

assumes, for calculational purposes, that the fast variables relax quickly and may

be ignored, a more correct formulation involves incorporating these fast variables

into additive noise in the equations of motion for the macroscopic variables, hence

rendering the equations of motion stochastic.76,77 This procedure can be formally jus-
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tified through the projection operator formalism of Nakajima and Zwanzig.78 The

advantage of using the PB approach is that it is a straightforward cookbook method;

the disadvantage is that (this may reflect the author’s inadequacies) the details can

be tedious and sometimes obscure the physics of the actual dissipation mechanisms

involved.

4.5.2 Microscopic Approach

Microscopic approaches to order parameter dynamics have been employed by See, et

al.,10 and Wang and Gelbart.14 Like all microscopic approaches, they suffer from the

flaw that they begin with a model of what is happening on microscopic length and

time scales, and try to project up to hydrodynamic length and time scales. Unfor-

tunately, we can only construct a microscopic model from, ultimately, macroscopic

observations. The problems inherent in this reductionist approach are familiar from

quantum electrodynamics, where the bare mass of the electron postulated in the Lag-

rangian is not the observed mass, but is adjusted to give the correct observed results.79

In this case the procedure is very successful.

The ultimate goal is to solve for the orientational distribution function ψ(û, r, t),

where û is the unit vector indicating the orientation of the rod. Once an appropriate

description of the dynamics of the distribution function has been found it is, in

principle, a simple matter to obtain the order parameter dynamics by using the

definition of the order parameter as an average of moments of û. Most of the work in

this direction has been from Doi and coworkers,10,80 who discuss a uniform distribution

function ψ(û, t), and I will follow their discussions here. For a homogeneous flow field

vα = καβ rβ, Doi has proposed the following rotational diffusion equation:

∂ψ

∂t
= DrR ·

(
Rψ +

ψ

kBT
(RVscf)

)
−R ·

[
û× (κ · û)ψ

]
. (4.83)

Here R is the rotational operator R = û × ∂/∂û, Dr is the rotational diffusion
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coefficient, and Vscf is a self-consistent field for the excluded volume potential. This

is typically taken to be a Maier-Saupe potential,81

Vscf = −1
6
UkBT (3uαuβ − δαβ)

∫
dû′(3u′αu

′
β − δαβ)ψ(û

′, t) , (4.84)

where U is proportional to nbL2, n is the concentration of the rods, b is the rod

thickness, and L is the rod length. The first term in eq. (4.83) is analogous to

the diffusion term in the Fokker-Planck equation,82 and governs the relaxation of

the system to equilibrium in the absence of flow. The main assumption lies in the

second term. This is justified from the assumption that the rods follow the rotation

of the flow and are convected like an ordinary particle: u̇α = (u · ∇) vα = καβ uβ.

Hence the angular velocity due to the interaction with the flow becomes ω = û ×
˙̂u, which results in the last term in eq. (4.83).80 The order parameter equation of

motion,10 after averaging over (3uαuβ − δαβ), is identical to our equation (4.61), with

the correspondences

β1 = β5 = 1.0,
A

β2
= 2Dr(3−U),

B

β2
= −2DrU,

B

C
= −3.0, β6 = 0. (4.85)

See, et al. consider a concentration-driven transition, so the term (3−U) corresponds
roughly to our (T−T−). The omission of the β6 term in their version of the equations

of motion indicates that this description may not represent a consistent expansion

in the departure of the system from equilibrium, for if they retain the β5 term, they

should also retain the β6 term, in accordance with our expansion, eq. (4.61). Using

these equations, results qualitatively similar to many of the phenomena we will study

later may be obtained with these equations, including the general structure of the

phase diagram.10 Some qualitative results that cannot be reproduced, however, are the

instability to tumbling, which is known to occur when β1 is sufficiently small and for

sufficiently large strain rates;65 determination of coexistence and state selection; and

spatially varying properties, such as the interface profile between coexisting states and

the wavelength dependence of the fluctuation spectrum. In principle one may address
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these problems by using the full rotational and translational diffusion equation80

for ψ(û, r, t), and performing the averaging over moments of û to obtain the fully

inhomogeneous equations of motion. This problem has not been discussed in detail.
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Chapter 5

Homogeneous States:

Non-Equilibrium State Diagram

Our first task is to find the non-equilibrium phase diagram for a nematic under-

going shear flow.8–10 The experimental apparatus commonly envisaged for such an

experiment is a Couette cell, which consists of two coaxial cylinders with the gap

between them filled with mesogens. For simplicity, we will consider plane shear flow,

v = D y x̂, throughout this thesis, as depicted in fig. 5.1, but it seems reasonable to

assume that the results will apply qualitatively to Couette cell experiments, at least

for large cylinder radii and small gaps. Furthermore, the extension to arbitrary flows

is simply a matter of computation.

5.1 Elongational Flow: A Potential Formulation

Before beginning our discussion of nematics in shear flow, we should mention the case

of elongational flow, which has been discussed by Kramers22 (1946), Thirumalai60

(1987) and Lee15 (1989). For elongational flow it is possible to construct an effective

free energy L, whose variation with respect to the order parameter, δL/δQαβ , gives

the correct order parameter equations of motion. For nematics in a general flow field
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Figure 5.1: Coordinate system for planar Couette flow showing boundary plates and
velocity field for a homogeneous phase.

this is not possible because of the specific form of the coupling to flow. Recall from

eq. (4.63) that dissipation involves the motion of the order parameter relative to the

rotation of the background fluid, necessitating the term

Gαβ = κ[a]αγQγβ −Qαγκ
[a]
γβ (5.1)

in the equation of motion for Qαβ , where κ
[a]
αγ is the anti-symmetric velocity gradient

tensor. Explicit calculation shows that ∂Gαβ/∂Qλρ = −∂Gλρ/∂Qαβ , since κ
[a]
αβ =

−κ[a]βα, which violates the conditions of integrability of Gαβ with respect to Qαβ (viz.,

that there exists a function ψ such that ∂ψ/∂Qαβ = Gαβ), except for special flow

fields for which Gαβ vanishes. An example of such a flow field is elongational flow,

v(r) = D (−xx̂,−yŷ, 2zẑ). The resulting functional, called a Kramers’ potential after
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Henrik Kramers,22 may then be minimized to find the states of the system. This is the

approach used by Thirumalai,60 Lee,15 and Wang and Gelbart14 to examine nematics

in elongational flow, and yields a qualitatively similar phase diagram to the case of

nematics in shear flow.

5.2 General Flow

Because an ‘effective free energy’ for shear flow does not exist, our method for finding

the non-equilibrium phases of the system will be to find the stable stationary states of

the system from the dynamics, without resorting to a variational principle. The most

general way to do this would be to augment the deterministic long-wavelength equa-

tions of motion for the order parameter and fluid velocity (eqs.4.63 and 4.65) with

Langevin noise sources to account for the otherwise-neglected small-scale motion.77

In an equilibrium system the strength of this noise is determined by the condition

that an equilibrium distribution function be the static solution, which is the famil-

iar fluctuation-dissipation theorem (FDT). One can then, in principle, transform the

Langevin equation into an equivalent Fokker-Planck equation and solve for the sta-

tionary probability distribution function.82

The first problem with this method in a non-equilibrium system is the issue of

the noise; i.e. the dynamics of the fast and small wavelength fluctuations. We know

of no prescription equivalent to the FDT to determine the strength of the noise, so

this choice is, to some extent, arbitrary. It seems reasonable, however, to choose a

noise which reduces to that given by the FDT when the shear rate is turned off: this

is equivalent to the statement that macroscopic flow does not affect the probability

distribution of the small-scale fluctuations. This assumption is frequently used, often

with favorable comparisons with experiment.83 Nevertheless, it is a strong assumption

and should be viewed with some scepticism.
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The next problem is one of practicality. As the equations governing the order

parameter are non-linear and, because of the biaxiality induced by the shear, involve

many modes, it is a formidable to challenge to find the stationary states of the distri-

bution function. As a first step, therefore, we will find the non-equilibrium phases by

finding the stable stationary solutions to the equations of motion for Qαβ and v in the

absence of noise. This may be regarded as the analog of a mean-field determination

of the phase diagram, and should give us a qualitatively accurate description of the

system. We will return to the subject of fluctuations in Chapter 7.

5.3 Stationary Conditions for Homogeneous

States

We begin with the coupled differential equations for the order parameter and velocity

field, eqs. (4.63-4.68). For homogeneous and stationary states these become coupled

non-linear algebraic equations. We wish to find the solutions to these equations as

functions of the temperature and either the applied stress or imposed strain rate

(and for appropriate physical choices of material parameters such as the Landau and

Leslie coefficients). It is calculationally easier to assume that the stress is adjusted

to give a particular value of the strain rate, in which case we need only consider the

order parameter equation of motion, eq. (4.63), and vary the temperature and strain

rate. The velocity equation of motion is automatically satisfied since we assume a

uniform state, which implies that ∂ασαβ = 0. We shall see later, when we discuss

inhomogeneous states, that two states may coexist at the same applied stress, rather

than at the same imposed strain rate, so it is perhaps more physical to evaluate

the states as functions of the applied stress. This will be done later, but for the

determination of homogeneous states it is sufficient to consider fixed strain rate.

Before outlining the detailed numerical scheme, we will examine the stationary
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condition Q̇αβ = 0 and v̇ = 0. We choose the velocity field v = D y x̂, whence

κ
[s]{x̂, ŷ, ẑ} =

D

2



0 1 0
1 0 0
0 0 0


 , κ

[a]{x̂, ŷ, ẑ} =
D

2




0 1 0
−1 0 0
0 0 0


 . (5.2)

Let us choose as coordinate axes the triad {n̂, m̂, ẑ} and examine the stationary

conditions in this basis. As we have seen (eq. 4.82), in steady state the director n̂

lies in the shear plane at an angle θ with respect to the fluid flow v. The subdirector

m̂ may also be taken to lie in the shear plane, orthogonal, by definition, to n̂. We

must use the representations of the velocity gradient tensors in the {n̂, m̂, ẑ} basis,

which are related to their representations in the {x̂, ŷ, ẑ} basis by an orthogonal

transformation:

A{n̂, m̂, ẑ} = R(θ) ·A{x̂, ŷ, ẑ} ·R−1(θ). (5.3)

and similarly for κ[a]. The rotation matrix R(θ) specifies a rotation about the z-axis

by an angle θ. Inserting these expressions into eq. (4.63), using the general form for

Qαβ , eq. (2.3), and expressing H
[s]
αβ in terms of the variation of the Landau free energy

density, we find the three stationary conditions

β1
β2
D sin2θ =

[
A+ C(

3S2
1 + S2

2

2
)

]
S1 +

B

2
(S2

1 − 1
3
S2
2) (5.4)

β1
β2
D sin2θ =

1

2

[
A + C(

3S2
1 + S2

2

2
)

]
(S1 − S2)−

B

12
(S2

2 − 6S1S2 − 3S2
1) (5.5)

2 β1 cos2θ = (3S1 + S2). (5.6)

These conditions determine the magnitude of the amplitudes S1 and S2 and the

orientation of n in the shear plane with respect to v, as a function of the applied

strain rate D and the temperature, which enters through A = a(T−T−).

5.4 Stable Stationary States

We have found the stationary states as a function of temperature and imposed strain

rate for a fixed set of coefficients which are typical of low molecular weight thermo-
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tropic nematogens. It is convenient to perform calculations in terms of the dimen-

sionless control parameters

τ ≡ a(T−T−)

C
and δ ≡ Dβ2

C
, (5.7)

in terms of which the stationary conditions become

0 = δ
[
κ̂[a]αµQµβ −Qαµ κ̂

[a]
µβ + β1κ̂

[s]
αβ

]
−τQαβ+

B

C
(Q2)αβ−(Q3)αβ−

B

3C
δαβ Q:Q. (5.8)

Here κ̂
[a]
αβ = κ

[a]
αβ/D and κ̂

[s]
αβ = κ

[s]
αβ/D. In this form it is evident that the nature of

the states is determined by the kinetic coefficient β1, which is a ratio of rotational

viscosities;33 and the ratio of Landau parameters B/C, which is a measure of the

weakness of the first order transition (recall that ∆S1 = −2B/9C). From typical

values of the order parameter discontinuity at the equilibrium transition of, e.g.,

MBBA, ∆S1 ∼ 0.27, we have chosen B/C = −1.2 (see Table 2.1). For β1 we have

used 0.9, which is obtained from the examination of the correspondence with LE

theory (eq. 4.72) and a typical value for λ (see Table 5.1).

To perform the numerical calculations we have used a fully general form for Qαβ ,

Q =



q1 q3 q4
q3 q2 q5
q4 q5 −q1 − q2


 , (5.9)

and have used the {x̂, ŷ, ẑ} coordinate axes coincident with the flow and its gradient.

It is easiest to implement the conditions (5.8) as a vector equation:

fi(q) ≡ ∂t qi = 0, (i = 1, . . . , 5). (5.10)

Physical solutions must be stable with respect to fluctuations. Thus, if we parametrize

q according to

q(t) = q(o) + η(t), q̇(o) = 0, (5.11)

then the fluctuation η(t) obeys the equation

η̇i =
∂fi
∂qj

∣∣∣∣∣
q=q(o)

ηj +O(η2). (5.12)
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The condition for stability with respect to small fluctuations is then that the matrix

Θij ≡ − ∂fi/∂qj |q=q(o) be positive definite, so that fluctuations will decay in time. As

mentioned before, the equations of motion forQαβ are non-integrable, in the sense that

one cannot derive them from a functional L via ∂tQαβ = δL/δQαβ . This implies that

the matrix Θij is not symmetric. Hence, the eigenvalues of Θij are generally complex,

and the condition for stability is that the real part of all eigenvalues be positive.∗

We also point out that these states are stable with respect to small perturbations,

or locally stable. We are not able, with this method, to make a statement about the

global , or absolute, stability of particular solutions.

Having chosen physical values for the parameters β1 and B/C, we have used the

Newton-Raphson technique84 to find numerically the roots to eq. (5.8) as a function

of the control parameters τ and δ, and have evaluated the stability of these roots.

Fig. 5.2 shows the stationary values for Qαβ plotted as a function of dimensionless

temperature for a particular value of the dimensionless strain rate δ. Broken lines

correspond to unstable states while solid lines correspond to stable states. We find

stable configurations of the order parameter tensor to have two principal axes (director

and sub-director) in the plane, and the third out of the plane. At high temperatures

there is a single stable state available to the system, which is weakly ordered and has

a high degree of biaxiality. In fact, we can readily solve the stationary conditions,

eqs. (5.4-5.6), in the limit of weak shear, to find

θ ≃ π

4
− D

4Aβ2
=
π

4
− δ

4τ

S1 ≃ S2 ≃
Dβ1
2Aβ2

=
β1δ

2τ





T ≥ TIN(D)

D ≃ 0.
(5.13)

Here, and below, TIN(D) refers to a (presumed) transition temperature in the presence

∗Since Mij is generally a real non-symmetric matrix, it is possible that it may not be diagonaliz-
able. However, this may only occur when an accidental degeneracy of the eigenvalues of Mij occurs,
and then only if the dimension of the eigenspace of this degeneracy is smaller than the degree of
degeneracy. This is rare in a matrix with so many free parameters. It is interesting to speculate on
the physical consequences of such an accidental degeneracy, but we will leave this for now.
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Figure 5.2: Stationary values for the the order parameter S1 as function of dimen-
sionless temperature τ , for B = −1.2C and β1 = 0.9, and a reduced strain rate of
δ = .005. Solid lines signify stable states and broken lines signify unstable states.

of flow. While the transition is now between biaxial states, we retain the same

nomenclature (TIN) for clarity and correspondence with the equilibrium IN transition.

As the temperature is reduced, a second stable state (as well as an additional

unstable state) becomes available to the system, and at still lower temperatures this

new state becomes the only stable state. This new state is well-ordered and nearly

uniaxial, reflecting the dominance at low temperatures of the thermodynamic effects.

In the limit of small strain rate we can calculate the corrections to the order due to
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the flow:

S1 = So (T ) + r D

r ≃ β2
So(B + 6SoC)

(4β2
1 − 9S2

o)
1/2

S2 ≃ − (B + 6SoC) r D

2B





T ≤ TIN(D)

D ≃ 0,
(5.14)

where So (T ) is the equilibrium (i.e. D = 0) value of the order parameter, given in

Table 2.1, and the alignment angle is given by the condition (5.6). The role of shear

flow at low temperatures is largely to dictate the orientation of the liquid crystal

phase. In the intermediate regime, where there are two locally stable states, there is,

from this analysis, no way to determine which, if either, of the two states is physic-

ally selected. However, we can say with certainty that at some point in this region

(possibly the boundary) the system makes a discontinuous jump as the temperature

is decreased, assuming that the system is stable with respect to states we have not

considered, such as spatially modulated configurations. Hence we may suspect that

the system will exhibit the non-equilibrium analog of a first order transition, leaving

aside for the moment questions of hysteresis and metastability.

As the strain rate is increased we find the family of curves depicted in Fig. 5.3. For

low strain rates the curves are topologically identical, depicting a high temperature

ordered phase which gives way to a two-state region at lower temperatures, and a

single well-ordered phase at still lower temperatures. However, for higher strain rates

we find qualitatively different behavior. For dimensionless strain rates larger than a

critical strain rate δ∗, the state of the system varies smoothly with temperature, and

there is no transition. Finally, when the temperature is reduced at the strain rate δ∗

we see that the system undergoes a continuous transition from the high to the low

temperature states of the system that is nonetheless non-analytic, as the slope of the

order parameter vs. temperature line diverges at the non-equilibrium critical point ,

(δ∗, τ ∗).
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Figure 5.3: Order parameter S1 as a function of reduced temperature τ for branches
containing the stable roots Qαβ , for a range of values of the dimensionless shear rate
and for B = −1.2C and β1 = 0.9: (a) δ = 0, (b) |δ| < δ,∗ (c) |δ| = δ,∗ and (d)
|δ| > δ∗. Unbroken lines correspond to linearly stable steady states, while broken
lines represent unstable states.

5.5 Summary

Figure 5.4 shows the phase diagram as a function of dimensionless temperature and

strain rate. From this figure and Fig. 5.3 we see that the nematic in shear displays

many features reminiscent of the van der Waals fluid:16

• Both systems possess a discontinuous transition in the order parameter (Qαβ

for the nematic, volume for the VdW fluid) as a field is increased (strain rate

and pressure, respectively), which ends in a critical point.

• It is possible to go smoothly from one state within the two state region to the
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Figure 5.4: Dimensionless strain-rate (δ) vs. dimensionless temperature (τ) state
diagram for B = −1.2C, β1 = 0.9, as determined from homogeneous states. The
shaded region is the two-state region with two locally stable states; solid lines mark
the limits of stability for the high and low temperature states; the center dot marks
the equilibrium IN transition, and the outer dots locate the non-equilibrium critical
points at (τ ,∗ δ∗) ≃ (0.07914, 0.007961).
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Figure 5.5: Isotherms in the pressure-volume phase diagram for the van der Waals
fluid.

other by varying the external parameters to go around the critical point. This

can be done because the the two states have the same symmetry: liquid and

gas for the VdW fluid, and two biaxial states for the nematic.

• For a given reduced strain rate δ, there exist temperatures T+(δ) and T−(δ)

between which strongly and weakly ordered states are both locally stable states

of the system. This leads one to ask whether there is a temperature TIN(δ),

where T−(δ) ≤ TIN(δ) ≤ T+(δ), at which the two states may coexist. Such a

temperature would provide the analog of the coexistence line in the liquid-gas

system, and the shaded region in Fig. 5.3 would then correspond to the coex-

istence region of a liquid-gas system. This issue will be explored in Chapter 5,

where we will find coexistence of states at a common stress .
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• The critical points of both systems exhibit singularities. At the liquid gas critical

point the compressibility, −V −1 ∂V/∂P , diverges. The compressibility is related

to density fluctuations, which may be probed by light scattering experiments.

This divergence signals the familiar phenomenon of critical opalescence. For the

nematic in shear flow the quantity ∂Qαβ/∂T diverges at the critical strain rate

δ∗. It is reasonable, therefore, to expect observable critical behavior analogous

to that seen in the liquid-gas system. This analogy will be pursued further in

Chapter 7.

While there are many similarities between the two systems, we must bear in mind

the profound differences, aside from the issue of equilibrium vs. non-equilibrium

systems. The critical point in the nematic in shear is a result of the flow suppressing

certain configurations in the 5-dimensional parameter space of the order parameter,

while the fluid critical point involves a scalar order parameter. The role of increasing

the pressure in the fluid is to decrease the exchange of entropy of dissociation (from

liquid to gas) for the cohesive energy of the liquid. This latent heat vanishes, of course,

at the critical point, where the states become the same and there is no entropy change

at the transition. The transition in the nematic in shear takes place between different

orientations of the order parameter; the difference between these states vanishes at

the critical point. It is interesting to speculate on the analog of latent heat for the

nematic.

Using typical numbers for MBBA, we find a critical strain rate of D∗ ∼ 105 s−1

and a temperature shift of T ∗−TIN ≈ 0.5K. While the magnitude of this strain rate

is near the experimentally obtainable limit and could make observation of the critical

point difficult, systems with a larger viscosity β2 would have more readily accessible

critical strain rates. An example of such a system is the Tobacco Mosaic Virus

(TMV),18 which has rotational diffusion times one to two orders of magnitude higher

than MBBA. This is a lyotropic system, i.e., a solution of rods, which necessitates a
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slightly different theoretical treatment because of the presence of the solvent. These

problems will be discussed briefly in Chapter 8.

To explore further the analogies between the non-equilibrium nematic under shear

and the van der Waals fluid, and to gain more understanding about the nematic under

shear, we must settle two further issues, neither of which can be determined from an

analysis of homogeneous states (in contrast to the VdW fluid):

• How do we determine whether one or the other of the two stable states within

the two-state region is selected? Further, is there a coexistence line in this region

which plays the role of the line of first order transitions in the VdW fluid? The

procedure for determining such a line in equilibrium systems is well-defined for

mean-field theories via the Maxwell construction, i.e., the equality of chemical

potentials. How may we address this problem for our non-equilibrium system?

• What is the nature of the critical point? We have seen that the nematic in shear

flow is singular at the critical point, but how does this singularity manifest itself,

and what are the analogs of the equilibrium critical exponents?

To answer these questions we will examine inhomogeneous solutions to the equa-

tions of motion, which we pursue in the next chapter.
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Table 5.1: Material Parameters for MBBA

Transition temperature TIN 46.0 oC a

Frank elastic constants K1 6.0× 10−12 J m−1 d
K2 4.0× 10−12 J m−1 d
K3 9.5× 10−12 J m−1 d
L1 1.4× 10−12 J m−1 b

Landau parameters a 1.35, 0.93× 105 J m−3 oK−1 a,b
−B 2.66, 2.12× 106 J m−3 a,c
C 2.76, 1.78× 106 J m−3 a,c

TIN−T− 0.7, 1.0 oK a,c

Order parameter jump ∆S1 0.21, 0.27 a,c

Leslie parameters α1 (25.0
oC) 6.5 c Poise e

α2 (43.0
oC) −19.0 c Poise e

α3 (43.0
oC) −1.7 c Poise e

α4 (43.0
oC) 40.0 c Poise e

α5 (43.0
oC) 5.0 c Poise e

α6 (43.0
oC) −12.3 c Poise e

Alignment angle θ (43.0oC) 17.5o e

a Y. Poggi, J. C. Filippini, and R. Aleonard, Phys. Let. 57A (1976), 53.
b T. W. Stinson and J. D. Litster, Phys. Rev. Lett. 30 (1973), 688.
c T. W. Stinson and J. D. Litster, Phys. Rev. Lett. 25 (1970), 503.
d M. J. Stephen and J. P. Straley, Rev. Mod. Phys.46 (1974), 617.
e C. Gähwiller, Mol. Cryst. Liq. Cryst. 20 (1973), 301.
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Table 5.2: Relations among various Leslie coefficients

γ1 = α3 − α2 2η1 = α3 + α4 + α6

γ2 = α6 − α5 2η2 = α4 + α5 − α2

λ = −γ2/γ1 2η3 = α4

tan2 θ = α3/α2 2ν1 = α1 + α2 + α3 + α4 + 2α5

cos 2θ = 1/λ 2ν2 = α4

α6 − α5 = α3 + α2 2ν3 = α4 + α5 + λα2
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Chapter 6

Inhomogeneous States:

Coexistence, Selection, and

Critical Behavior

6.1 Equilibrium State Selection and Coexistence

For comparison with our non-equilibrium system, let us first examine the procedure

for determining the equilibrium state of a system near a first order transition.16 As a

concrete example we consider the van der Waals (VdW) fluid, whose homogeneous

states are specified, at fixed particle number, by the pressure and temperature. The

equilibrium states of a system are those which minimize the relevant free energy, or

thermodynamic potential, of the system, whose choice depends on the variables help

constant in the system (e.g. the Helmholtz free energy F (T, V ) or the Gibbs free

energy G(T, P )). Unfortunately, this program is usually too difficult to carry out

explicitly. Landau theory is an approximation to this scheme near continuous phase

transitions, where it is assumed that the equilibrium free energy may be obtained by

minimizing a properly constructed functional.4 This functional is assumed to be an

expansion in terms of the order parameter which obeys the symmetries of the system.

While its use is not justified for first order transitions where the order parameter
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jumps at the transition, it is often assumed to be qualitatively correct when the

discontinuity in the order parameter is small.

The order parameter for the VdW fluid is the liquid-gas density difference, which

is small near the critical point. Figure 5.5 show isotherms in the pressure-volume

plane obtained from the VdW equation of state,

V 3 + a (P, T ) V 2 + b (P ) V + c (P ) = 0. (6.1)

This equation was originally obtained using heuristic arguments concerning molecu-

lar interactions, but may also be considered to be the stationary condition ∂G/∂V ,

for a Landau free energy G.16 Notice the similarity, as noted in Chapter 5, of the

VdW isotherms to the isoshears in the order parameter-temperature plane for the

nematic under shear. Now we ask, given T , at what pressure P will we find two co-

existing states? To determine the state of the system we must satisfy the conditions

of equilibrium for two thermodynamic systems in contact with each other (the two

systems being the liquid and gas phases). By ‘contact’ we mean that the systems

may exchange heat and matter. In equilibrium, then, the temperatures, pressures,

and chemical potentials of the systems must be the same:

Tl = Tg, pl = pg, µl = µg, (6.2)

where the subscripts refer to the liquid and gas phases. For the VdW fluid we may

use the Gibbs-Duhem relation,16

dµ = − S

N
dT +

V

N
dp, (6.3)

to obtain the familiar Maxwell equal areas construction (see Fig. 6.1), which follows

from

µl − µg =
∫ g

l
dµ =

∫ g

l

V

N
dp = 0. (6.4)

From the Gibbs-Duhem relation we see that the chemical potential is the same

as the effective potential per particle for the system at specified pressure and tem-
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Figure 6.1: Isotherm in the pressure-temperature plane for a van der Waals fluid,
showing the Maxwell equal-areas construction for liquid-gas coexistence. From Kittel
and Kroemer.87

perature. To see this we perform a Legendre transformation to obtain the Gibbs free

energy G(T, P,N),

G = E − TS + PV, (6.5)

whose differential is

dG = −S dT + V dP + µ dN, (6.6)

which implies that µ = ∂G/∂N . Hence the Maxwell construction is equivalent to

choosing the pressure at which, for a given isotherm, two states have the same free

energy density. We also note that the Maxwell construction is only a heuristic con-

struct, which in fact corrects the unphysical nature (lack of convexity) of certain

solutions to VdW equation of state.19
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6.2 State Selection and Coexistence out of Equi-

librium

A general non-equilibrium system does not possess a prescription analogous to the

Maxwell construction for determining the stable steady states, or phases, of the sys-

tem. Even the prescription for determining the state of the system when only a single

steady state exists is not as well defined. In equilibrium the state of the system follows

from a variational principle, which in turn is a statement simply of the most prob-

able state. It has been conjectured that non-equilibrium steady states obey a similar

variational principle, namely, that of minimum entropy production.20 This condition

is obeyed by, e.g., steady state heat flow in a system with open boundaries (to permit

heat flow) and an applied temperature gradient.66 However, the principle of minimum

entropy production only asserts that the state of the system is a local minimum, in

function space, of the entropy production.66 It is not a criterion which may distinguish

globally among different locally stable states of the system, as the Maxwell construc-

tion or minimization of the free energy does for equilibrium states. A second method

often used to determine the states of a non-equilibrium system involves the use of

an effective free energy to mimic the relaxation of the system. As we discussed in

Chapter 5, it is possible to find an effective free energy only for special flows, such as

elongational flows.

Since we cannot appeal to a variational principle to distinguish locally stable

states, we will take a more pragmatic approach. At a given applied stress there is a

range of temperatures for which there are two locally stable homogeneous states (see

fig. 6.2). We wish to find which state, if any, is preferred at a particular temperature

within this interval, and whether there is a temperature at which two states may

coexist. To address this we will search for non-uniform solutions to the equations of

motion which interpolate between configurations that are both locally stable states
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Figure 6.2: Order parameter vs. temperature for fixed applied stress. The branches
labeled Q+

αβ(σxy,T ) and Q
−
αβ(σxy,T ) are locally stable states. The shaded region is the

two-state region, and the dotted line identifies a conjectured coexistence temperature.

at a given temperature. By this somewhat brute-force method we will be able to

determine not only a coexistence line which (we conjecture) corresponds to the analog

of an equilibrium line of first order transitions, but also information about the mean-

field critical behavior as the non-equilibrium critical point is approached.85

6.3 Interface Method for Determining Coexist-

ence

6.3.1 Fixed Boundaries

While in Chapter 5 we chose, as is commonly done,10,14,15 to examine the phase dia-

gram in the strain-rate vs. temperature plane, a stable inhomogeneous steady state
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must have uniform stress across the system. Hence we will focus on the applied-stress

vs. temperature plane in this chapter, and imagine the system to be sheared with an

applied stress σxy at two boundary plates, as shown in fig. 5.1. It is straightforward

to generalize our procedure for finding stable states at an imposed strain rate to the

case of an applied shear stress σxy. This will be described in detail below. The result

is a state diagram in the applied-stress–temperature plane analogous to the strain-

rate–temperature phase diagram of Chapter 5, with a critical point at (σ∗, T ∗), where

σ∗ is the critical applied shear stress.† Within the two-state region we find two loc-

ally stable homogeneous states (fig. 6.2). Our goal is to determine whether, for fixed

applied stress, there is a temperature TIN(σxy) which plays the role of the first-order

transition temperature in an equilibrium system. If so, then for temperatures above

TIN(σxy) the system will select the weakly ordered state, while at temperatures below

TIN(σxy) the system will select the strongly ordered state. To address this question

we imagine that the two plates impose boundary conditions such that the nematic

adopts one of the two homogeneous stable states at one plate, and the alternative

state at the other. We will ignore boundary effects around the perimeter of the plates.

With the order parameter thus specified, we will examine how the order parameter

and strain rate vary from one plate to the other.

First we will discuss a familiar equilibrium problem in this language. Consider

an Ising magnet in a small applied field h below its Curie temperature Tc. At a

coarse-grained level the system free energy is postulated to minimize50

F =
∫
dV
{
−1

2
mφ2 + 1

4
λφ4 − hφ

}
, (6.7)

where m = mo(Tc−T ) and φ, which is a real scalar field, represents an average of the

magnetization over a length scale large compared to the lattice and small compared

†It is interesting to note that the critical temperature determined using fixed strain rate, T ∗
D
, is

not the same as that determined at fixed stress, T ∗
σ . This is because the manifold of stable states

is different between the two cases, so that a stable solution at, e.g., fixed strain rate, need not be
stable at fixed stress. This difference is, however, largely academic in this case, since the system
may physically only have coexisting states at fixed stress .
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to the system size. Based on the principle that the state of the system is that which

minimizes F , we can characterize this system. In zero field φ chooses one of the values

φ± = ±(m/λ)1/2 which minimize F . For a small positive field h > 0 and T < Tc, two

local minima exist at φ±(h), but the state φ+(h) has the lower free energy and is the

selected state. As the field is reduced a first order transition occurs at h = 0, where

the free energies of the states φ±(h = 0) = φ± are identical.

Now we will discuss an alternative method, generalizable to non-equilibrium sys-

tems, for determining the behavior of the stable states of the system for T < Tc and

general h. We would like to be determine, as we did above by minimizing the free

energy, the transition field hc and the selection behavior of the system for h 6= 0.

Consider a finite-size one-dimensional system for the moment. Imagine that the or-

der parameter is specified to be φ+(h) at one end of the system and φ−(h) at the

opposite end, necessitating an interface, or a ‘kink’, somewhere in the system. We

will determine the coexistence field for this system by examining the behavior of this

interface. For a positive field the φ+(h) configuration costs less energy, so the inter-

face will be pushed over to the φ−(h) wall in order to minimize the total free energy;

while the converse will happen for a negative field. Finally, for zero applied field the

interface will lie in the middle of the system. This provides a simple numerical de-

termination of the coexistence field (h = 0) and selection behavior (φ+(h) for h > 0,

φ−(h) for h < 0). These arguments were made for a finite system; in an infinite

system we should find similar results, with the exception that coexistence would be

determined by translational invariance of the interface position, rather than location

at the center.

Now we apply this procedure to the nematic under shear flow. For a given applied

stress and a system with finite extent in the ŷ direction, we examine the behavior

of the interface which interpolates between the two configurations, Q+
αβ (σxy, T ) and

Q−
αβ (σxy, T ), which are the locally stable homogeneous states (fig. 6.3). We consider
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Figure 6.3: Stable interface at a presumed coexistence temperature. Q+
αβ refers to the

order of the high temperature state, andQ−
αβ refers to the order of the low temperature

state.

an applied boundary stress σxy which induces a velocity gradient ∂vx/∂y = D(y)

(see fig 5.1). Notice that, because the strain rate and the order parameter are re-

lated by the stress, they will vary together across the system. We will only consider

states which vary normal to the interface, which ignores interesting phenomena such

as capillary waves and instabilities on the interface. For fixed applied stress the ho-

mogeneous states are slightly more complicated to find than for fixed strain rate,

because we must analyze both the order parameter and fluid velocity equations of

motion. The stationary conditions now read (rewriting eqs. 4.63 and 4.65)

0 = κ[a]αγQγβ −Qαγκ
[a]
γβ + β1κ

[s]
αβ +

1

β2
H

[s]
αβ (6.8)

0 = ∇γ σαγ ; σαβ = σ
i[s]
αβ + σ

i[a]
αβ + σd

αβ − pδαβ (6.9)

where H [s]
xy is given in terms of Qαβ by

H
[s]
αβ = −AQαβ +BQαγQγβ − CQαβ TrQ

2 − δαβ
3
B TrQ2, (6.10)

and the various contributions to the stress tensor are given by eqs. (4.66-4.68). For

a uniform state the distortion tensor σd
αβ vanishes because it depends on gradients of

Qαβ . Furthermore, since σ
i[a]
αβ is the commutator of Qαβ and H

[s]
αβ (see eq. 4.67) it also
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Figure 6.4: State diagram for nematics under shear. Axes are dimensionless applied
stress s vs. dimensionless temperature τ . The shaded area is two state region,
the center dot locates the equilibrium IN transition, and the outer dot identifies
the critical point. For B = −1.2C, β1 = 0.9, and β3 = 0.1, the critical point is
(τ ,∗s∗) ≃ (0.08168, 0.003795).

vanishes for uniform states. Hence we need only consider σ
i[s]
αβ , given by eq. (4.66), to

find the following relation among the applied stress σxy, D, and Qαβ :

σxy =
D

2
β3 − β1H

[s]
xy . (6.11)

Thus we may eliminate D from eq. (6.8) (it appears in κ
[s]
αβ and κ

[a]
αβ) in favor of σxy,

and search for the stable roots Qαβ (σxy, T ) of eq. (6.8).

Thus we are able to obtain the stable steady states and the stress-temperature

state diagram (fig. 6.4). Before proceeding with the interface solution, we note two

interesting rheological consequences of the state diagram. First, we find that, for fixed

stress, the state with the larger value of the order parameter in the two state region

also has a larger strain rate than the stable state with weaker order. This implies

that the effective viscosity η ≡ σxy/∂yvx of the well ordered state is smaller than that
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of the weakly ordered state. Hence, as the system makes a discontinuous jump in

order somewhere in the two state region upon decreasing the temperature at fixed

stress, it also makes a jump in the strain rate. Now imagine varying the stress at a

fixed temperature between TIN and T ∗ (that is, moving vertically through figure 6.4).

Again, the system makes a jump somewhere within the two state region, accompanied

by a jump in the strain rate. Hence we see that, for a given temperature T , TIN < T <

T ∗, there will be a range of strain rates, corresponding to the jump mentioned above,

which are inaccessible to the system in the form of stable homogeneous states. We will

see that the system can nevertheless adopt these strain rates by ‘phase-separating’

into a mixture of the two stable states. This is analogous to a liquid-gas system phase

separating according to the lever rule.4

6.3.2 Periodic Boundary Conditions

An alternative approach to determining coexistence is to impose periodic boundary

conditions on the system and let it relax from arbitrary initial conditions. If there

is a coexistence temperature TIN(σxy), then the system should consistently relax to

the weakly ordered state for T > TIN(σxy), and to the strongly ordered state for

T < TIN(σxy). The exception to this is if the initial condition places the system in

the basin of attraction for the locally stable state which, in the language of equilibrium

systems, would be termed a metastable state. Another ‘experiment’ one can perform

is prepare the system in a mixture of the two homogeneous stationary states and

observe whether the evolution proceeds towards one state or the other. For example,

half of the system could be prepared in the state Q+
αβ and half in the state Q−

αβ , with

the two interfaces interpolating smoothly between the states.

We have performed exploratory calculations using the first method (random ini-

tial conditions), and found behavior consistent with the results of the fixed boundary
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method. That is, we are able to find behavior consistent with a coexistence tem-

perature TIN(σxy), as described above. However, we have not investigated this in

detail.

6.4 Results of Interface Method

The details involved in computing the stable interface are described in Appendix B.

We have used the implicit Crank-Nicholson method84 to find the stable interface

profile, introducing a fictitious dynamics to govern relaxation to the proper profile.

An important aspect of the method we have chosen is that, while it correctly finds the

stable steady states, the dynamics of the relaxation are fictitious because we slave

the velocity field dynamics to the order parameter by always imposing a uniform

stress tensor. This ensures that ∂tv(r) = 0 at all times during the relaxation. For

the majority of our computations we have chosen the parameters B/C = −1.2, β1 =

0.9, β3 = 0.1β2, and have used the approximation L1 = L2 = L. This choice of the

ratio β3/β2 follows from the correspondences β2 ≃ 4γ1/(9x
2) and β3 ≃ 2ν2 (eq. 4.76)

and typical experimental values for γ1 and ν2 (see tables 2.1 and 5.2). Experimentally,

L1 and L2 are found to be roughly the same.40,44 Again, we use dimensionless control

parameters,

τ ≡ a(T−T−)

C
, s ≡ σxy/C, (6.12)

and scale length and time scales to dimensionless units according to

t̄ ≡ tC

β2
, ȳ ≡ y

(
C

L1

)1/2

. (6.13)

The position of the interface is characterized by a ‘kink’ between the two stable con-

figurations of the order parameter. Since the order parameter has many components,

we will use the maximum of the distortion (i.e. Frank) free energy density as a scalar

indicator of the kink position. As an exercise, we first performed this method on the
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φ4 magnet and verified that we could determine the coexistence field and selection

behavior at temperatures below the Curie point.

Using this method for the nematic in shear flow we have found a coexistence line in

the applied-stress–temperature plane for system sizes (in dimensionless units) 64, 128,

and 256, with meshes containing, respectively, 80, 80, and 160 points. Time steps were

chosen in specific cases to efficiently find the stable states. For the larger systems,

on the order of 105 time steps were needed to achieve the stationary configuration.

Calculations were carried out on IBM RISC-6000 5400 and 320, and VAX DEC-

6410 machines, using code adapted from Numerical Recipes.84 Specific routines were

developed to facilitate inversion of large sparse matrices.

Our algorithm to find the coexistence line was to iteratively correct the temperat-

ure for a given stress until a temperature was found which corresponds to a coexistence

temperature, as discussed above. In weak shear flow, near the equilibrium IN trans-

ition, we found that the interface position was very sensitive to the temperature on

either side of the transition. That is, a slight increase (or decrease) of the temper-

ature from the (presumed) transition temperature would easily push the interface to

one side or the other. Conversely, the system was not so temperature-sensitive near

the non-equilibrium critical point, presumably because the two states are so similar;

hence the accuracy with which we could determine the coexistence temperature for

a given stress decreased as we neared the critical point. This technique is similar

to a method used by Krug, et al.,62 to find the coexistence line for the driven diffus-

ive lattice gas. Using typical numbers for low molecular weight mesogens, we have

found interface widths for small applied stress (i.e. near equilibrium) of a few 100Å,

in reasonable agreement with what is expected experimentally.
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Figure 6.5: Interface profiles for system size L=256 and reduced applied stresses of
0.0001, 0.0035, and 0.00377, for parameters B = −1.2C, β1 = 0.9, and β3 = 0.1. The
critical point is (τ ,∗s∗) ≃ (0.08168, 0.003795).

6.4.1 Critical Behavior

Figure 6.5 shows interface profiles for the system of size 256, at reduced applied

stresses of 0.0001, 0.0035, and 0.00377, which should be compared with the stress at

the critical point, (τ ∗, s∗) ≃ (0.08168, 0.003795). For small applied stress the interface

is relatively sharp, while as the stress is increased, approaching the critical point, the

interface broadens. This behavior is what we expect from an equilibrium system near

a critical point, for which the width of the interface between the two phases grows as

the critical point is approached, diverging like the correlation length. In equilibrium
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one expects the scaling law5,49

W ∼ ξ ∼ (Tc−T )−ν, (6.14)

where ξ is the correlation length and Tc the equilibrium critical temperature. Within

mean-field theory one expects the exponent ν = 1/2. We do not yet have an explicit

formulation for the correlation length, but if we suppose that it is indeed the only

large length scale in the problem, and that the same kind of scaling applies as in

equilibrium, then we expect a similar scaling law. Fig. 6.6 is a log-log plot of W

vs. (τ−τ ∗), and indicates scaling similar to an equilibrium mean-field theory, with

ν ≃ 0.51± 0.01. We have defined W as the width at half maximum in the Frank free

energy, and verified that our results are robust with respect to this choice.

A second scaling law we can investigate concerns the shape of the coexistence curve

in the vicinity of the critical point. Upon determining the coexistence temperature for

a given applied stress we have also determined the order parameter of the coexisting

phases, Q+
αβ and Q−

αβ . In the VdW system, the density difference between the two

states (which is the order parameter), scales as16

ρl − ρg ∼ (T−Tc)β, (6.15)

where ρl and ρg are the densities of the liquid and gas phases and, within mean-

field theory, β = 1/2. We must be careful in extending this type of scaling to the

nematic because of the multi-component order parameter, Qαβ . Such a relation only

characterizes the behavior of the particular mode in the system which has a diverging

correlation length at the transition. In equilibrium, within Landau mean-field theory,

this critical mode is that mode whose quadratic coefficient in the effective free energy

vanishes.4 In a non-equilibrium system without an effective free energy we may define

the critical mode as that mode whose fluctuations are long-lived at the critical point.

Generally, for the nematic, this mode will be a complicated linear combination of the
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Figure 6.6: logW vs. log(τ−τ ∗) for the L=256. system. The straight line indicates
the best fit, with an exponent ν ≃ .51± 0.01.

five independent degrees of freedom of Qαβ :

Q̂αβ =
5∑

i=1

ξi e
i
αβ , (6.16)

where Q̂αβ is the slow mode and {e1αβ} is a complete set of traceless-symmetric eigen-

tensors (see Appendix A for a description of our parametrization of Qαβ).

We may find this mode by examining the stability matrix Θij for fluctuations

away from the stable steady state, given by (eq. 5.12):

ξ̇i = −Θijξj +O(ξ2), (6.17)

where {ξi} are the amplitudes of the fluctuations of the independent degrees of free-

dom {eiαβ} of Qαβ . The matrix Θij is positive definite except at the critical point,
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where we find a single zero eigenvalue which corresponds to the slow mode. This

critical mode corresponds to a combination of stretching the two amplitudes S1 and

S2 and rotating the major director n̂ in the shear plane. For the B = −1.2C, β1 = 0.9,

and β3 = 0.1, this massless mode is given by

Q̂αβ = 0.402 e1αβ + 0.283 e2αβ + 0.871 e3αβ. (6.18)

The next step is to define how to measure the approach to the transition to extract

the divergence, i.e., the analog of (ρl−ρg)|T→Tc
along the coexistence line for the VdW

system. As a scalar measure of the vanishing of the critical mode at the critical point

we will use the magnitude of the projection of the order parameter discontinuity

Q+
αβ − Q−

αβ onto the soft mode, along the coexistence line. This projection is done

implicitly in, e.g., a Heisenberg magnet. In this case the magnetic field selects a

particular direction for the magnetization, and it is the magnitude of the projection

of the magnetization along the field whose behavior yields the exponent β.

The inner product for the set {eiαβ} is defined by taking the trace, so we may

expect to find the following scaling relation as the critical point is approached along

the coexistence line:

Tr
[
(Q+−Q−) · Q̂

]
∼ (τ ∗−τ)β . (6.19)

Figure 6.7 shows a log-log plot of the projected order parameter discontinuity vs. the

deviation from τ ∗. As with the exponent ν, we find behavior suggestive of classical

mean-field behavior, with β ≃ 0.51± 0.01.

Although classical mean-field behavior in a non-equilibrium system may be sur-

prising, when we consider the system in light of the structure we find at the critical

point it is not so surprising. In addition to the vanishing of the mass term of the

critical mode at the critical point, we find that the quadratic and cubic coefficients

of the contributions of the critical mode to the equations of motion vanish as well.
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Figure 6.7: log Tr
[
(Q+−Q−) · Q̂

]
vs. log (τ−τ ∗) for the L=256. system. The straight

line indicates the best fit, with an exponent β ≃ .51± 0.01.

Hence the mathematical structure is like a Landau theory for a scalar field at a crit-

ical point,16 or like a simple fold catastrophe in catastrophe theory,86 both of which

predict so-called mean-field behavior (i.e. the exponents ν = 1/2 and β = 1/2). It

is also not unexpected because we have explicitly omitted fluctuations (having not

included noise in the dynamics to allow the system to explore configuration space),

so we cannot expect to extract non-classical critical behavior from our analysis.

As a final comment on the singularities in the nematic under shear flow, we note

that we find a single critical mode. This suggests that the system may have Ising-like

critical behavior,5 although this must remain a suggestion for the present. Recall that

one of the important results of Onuki and Kawasaki’s (OK) treatment of the binary
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fluid is that shear flow makes the transition mean-field in character.7 In the binary

fluid system the effect of shear is purely advective; i.e., there is no order parameter

which couples to the flow, either directly (as in the IN transition) or indirectly (as

in the IL transition). To determine the universality class of the IN transition in

shear flow requires an analysis of the fluctuations beyond the Gaussian level. We

can conceive of two possibilities, although there are, of course, possibly more. The

critical strain rate D∗ sets a characteristic length scale lD, corresponding to the size of

that fluctuation which relaxes, in equilibrium, over the same time scale as τD = D−1.

The work of OK for a binary fluid shows that for larger length scales the system

is mean-field–like. If the critical strain rate is such that this lD is extremely large

(weak shear), then one might expect to observe not mean-field behavior, but critical

behavior, possibly Ising-like. Conversely, if lD is small (strong shear), we might expect

to observe mean-field behavior.

6.4.2 Coexistence Line and Phase Diagram

Figure 6.8 shows the phase diagram in the applied-stress vs. temperature plane, in-

cluding the coexistence line obtained from the analysis of the interface solutions.

This line interpolates smoothly between the equilibrium IN transition and the non-

equilibrium critical point. We expect that a physical system could exhibit ‘supercool-

ing’ (or ‘superheating’) whereby, for example, the high temperature state could be

fixed at T < TIN(σ) for short times until a nucleation process initiated a transition

to the well-ordered low temperature state. We also anticipate the analog of spinodal

decomposition for either a temperature quench or a step in applied stress which takes

the system completely across the two-state region. For a decrease in stress at fixed

temperature, we also expect phase separation into regions of different magnitude of

order and different stress, analogous to the phase separation of a fluid into a mixture

of liquid and gaseous states as the pressure is reduced at fixed temperature.
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Figure 6.8: Complete phase diagram in the reduced stress s vs. reduced temperature
(τ) phase diagram for B = −1.2C, β1 = 0.9, β3 = .1β2, and L1/C = L2/C = 104 Å.2

The broken line is the coexistence line; The shaded region is the two-state region
with two locally stable states; the solid lines mark the limits of stability for the
high and low temperature states. The non-equilibrium critical point is (τ ,∗s∗) ≈
(0.081675, 0.0037950).

We have now further established the correspondences between the IN transition

undergoing shear flow and equilibrium systems such as a critical fluid. We have seen

that there is a coexistence line ending in a critical endpoint, and that there are mean-

field–like divergences at this endpoint. Table 6.1 shows a more complete comparison

of the two systems. In the next chapter we will examine the critical point in more

detail when we discuss light scattering experiments. There we will see the analog of

critical opalescence for the nematic under shear flow.
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Table 6.1: Analogies between the van der Waals fluid and nematics in shear flow.

Van der Waals Fluid Nematic in Shear

Density ρ
Order parameter Qαβ or
Strain rate D

Temperature T Temperature T

Pressure p Stress σxy

Coexistence line in p−T plane Coexistence line in σxy−T plane

Phase separation into liquid and
gas states on the coexistence line

Phase separation into regions with
different strain rates.

Equilibrium critical point Non-equilibrium critical point

(ρl−ρg) ∼ (T−Tc)β Tr
[
(Q+−Q−) · Q̂

]
∼ (T−Tc)β

Ising-like critical behavior
Shear flow probably alters critical
behavior (as with Onuki and Kawasaki)

Critical opalescence
Anomalous light scattering for

kx → 0 for critical mode Q̂αβ

90



Chapter 7

Fluctuations in Nematics Under

Shear Flow

The discussion thus far has centered around how to determine the analog of a mean-

field phase diagram for nematics under shear flow. In this chapter we will discuss

some of the consequence of the fluctuations about these mean-field states. We will

focus on light scattering experiments, which provide one of the primary probes of

fluctuations in nematics. Light is scattered by fluctuations in the dielectric tensor,

which are in turn related to the order parameter tensor, and hence light scattering

experiments can tell us about the nature of the order parameter fluctuations. We

will describe a general program for analyzing Gaussian fluctuations about the stable

stationary states of the system, and discuss in detail two regions of strain rates: (1)

small strain rates, to see the perturbative effect on the equilibrium fluctuations; and

(2) strain rates near the critical strain rate, where we will find anomalous scattering

similar to critical opalescence in a fluid. We will see effects similar to those discussed

in, for example, Onuki and Kawasaki’s work on critical fluids in shear flow,7 where the

highly anisotropic correlations reflect the tendency of shear flow to suppress certain

fluctuations. We must keep in mind, however, that while anomalous scattering occurs

at all strain rates in the binary fluid, in the nematic under shear flow it only occurs
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near the specific critical strain rate; this is because a critical point occurs at all strain

rates in the binary fluid, while it occurs at a single strain rate in the nematic.

Let us first discuss an important length scale in the problem. Consider a fluctu-

ation of spatial extent L, with corresponding wave number scale k ∼ 2π/L. In a flow

field there are two stresses which act to suppress this fluctuation: (1) elastic stresses

associated with the deformation of the order parameter (we consider the one-constant

approximation),

σelastic ∼ L1∇2Qαβ ∼ L1 k
2Qαβ , (7.1)

and (2) viscous stresses due to the flow gradient trying to advect the fluctuation,

σviscous ∼ β2 (∂yvx) ∼ β2D, (7.2)

where β2 is a viscosity and D the strain rate. (these are roughly the terms in the

order parameter equation of motion, eq. 4.63.) These processes are of a comparable

magnitude at a characteristic wave number,

kD =

(
Dβ2
L1

)1/2

. (7.3)

Hence we expect to find qualitatively different behavior depending on the wave num-

ber of the fluctuation. For fluctuations with k > kD the elastic restoring forces should

dominate and correlations between fluctuations should essentially retain their equi-

librium form. However, for fluctuations with k < kD, viscous forces dominate, and

we expect to find behavior which reflects the symmetries and advective effects of the

flow.

7.1 Elastic Light Scattering From Nematics

Elastic light scattering from a uniaxial nematic state has been discussed extensively

by many workers.43,44,88 However, since planar shear has a biaxial symmetry, we must
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discuss scattering from a biaxial state. Using the parametrization of Qαβ in terms of

n̂, m̂, S1, and S2 (described in eq. 2.3), we expand an arbitrary fluctuation δQαβ(r)

in terms of a basis of tensors {eiαβ , i = 1, . . . , 5} (see Appendix A) representing

independent fluctuations, obtaining

δQαβ(r) =
5∑

i=1

ξi(r) e
i
αβ . (7.4)

The local value for the dielectric tensor for the anisotropic fluid is, generally, given

by∗

ǫαβ(r) = ǭ δαβ +N Qαβ(r) + · · · . (7.5)

The omitted terms refer to other tensorial quantities which may, in principle, af-

fect the dielectric properties, such as temperature gradients (∂αT ∂βT ) or the fluid

stress tensor (σαβ). We will assume that the contribution from the order parameter

dominates that from any other source. Noting that ǭ is a uniform scalar, we see

that the fluctuations of the k 6= 0 Fourier components of ǫαβ are proportional to the

fluctuations of the order parameter, according to

〈δǫαβ(k) δǫλρ(−k)〉 = N 2 〈δQαβ(k) δQλρ(−k)〉. (7.6)

The overall factor N may be determined experimentally.

Now, the differential cross-section per solid angle for elastic light scattering at

scattering wave vector k is related to the fluctuations in the dielectric tensor of the

fluid by90

dσ

dΩ
=

ω4

16π2c4
〈δǫαβ(k)δǫλρ(−k)〉 p̂α p̂′β p̂λ p̂′ρ, (7.7)

where p̂ and p̂′ are the polarization vectors of the incident and scattered light and

ω is the frequency of the light. The angle brackets denote an appropriate average

∗We remark that for a biaxial state the tensor Qαβ has two scalar invariants for a biaxial state,
and may therefore, in the proper basis, be represented as the sum of two orthogonal tensors, as in
eq. (2.3). There may, in general, be different normalizationsN and N ′ for the separate contributions
of each of these tensors to ǫαβ. We shall assume that N = N ′ and note that this assumption is, in
principle, experimentally testable.
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over the states of the system. In an equilibrium system this is an ensemble average

with a Boltzmann weight for each state, or, equivalently, a time average. For our

non-equilibrium systems we will define this to be an average over the noise and initial

conditions. Naturally, results will depend on the choice of noise, for this choice reflects

the freedom with which the system may explore various configurations.

Using eqs. (7.4), (7.6), and (7.7), it is straightforward to calculate the scattering

cross-section in terms of the correlations 〈ξi(k) ξj(−k)〉. While the general expression

is quite cumbersome, we will reproduce a few configurations here).

(i) p̂ ⊥ ẑ, p̂′⊥ ẑ; p̂ · n̂ = cos θ, p̂′ · n̂ = cos θ′—Polarizations in the shear plane (see

fig. 7.1):

dσ

dΩ
∼

{
1
6
〈|ξ1(k)|2〉 (2cos θ cos θ′ − sin θ sin θ′)2 + 1

2
〈|ξ2(k)|2〉 sin2θ sin2θ′

+1
2
〈|ξ3(k)|2〉 sin2(θ + θ′) + 〈ξ2(k) ξ3(−k)〉 sin (θ + θ′) sin θ sin θ′

+ 1√
3
〈ξ1(k) ξ3(−k)〉 sin (θ + θ′)(2cos θ cos θ′ − sin θ sin θ′) (7.8)

+ 1√
3
〈ξ1(k) ξ2(−k)〉 sin θ sin θ′ (2cos θ cos θ′ − sin θ sin θ′)

}
.

(ii) p̂ ⊥ m̂, p̂′⊥ m̂; p̂ · n̂ = cosφ, p̂′ · n̂ = cos φ′—Polarizations in the z-n plane:

dσ

dΩ
∼

{
1
6
〈|ξ1(k)|2〉 (2cos θ cos θ′ − sin θ sin θ′)2 + 1

2
〈|ξ2(k)|2〉 sin2θ sin2θ′

+1
2
〈|ξ4(k)|2〉 sin2(θ + θ′)− 〈ξ2(k) ξ4(−k)〉 sin (θ + θ′) sin θ sin θ′

+ 1√
3
〈ξ1(k) ξ4(−k)〉 sin (θ + θ′)(2cos θ cos θ′ − sin θ sin θ′) (7.9)

− 1√
3
〈ξ1(k) ξ2(−k)〉 sin θ sin θ′ (2cos θ cos θ′ − sin θ sin θ′)

}
.

(iii) p̂ ⊥ n̂, p̂′⊥ n̂; p̂ · m̂ = cosϕ, p̂′ · m̂ = cosϕ′—Polarizations normal to the dir-

ector :

dσ

dΩ
∼

{
1
6
〈|ξ1(k)|2〉 cos2 (ϕ− ϕ′) + 1

2
〈|ξ2(k)|2〉 cos2 (ϕ+ ϕ′)
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Figure 7.1: Geometry for measuring critical mode via light scattering near the critical
point. The polarization vectors p̂ and p̂′ lie in the shear plane, and the broken arrows
denote the velocity field.

+1
2
〈|ξ5(k)|2〉 sin2(ϕ+ ϕ′)− 1√

3
〈ξ1(k) ξ2(−k)〉 cos(ϕ− ϕ′) cos(ϕ+ ϕ′)

− 1√
3
〈ξ1(k) ξ5(−k)〉 sin (ϕ+ ϕ′) cos(ϕ− ϕ′) (7.10)

+〈ξ2(k) ξ5(−k)〉 sin (ϕ+ ϕ′) cos(ϕ+ ϕ′)

}
.

(iv) p̂ = n̂, p̂′⊥ n̂; p̂′ · m̂ = cosϕ—Polarizations normal to and parallel to n:

dσ

dΩ
∼
{

1
2
〈|ξ3(k)|2〉 cos2 ϕ+ 1

2
〈|ξ4(k)|2〉 sin2 ϕ+ 1

2
〈ξ3(k) ξ4(−k)〉 sin 2ϕ

}
. (7.11)
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7.2 Steady State Correlations in Nematics Under

Shear Flow

The next step is to evaluate the non-equilibrium correlations of the fluctuations,

〈ξi(k) ξj(−k)〉. To obtain these we begin with the equations of motion for the order

parameter and the fluid velocity, eqs. (4.63-4.65). As we discussed in Chapter 6, while

one may consider non-equilibrium states of the system at fixed imposed strain rate D

or fixed applied stress σαβ , it is only under conditions of equal stress that two states

may coexist. For the present discussion, however, we shall examine the critical point

at imposed strain rate D. This makes the problem calculationally more tractable

and, we believe, captures the essence of the physics.

As before, we consider plane shear flow v(r) = Dy x̂. The stable steady states

for non-zero shear have a director n̂ in the shear plane (canted at an angle with

respect to the flow direction) and a sub-director m̂ also in the shear plane, reflecting

the biaxial symmetry of shear flow (see fig. 4.2). The equations of motion for the

fluctuation δQαβ are found by expanding eqs. (4.63) about the steady state value for

Qαβ , which leads to a set of non-linear evolution equations for δQαβ . As a first step we

will truncate these at linear order, hence treating the system at the non-equilibrium

equivalent of the Gaussian level. We next introduce noise into these equations to

allow the system to explore phase space. We may consider this noise to describe

the interactions of the semi-macroscopic degrees of freedom (Qαβ) with the hitherto

neglected microscopic (fast) degrees of freedom. In principle one must work with

the entire system of coupled equations of motion for the fluid velocity and order

parameter, and treat both equations of motion as stochastic equations.7 However, for

the present discussion we will treat the velocity field as immutable, and only consider

the dynamics of the order parameter.

After expanding δQαβ according to eq. (7.4), projecting eqs. (4.63) onto the set
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{eiαβ}, and linearizing, we obtain the following equations of motion for the amplitudes

{ξi}:

(∂t +Dy∂x) ξi(r, t) = − 1

β2
Θij(∇) ξj(r, t) + ηi(r, t), (i = 1, . . . , 5) (7.12)

where

Θij(∇) = −L1∇2δij +Mij . (7.13)

Notice that the Frank matrix , −L1∇2δij, is isotropic in k-space. This is a consequence

of the one-constant approximation (i.e. L2 = 0; see the discussion in Section 2.4).

The mass matrix Mij has the block structure

M =

(
M(123) 0

0 M(45)

)
, (7.14)

where

M(123) =




A +BS1

+1
2
C(9S2

1 + S2
2)

S2

√
3 (CS1 − 1

3
B) −

√
3 β2D

S2

√
3 (CS1 − 1

3
B)

A− BS1

+3
2
C(S2

1 + S2
2)

β2D

√
3 β2D −β2D

A+ 1
2
B(S1 + S2)

+1
2
C(3S2

1 + S2
2)




(7.15)

and

M(45) =




A+ 1
2
B(S1 − S2) +

1
2
C(3S2

1 + S2
2) −β2D

β2D A− BS1 +
1
2
C(3S2

1 + S2
2)




. (7.16)
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In this matrix the amplitudes S1 and S2 characterize the uniform stable steady

state and depend on the Landau parameters A,B, and C, the transport coefficients

β1 and β2, and the strain rate D (see eqs. 5.4-5.6).

Langevin noise sources ηi(r, t) have been included in eq. (7.12) with a strength

chosen to obey the fluctuation-dissipation theorem (FDT),82

〈ηi(r, t) ηj(r′, t′)〉 = 2 β2 δij δ(t− t′) δ(r− r′). (7.17)

This choice of noise, by definition, ensures that in the absence of flow the stationary

distribution function for the system will be given by the Boltzmann distribution.82

This assumption, that the noise for a driven system obeys the same distribution as

that for the same system relaxing to equilibrium, is non-trivial. However, there are

examples where predictions based on the validity of the FDT for non-equilibrium

steady states have been verified experimentally; an example is the series of light

scattering experiments by Sengers and Law, for a fluid driven out of equilibrium by

a steady state temperature gradient.83

First we examine the familiar uniaxial case in the absence of shear. In this case

S2 = 0 and Qαβ = (3S1/2)(nαnβ−δαβ). The equilibrium conditions for the amplitude

S1 are S1 = 0 (T > TIN) and S1 = So(T ) (T < TIN , see Table 2.1), for which M

reduces to the forms

Mij= Aδij, T > TIN

M11= −2A− 1
2
BSo, M22 =M55 = −3

2
BSo T < TIN





(7.18)

with all other elements zero. The temperature-dependence of these matrix elements

enters through the dependence of A and So on T . For T < TIN the elements M33 =

M44 = 0, and we recover the Goldstone modes of director fluctuations, corresponding

to e3αβ and e4αβ (see Appendix A); while for T > TIN we find the same value for all

modes Mii. Next we observe that shear couples the modes ξi by introducing off-

diagonal terms into Mij . Note also that Mij is not symmetric for non-zero shear,
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which is a restatement of the fact that shear flow, unlike, e.g., elongational flow, is

non-potential. Furthermore, fluctuations in the shear plane (ξ1, ξ2, ξ3) are decoupled

from fluctuations out of the shear plane (ξ4, ξ5) at the Gaussian level.

Our goal is to calculate steady state correlations among the set {ξi}. Our calcu-

lation follows along the same line as the works of Onuki and Kawasaki7, and sub-

sequently Cates and Milner,17 who investigated the effect of shear flow on, respectively,

binary fluids and the isotropic-lamellar transition. The starting point is the statement

that stationary correlations satisfy

∂t 〈ξi(k, t)ξj(−k, t)〉 ≡ ∂t χij(k, t) = 0 (7.19)

where the angle brackets now refer to an average over the noise distribution and initial

conditions. We will define χij(k) to be the stationary value of χij(k, t). From the

stochastic equations of motion for ξi(r, t) and the properties of the noise distribution

one may obtain the following Fokker-Planck equation for the probability distribution

function P
(
{ξi(r)}; t

)
,82

∂t P =
∫
d3r

δ

δξi(r)

{
β−1
2

δ

δξi(r)
−
[
Dy δij ∂x +Θij(∇)

]
ξj(r)

}
P. (7.20)

The time rate-of-change of averaged quantities is given by

∂t 〈O〉 =
∫
DξO ∂t P({ξi}, t), (7.21)

assuming that P is properly normalized. Here the measure Dξ refers to a functional

integral over the independent degrees of freedom, namely the amplitudes {ξi(r)}. We

insert the Fokker-Planck equation into eq. (7.21) and, enforcing the stationary condi-

tion (7.19), obtain the following differential equation which describes the stationary

correlations χij(k):

Dkx
∂

∂ky
χij(k)−

(
Θik(k)χkj(k) + χik(k) Θ

T

kj(k)
)
= −2 β2 δij . (7.22)

Here ΘT
kj denotes the transpose of Θkj.
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This equation may be integrated to obtain χij(k):

χij(k) =
1

β2

∫ ∞

0
dt exp

{
−L1

β2

∫ t

0
dsf(k, Dkxs/2)

}

×
[
exp

{
−Mt

2β2

}]

ik

[
exp

{
−MTt

2β2

}]

kj
, (7.23)

where f(k, p) ≡ k2x + (ky + p)2 + k2z . In obtaining this form we have used the fact

that Θij(k) Θjk(k
′) = Θij(k

′) Θjk(k) by virtue of the one-constant approximation to

the Frank free energy (see eq. 7.13).

We next assume that, in order to simplify the expression for χij(k), Mij is

diagonalizable† by a transformation matrix Uij . In this case, MT
ij is also diagonal-

izable, with the same set of eigenvalues, and we have:‡

[
UMU−1

]

ij
=
[(
UT
)−1

MTUT

]

ij
= m(i)δij. (7.24)

We will refer to the quantities {mi} as the masses of the fluctuations. We introduce

the identity matrix into eq. (7.23) via the realization δij = (UU−1)ij. Performing the

s integration in the exponential, we find the following:

[
Uχ(k)UT

]
kl
=
[
UUT

]
kl
J(kl)(k) , (7.25)

where

Jkl(k) =
1

β2

∫ ∞

0
dt exp

{
−t(mk +ml + 2L1k

2)

2β2
− D2t2

2

kxky
k2

D

− D3t3

12

k2x
k2

D

}
(7.26)

and kD is the natural wave vector scale set by the shear flow (eq. 7.3).

From the structure of Jkl(k) we may immediately note that strong shear will

exponentially damp the steady state correlations, except for wave vectors for which

†We remark that, since Mij is a real non-symmetric matrix (see eqs. 7.14-7.15), a transformation
matrix Uij may, in principle, not exist. We shall assume that Mij is diagonalizable, and note that
a non-diagonalizable Mij may happen only for rare accidental degeneracies.

‡We use the notation that indices enclosed in parentheses (as in m(i)δij) are not to be summed
over.
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Figure 7.2: Convection of fluctuations in shear flow. The left hand figure shows a
fluctuation with |kx| ≫ |ky|. Such a fluctuation is quickly suppressed by the flow. The
figure on the right show a fluctuation with |kx| ≪ |ky|. In this case the fluctuation is
more robust under flow.

kx=0. In this special case fluctuations are directed parallel to the streamlines of the

flow; heuristically we do not expect these fluctuations to be destroyed, via advection,

in shear flow. On the other hand, fluctuations with wave vectors which intersect

streamlines (i.e. kx 6= 0) will have their correlations greatly reduced (see Fig. 7.2).

This is a general feature of fluctuations in shear flow, and is also seen in systems such

as binary fluids,7 the isotropic-lamellar transition,17 and the nematic to smectic-A

transition.55

7.3 Scattering Near the Equilibrium Transition

Zero Strain Rate—We first examine the case of zero strain rate. In this case Mij is

already diagonal (see eqs. 7.18) so that Uij = δij , and eq. (7.26) may be integrated

exactly, yielding

χij(k)

∣∣∣∣
D=0

=
2

mi +mj + 2L1k2
. (7.27)
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This is the familiar Ornstein-Zernicke form for scattering from a uniaxial nematic.

Of particular interest are the correlations χ33 = χ44 = 1/(L1k
2) for T < TIN , which

represent anomalous scattering due to director fluctuations. These may be most

efficiently probed by considering, for example, polarizations p̂ = n̂ and p̂′⊥ n̂ whence,

from eqs. (A.3) and (7.7),

dσ

dΩ

∣∣∣∣T<TIN
D=0

∼ 〈|ξ3(k)|2〉 ∼ 1

L1k2
. (7.28)

For T > TIN all masses are identical (eq. 7.18), and we expect isotropic scattering of

the form dσ/dΩ ∼ (a(T−T−) + L1k
2) ,−1 regardless of polarization.

Weak Shear Flow—Next we find the leading corrections to eq. (7.27) for small shear.

For sufficiently small shear and wave number we may approximate the integral in

eq. (7.26) by

Jkl(k) ≃ 2

mk +ml + 2L1k2

[
1− 4L2

1 |kx| |ky| k2D
(mk +ml + 2L1k2)2

− 4L3
1 k

2
x k

4
D

(mk +ml + 2L1k2)3
+ · · ·

]
, (7.29)

for
|kx| |ky|
k2

D

≪ k4

k4
D

, and
|kx|
kD

≪ k3

k3
D

. (7.30)

To find χij(k) we must diagonalize the mass matrix Mij , and then use the resulting

transformation matrix Uij to express the correlations χij(k) as a sum of the contri-

butions of the correlations of the eigenmodes Jkl(k), using eq. (7.25). We will carry

out this program in the limit of small strain rates D.

For T < TIN(D) the stationary conditions are given by eqs. (5.14): S1 = So(T ) +

rD, with S2 ∼ D. The equilibrium value of the order parameter So(T ) is given in

Table 2.1. With this we find

M = M(0) +M(1) +O(D2); (7.31)
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M(0) ≃




−2A− 1
2
BSo 0 0 0 0

0 −3
2
BSo 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 −3

2
BSo



, (7.32)

M(1) ≃
(
M(1A) 0

0 M(1B)

)
, (7.33)

(7.34)

where

M(1A) = +




(B + 9CSo) rD
√

3 (CSo − 1
3
B)S2 −√

3β2D√
3 (CSo − 1

3
B)S2 −(B − 3CSo) rD β2D

√
3β2D −β2D (27AC

2
)1/2rD


 , (7.35)

M(1B) =

(
(3AC

2
)1/2r D −β2D
β2D −(B − 3CSo) rD

)
. (7.36)

Working to lowest order in D, we may diagonalize Mij and find its eigenvectors,

construct Uij, and hence obtain the weak shear limit of, for example, the correlations

within the set {ξ4, ξ5}:

χ44(k) = J44(k) , (7.37)

χ45(k) = − 4β2D

3BSo

[
J44(k) + J45(k) + J55(k)

]
, (7.38)

χ54(k) = χ45(k) , (7.39)

χ55(k) = J55(k) , (7.40)

(7.41)

where Jkl(k) are as given in eq. (7.29), with

m4 =
(3AC

2

)1/2
rD (7.42)

m5 = −3
2
BSo − (B − 3CSo) rD. (7.43)

Using polarized light scattering one can choose suitable polarizations to isolate

these modes. The most interesting point here is the shift in the mass of the Goldstone
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mode χ44(k); it has acquired a mass proportional to the strain rate D (eq. 7.42). Note

also that χ45(k)
(
= χ54(k)

)
is now non-zero, to lowest order in the strain rate, and

as we see from eqs. (7.29) and (7.38), is approximately a sum of three individual

Ornstein-Zernicke forms, (mi + mj + 2L1 k
2)−1. Performing the same calculations

for the 3×3 sector yields qualitatively similar behavior, with a shift in the mass of the

Goldstone mode χ33(k) proportional to the strain rate, and shear-induced scattering

in the off-diagonal modes χij(k) , i 6= j.

For T ≥ TIN(D) we can perform a similar calculation. In this case S1 = S2 ∼ D

(see eqs. 5.13) and the mass matrix becomes

M = A I+M(1), (7.44)

where I is the identity matrix and

M(1) =




BS1
1√
3
BS1 −√

3 β2D 0 0
1√
3
BS1 −BS1 β2D 0 0√

3β2D −β2D 0 0 0
0 0 0 BS1 β2D
0 0 0 β2D −BS1



. (7.45)

The effect of shear is, as with temperatures T < TIN(D), to give the diagonal modes

an additional mass proportional to the strain rate, and induce correlations in the

off-diagonal elements of χij .

7.4 Scattering Near the Non-Equilibrium Critical

Point

The eigenvalues of Mij govern the time-dependence of the modes of δQαβ . For a

stable steady state the matrix Mij is positive definite, while an unstable state has

one or more eigenvalues with negative real part. In the absence of flow we have seen

the zero-modes corresponding to the Goldstone modes of director fluctuations. In the
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presence of shear flow these Goldstone modes no longer exist, and all eigenvalues have

a positive real part. The exception to this situation is at the critical point, where

there is a single zero-mode, corresponding to the critical mode (recall the discussion of

Chapter 6). This mode is a combination of the modes {e1αβ, e2αβ , e3αβ}, and corresponds

to simultaneously ‘stretching’ the order (changing both S1 and S2) and rotating the

director n̂ in the shear plane, as can be seen from eqs. (A.3) and (A.4). We can also

understand this physically. In the presence of shear the director lies in the shear plane

at a particular angle. Consider a departure from this stationary alignment. A tilt of

the rods within the shear plane will quickly be suppressed by the flow, which exerts a

torque pulling it back. However, a tilt out of the shear plane will not be so strongly

affected, so we expect more excursions out of the plane than in the plane. Hence

the rod orientation distribution is biaxial. The non-equilibrium transition occurs

between a state governed primarily by the flow (rather weakly ordered, biaxial) and

a state governed primarily by the thermodynamics of the IN transition (strongly

ordered, more uniaxial). These states differ by their amplitudes S1 and S2, and by

the alignment of n̂ in the plane. At the critical point these states become identical,

and the soft mode is thus a combination of the two amplitudes and the rotation of n̂

in the plane.

One may isolate the modes contributing to the critical mode by considering, for

example, polarizations in the shear plane, for which, as we see from eqs. (A.3) and

(7.8), fluctuations involving the amplitudes ξ4 and ξ5 do not contribute (see fig. 7.1).

Near the critical point we may identify two distinct scattering behaviors, at large or

small wave number limits compared to the characteristic wave number k∗
D
.

Large Wave Vector Limit—For sufficiently small ratios kx/k and for k ≫ kD we may

use eq. (7.29) to approximate the behavior of the correlations, Jkl(k). The general

form of a particular element of the susceptibility matrix is a sum over the correlations
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of the eigenmodes of the fluctuations, given by

χij(k) = Γij, kl Jkl(k), (7.46)

where Γij, kl is prescribed by eq. (7.25). As the critical point is approached this sum

will be dominated at long wavelengths by the term

Γij 00 J00(k) ∼
1

2m0 + 2L1 k2
(7.47)

for all correlations χij (i, j = 1, 3), where m0 is the (vanishing) mass of the critical

mode. Hence we expect that in this wavelength regime, as the critical point is ap-

proached the system should behave qualitatively similarly to a critical fluid approach-

ing its critical point, with the exception that observation of diverging fluctuations is

now polarization dependent . For example, if we choose p̂||m̂ and p̂′||ẑ, we find from

eq. (7.10) that dσ/dΩ ∼ 〈|ξ5(k)|2〉, which is not divergent at the critical point. Note

also from eq. (7.29) that for k ≫ kD the scattering is isotropic in k-space. This is

the small wavelength limit, and matches the intuitive picture, proposed by Onuki

and Kawasaki7, that smaller fluctuations decay via thermodynamic relaxation before

shear flow can act to suppress them. (Recall that within the one-constant approx-

imation, equilibrium scattering properties are isotropic in k-space, as discussed in

Chapter 3).

Large Shear and Small Wave Vector— In the limit of large strain rates and small

scattering wave numbers, we may compute the following corrections to Jkl(k):

Jkl(k) =
(4/9)1/3

L1(kx k2D)
2/3

[
Γ(1

3
)− Γ(2

3
)
(
3

2

)1/3 (mk +ml + 2L1k
2)

L1(kx k2D)
2/3

− (18)1/3
ky

(kx k2D)
1/3

+ · · ·
]
, (7.48)

for
|kx|
kD

≫ k3

k3
D

,
|ky|3
k3

D

≪ 4
9

|kx|
kD

. (7.49)
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The correlations in this regime are strongly suppressed by the flow (χij(k) ∼ D−2/3),

are largely independent of the incident and scattering polarizations, and are strongly

anisotropic. For a given critical strain rate the correlations diverge in the kx → 0 limit,

which corresponds to fluctuations aligned with the flow, which are less susceptible to

flow deformation (see fig. 7.2).

7.5 Discussion

To summarize, we find the following behavior from an analysis of the Gaussian cor-

relations at the critical point: (1) polarization dependent divergent fluctuations, (2)

anisotropic correlations at long wavelengths, and (3) isotropic scattering at small

wavelengths. Figure 7.3 shows a plot of χ11 at the critical point, which exhibits the

anisotropy at small wave vectors which gives way to an isotropic profile at large wave

vectors.

We have shown that the effects of shear flow on the IN transition can be very

dramatic near the critical point, inducing a variant of critical opalescence. The spa-

tial anisotropy of the correlations reflects the role of shear flow in selecting certain

fluctuations to destroy, a general feature that we saw is important for the binary

fluid and isotropic-lamellar transitions. The polarization-dependence of the anomal-

ous scattering, which we may refer to as an internal anisotropy, is a new feature not

seen in the binary fluid or IL transitions, which have fewer degrees of freedom. This

internal anisotropy follows directly from the additional role of shear flow, peculiar to

the nematic system, as an ordering field which acts on particular degrees freedom

within the five-dimensional order parameter space. This ordering field imposes bi-

axial nematic order on all phases of the nematic and, at a sufficiently strong fields,

induces a continuous transition between configurations of the order parameter dic-

tated by this biaxial symmetry. By the proper choice of polarization configurations,
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Figure 7.3: Scattering intensity at the critical point for the mode χ11, for parameters
B = −1.2C, and β1 = 0.9. Wave vectors are plotted in dimensionless units, k̄ =
k ξ(τ ∗) τ ∗1/2, where ξ2(T ) = L/a(T−T−) is the equilibrium correlation length.

108



one may selectively probe fluctuations which will either exhibit divergences at the

critical point, or remain smooth through the critical point.

Another difference between the behaviors of the nematic in shear and, e.g., the

binary fluid, is the observability of these effects. In principle, one may choose any

strain rate desired to observe the fluctuations in the critical fluid, and therefore probe

different wavevector regimes. In contrast, for a given nematic there is a single material

dependent critical strain rate at which one may observe the divergent fluctuations.

Hence, we may expect to find some materials for which the observable range of wave

numbers lies in the isotropic limit; that is, the critical wave number for these materials

corresponds to length scales much larger than optical length scales. Conversely, other

materials may have a critical wave number at smaller length scales, so that light

scattering probes may detect the anisotropy due to shear.

To examine this final point we will obtain a different expression for the critical

wave number. The characteristic wave number at the critical point is

k∗
D
=

(
D∗β2
L1

) 1/2

, (7.50)

where D∗ is the critical strain rate, β2 is a viscosity, and L1 characterizes the elastic

energy of deformation of the nematic state. If we recall that the dimensionless strain

rate δ and dimensionless temperature τ are given by

δ =
Dβ2
C

, τ =
A

C
, (7.51)

we see that the characteristic wave number at the critical point is determined by

k∗
D
=

1

ξ(T ∗)

(
δ∗

τ ∗

) 1/2

, (7.52)

where ξ(T ∗) = (L1/a(T−T−))1/2 is the typical equilibrium correlation length associ-

ated with the mesogens at the non-equilibrium critical temperature (see the discussion

in Section 2.4). The critical parameters τ ∗ and δ∗ are functions of two paramet-

ers: the ratio B/C, which is a measure of the weakness of the first order transition
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(∆S1 = −2B/9C; see table 2.1), and the dimensionless parameter β1, which is a ratio

of rotational viscosities and is approximately material-independent. Hence we may

roughly say that the characteristic wave number at the critical point depends on the

weakness of the equilibrium first order transition, and on the equilibrium correlation

length at temperatures near the critical temperature.

For the parameters we have chosen, which are representative of low molecular

weight systems with ∆S1 ∼ 0.3, we have found a ratio δ∗/τ ∗ ∼ 0.1 (see fig. 5.4). Using

the typical experimental values44 ξ(T ∗) ∼ 150Å, where we take (T ∗−T−) ∼ 1.0K,

we find k∗
D

∼ 107m−1. Typical scattering experiments have optical wavenumbers

k = 2ko sin(θ/2), where ko ∼ 107m−1 and θ is the scattering angle. Hence we expect

thermotropic materials to have critical wave numbers in the observable range, so one

may expect to see the crossover from anisotropic critical scattering at long wavelengths

to isotropic scattering at small wavelengths.
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Chapter 8

Concluding Remarks

8.1 Summary

In our discussion of nematics under shear we have seen many close analogies with

equilibrium systems, such as the van der Waals fluid, and similarities with other fluids

under shear flow, paying particular attention to Onuki and Kawasaki’s treatment of

the binary fluid under shear flow. We have made several approximations and left out

potentially interesting effects in the name of reducing the problem to a tractable one.

I will finish this work by reviewing some of these approximations and omissions, and

propose possible directions for further study.

In all of our discussions we have assumed smooth behavior as the strain rate is

increased. That is, we have not allowed for transitions to other qualitatively different

states, of which one can envision many. There are possibilities of dynamic instabilities

to non-stationary steady states, the so-called tumbling states. Such transitions have

been observed in some low molecular weight systems at strain rates above a critical

strain rate.65 There is also the interesting possibility of a transition to a tumbling state

as the temperature is lowered. If we recall the alignment condition (eq. 4.82),

2 β1 cos 2θ = 3S1 + S2. (8.1)
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we see that for sufficiently large order, S1 and S2, this condition cannot be satisfied,

and one does not expect to find a stationary steady state. This behavior has been seen

by Gäwiller in measurements of the temperature dependence of the Leslie coefficients.91

There are also instabilities associated with shear flow. One example is Taylor-

Couette instability92, which occurs for simple fluids in Couette flow. It would be

interesting to investigate how this instability is affected by the stresses induced on

the fluid by the order parameter. Another shear instability is associated with the

instability of layers sliding past each other, as has been discussed for smectics under

shear.93 This could have an effect on our interface calculation, where we allowed only

those spatial variations normal to the direction of flow. Since our equations are highly

non-linear, it is conceivable that capillary waves could be excited on the interface

by the shear flow and quantitatively alter our coexistence results, by shifting the

coexistence line, or qualitatively alter them, by eliminating the coexistence line.

In our discussion of the fluctuations near the critical point we have made at least

three crucial assumptions. (1) We have introduced noise which obeys the fluctuation

dissipation theorem. This is equivalent to the statement that non-equilibrium micro-

scopic fluctuations have the same probability distribution that they do in equilibrium.

This is a fundamental question about non-equilibrium systems, and is presently a very

active and controversial subject of research.23 (2) We have ignored fluid fluctuations

at the critical point and concentrated solely on the order parameter equation of mo-

tion. This can be justified if the time scales associated with the decay of velocity

fluctuations are much faster than those associated with the decay of order parameter

fluctuations. In that case the fluid flow acts like noise and may be formally projected

out42 and included in the additive Gaussian noise, if memory effects may be neg-

lected. While this may be true precisely at the critical point, where the critical mode

is infinitely long-lived, it is probably not true in general, because the fluid velocity

is conserved (assuming an incompressible fluid) and therefore relaxes in macroscopic
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time scales. Hence a proper treatment of the Gaussian level fluctuations would in-

volve enlarging the space of fluctuating hydrodynamic quantities to include the fluid

velocity, and solving the entire set of equations. This we leave for future study. (3)

Finally, we have only treated fluctuations at the Gaussian level. This does not allow

us to probe the critical behavior beyond mean-field theory. This will be discussed

further below.

We have also not considered the effects of defects on dynamics. Nematics are

known to cool with many topological defects if care is not taken,33 and these defects

are stable, in the sense that they will not decay. Inevitably, applied flow will in-

duce defects into a sample which could conceivably, inter alia, serve as sources for

nucleation in a quench across the non-equilibrium coexistence line, frustrate this line

altogether, or have interesting effects such as renormalizing the transport properties.

8.2 Future Directions

In this final section I will briefly outline further directions of research in this area. I

will discuss the extension to lyotropic liquid crystals, renormalization treatments to

include non-linear contribution to the equations of motion for the fluctuations near

the critical point, and the possibility of examining a system in conjunction with a

magnetic field.

8.2.1 Lyotropic Systems

We have seen that the critical strain rates for thermotropic liquid crystals are very

high, D∗ ∼ 105 s−1. These strain rates are near the experimental limit, and are also

high enough to make dynamic instabilities a serious issue, in that these instabilities

could set in before the critical point is reached. Recalling the form for the dimension-
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less strain rate,

δ =
Dβ2
C

, (8.2)

we see that a larger viscosity β2 enables the critical point δ∗ to be reached with

smaller strain rates D. Ideal candidates are then mesogenic materials which have

high viscosities. Lyotropic systems such as solutions of the Tobacco Mosaic Virus

(TMV), which are molecules of length ∼ 1800 Å, have much higher viscosities than

the smaller (∼ 20 Å) low molecular weight thermotropic materials, and are known to

be very sensitive to flow gradients.18

One problem with extending our dynamical treatment to lyotropics is that the

solvent should be treated as an additional hydrodynamic variable, with its own dy-

namics. Also, in many systems the transition is both temperature and concentration

dependent, and the specific volume discontinuity at the transition is not negligible,

as it is for thermotropics. Hence there are regions in the temperature-concentration

phase diagram in which phase coexistence occurs, because of the large concentration

difference between isotropic and nematic phases, which introduces a new dimension to

the problem. Finally, the order parameter discontinuity is usually larger in lyotropics

(∆S1 ∼ 0.5 for TMV, compared to ∆S1 ∼ 0.3 for MBBA),18 which makes a Landau

expansion less reliable.

As a first step in this direction, one may consider an effective free energy which

describes a concentration-driven, rather than a temperature-driven, transition, which

can be done most simply by replacing the Landau parameter a(T−T−) by a(c−c−),
where c is the concentration. The dynamics that result from this approach are es-

sentially those derived by See, et al.10 However, this approach does not account for

the sizeable discontinuity in the concentration of the two phases. In addition, their

approach does not address the dynamics of the local concentration. Lee15, Wang

and Gelbart14 and Thirumalai60 also considered the transition to be concentration-

dependent in their Kramers’ potential formulation of the problem of nematics in
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elongational flow, but again, did not consider the explicit dynamics of the concentra-

tion.

A possible approach would be to write down a Landau free energy of two order

parameters, one for the nematic order and one for the concentration. The coupling

between these is very important. The next step is to obtain the coupled dynamics

of the nematic order, fluid velocity, and local concentration, and analyze the prob-

lem from there. It is a challenging problem and, although difficult, could describe

fascinating non-equilibrium behavior, from coexistence of non-equilibrium phases to

very strong light scattering effects. An analogous problem is the effect of flow on

concentration fluctuations in polymer solutions under shear, which has been studied

recently by X. L. Wu, et al.94

8.2.2 Critical Phenomena

Our treatment of the critical point has been at the mean-field level. It would be

desirable to obtain a scaling analysis of the critical point, perhaps following roughly

the steps outlined by Onuki and Kawasaki in their treatment of the binary fluid.

There are many questions one could ask, such as

• What is the universality class of the critical point? Is it mean-field, as with the

binary fluid, or mean-field for certain material parameters and not for others

(recall our discussion at the end of Chapter 7)?

• Although a single mode is present at the critical point, does the fact that it is

a combination of amplitude and orientation fluctuations have any interesting

effects? In particular, is the non-equilibrium critical point an Ising-like trans-

ition perturbed by shear, as the binary fluid is (because of the single mode), or

something else?
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The transition under shear flow is a transition that becomes, in the limit weak

shear flow, an equilibrium first order transition. It is interesting to speculate about a

transition under flow that, in the limit of weak flow, becomes an equilibrium critical

point. Consider a parameter set that includes flow, temperature, and an applied

magnetic field. Recall from our discussion in Chapter 3 that a magnetic field should

induce an equilibrium critical point. Like fluid flow, the field-induced critical point

is predicted to occur at fields at or above the experimental limit (Hc ∼ 1000T for a

system like MBBA). It would be interesting to consider a critical point induced by

a combination of a magnetic field and an applied flow. One would expect that there

exists a locus of critical points, probably a line, in the three-dimensional temperature-

field-flow parameter space. Further, one can inquire whether the nature of the critical

behavior changes as one moves along this line from a purely non-equilibrium critical

point to an equilibrium critical point. This system could provide a unique opportunity

to examine, in a controlled manner, the distinctions between equilibrium and non-

equilibrium critical points. And, like the case of flow, some lyotropic systems have

much higher susceptibilities because of their size, and may have magnetic critical

points within experimental range. With that morsel I will close this discussion.

116



Appendix A

Order Parameter Decomposition

In this Appendix we outline the parametrization of the order parameter and its vari-

ation as used in this thesis. First we consider the order parameter for a general biaxial

state,

Qαβ =
3S1

2
(nαnβ − 1

3
δαβ) +

S2

2
(mαmβ − lαlβ), (A.1)

where n̂ is the director, m̂ is the sub-director which denotes the asymmetry in the

distribution of rod orientations relative to n̂, and {n̂, m̂, l̂ } form a right-handed or-

thonormal triad.36 The amplitudes S1 and S2 parametrize the strength of ordering.

Upon performing a variation in Qαβ , it is possible to expand a fluctuation δQαβ in a

suitable basis of orthonormal traceless symmetric tensors:88

δQαβ =
5∑

i=1

ξi e
i
αβ, (A.2)

where
e1αβ =

√
3
2
(nαnβ − 1

3
δαβ), e2αβ = 1√

2
(mαmβ − lαlβ),

e3αβ = 1√
2
(nαmβ +mαnβ), e4αβ = 1√

2
(nαlβ + lαnβ),

(A.3)

e5αβ = 1√
2
(mαlβ + lαmβ).

The basis {eiαβ} satisfies orthonormality for tensors, defined by eiαβe
j
βα = δij . In

obtaining this expansion we have kept variations to first order in δn and δm, which

implies n̂·δn = m̂·δm = 0, and enforced the conditions of orthonormality of {n̂, m̂, l̂ }
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under the variation. The amplitudes {ξi} are related to the explicit variations in the

order parameter by

ξ1 =
√

3
2
δS1, ξ2 = 1√

2
δS2,

ξ3 = 3√
2
(3S1 − S2) m̂ · δn, ξ4 = 1√

2
(3S1 + S2) l̂ · δn,

(A.4)

ξ5 = S2

√
2 l̂ · δm.

Note that ξ1 and ξ2 parametrize amplitude fluctuations, while ξ3, ξ4, and ξ5 paramet-

rize orientation fluctuations. e1αβ is a fluctuation in which the order along the director

increases; this is the standard amplitude fluctuation found in uniaxial nematics. e2αβ

denotes an increase in the asymmetry in the distribution about n̂, and is a measure of

the biaxiality of the fluctuation. e3αβ and e4αβ are fluctuations in which n̂ tilts in either

of the two directions available to it, and in the uniaxial state (S2 = 0)∗ correspond

to the Goldstone modes. e5αβ is a rotation of the sub-director m̂ about n̂.

∗One may also construct a uniaxial state formally by choosing S2 = 3S1. This corresponds to a
discotic uniaxial state, and may be cast in a form with S2 = 0 by a suitable redefinition of n̂.
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Appendix B

Numerics for Interface Solution

In this Appendix I will discuss the details of setting up the numerics for finding the

stable interface solution extending between the two configurations corresponding to

the stable homogeneous solutions. We find the interface profile by considering a ficti-

tious dynamics; that is, we let the order parameter configuration evolve according to

the order parameter equation of motion, eq. (4.63), but constrain the fluid velocity to

be stationary at all times. To do this we impose an external stress σxy and determine

the velocity gradient by requiring the stress to be uniform across the system at all

times , as given by eq. (6.9). This will not give the true dynamics of the system,

but will recover the correct stable interface profile. Since we do not care, at this

point, about the details of the dynamics, we are free to choose any method which will

converge rapidly to the steady state. We have chosen an implicit Crank-Nicholson

discretization scheme which rapidly converges even for large time steps, making the

computations relatively less computer-intensive.84

As outlined in Chapter 4, we choose a particular basis for the order parameter

Qαβ and rewrite the equations of motion for Qαβ interns of this basis. We have found
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it convenient to choose the following basis:

Q =



−2m1 − 2

3
m2 m3 m4

m3
4
3
m2 m5

m4 m5 2m1 − 2
3
m2


 . (B.1)

The virtue of this representation is that the contribution of the Frank free energy

to the equations of motion, which involves gradient terms which make the interface

profile a challenge, is diagonal in this basis. In our analysis of the homogeneous states

we found that the stable stationary states have m4 = m5 = 0; hence we take them to

be zero throughout the interface, and reduce our system of equations to three coupled

PDE’s. In this basis the equation of motion for Qαβ may be transformed to

∂tm1 = −Dm3/4− Aβ−1
2 m1 +Bβ−1

2 (m2
3/4 + 4m1m2/3)

−Cβ−1
2 (8m3

1 + 8m1m
2
2/3 + 2m1m

2
3)− β−1

2 L1 ∂
2
ym1 (B.2)

∂tm2 = −(3Dm3)/4− Aβ−1
2 m2 + 2Bβ−1

2 (m2
1 −m2

2/3−m2
3/8)

−Cβ−1
2 (8m2

1m2 + 8m3
2/3 + 2m2m

2
3)− (L1 +

4
3
L2) ∂

2
ym2 (B.3)

∂tm3 = −(β1D)/2 +D(m1 +m2)− Aβ−1
2 m3 + 2Bβ−1

2 (m1m3 −m2m3/3)

−Cβ−1
2 (8m2

1m3 + 8m2
2m3/3 + 2m3

3)− (L1 + L2) ∂
2
ym3 (B.4)

We have assumed the only spatial dependence is the variation normal to the interface,

along ŷ. The convective part of the equations of motion (v ·∇) drops out because we

assume the stationary velocity profile is given by v||x̂ everywhere. The terms with

coefficients A,B,C arise from the Landau-de Gennes free energy, and the gradient

terms are from the Frank free energy. The strain rate D appears in these equa-

tions, and must be solved for from the condition that the applied stress is uniform

throughout the system in steady state.

The stress condition is given by

σxy = σi[s]
xy + σi[a]

xy + σd
xy, (B.5)
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where the stresses may now be calculated in terms of the m basis:

σi[s]
xy = β3κ

[s]
xy + β1H

[s]
xy

= β3D/2−Aβ1m3 +Bβ1(2m1m3 − 2m2m3/3−m4m5)

−Cβ1(8m
2
1m3 + 8m2

2m3/3 + 2m3
3 + 2m3m

2
4 + 2m3m

2
5) (B.6)

+ (L1 + L2) ∂
2
ym3

σi[a]
xy = H

[s]
xi Qiy −QxiH

[s]
iy

= L2

[
2(m1 +m2) ∂

2
ym3 − 8

3
m3 ∂

2
ym2

]
(B.7)

σd
xy = −L2 ∂ym3 ∂y(

2
3
m2 − 2m1). (B.8)

We may invert eq. (B.5) to find the strain rate D(m, ∂ym, σxy), and substitute this

into eqs. (B.2-B.4) to find the PDE’s which describe the relaxation of the order

parameter.

We solve for the interface profile by discretizing these coupled PDE’s and placing

the system on a mesh. We use the implicit Crank-Nicholson scheme to iterate the

solution forward. Upon making the physically reasonable assumption L1 = L2 and

the transformation to dimensionless time t̄ ≡ tC/β2 and position ȳ ≡ y(C/L)1/2, the

interface is a function of the dimensionless parameters s = σsy/C, τ = A/C, β1, and

β3/β2. We assume values for β1 and β3/β2 in general agreement with experiments on

low molecular weight materials, and examine behavior of the interface as we vary s

and τ . In this way we are able to obtain the profiles discussed in Chapter 6.

I will give examples of the discretization scheme for representative terms in the

equations of motion.∗ Consider a PDE of the form

∂tmα = fα(m) + g(m)∂2ymα + h(m)∂ymα∂ym2, (B.9)

where fi(m), g(m), and h(m) are non-linear functions of (m). We discretize in time

and space with superscript n denoting a time index and subscript j denoting a space

∗We thank Fong Liu and Nigel Goldenfeld for explaining this method to us.
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index. Greek indices refer to cartesian indices on the field m.

mn+1
α,j −mn

α,j

∆t
= 1

2

[
fn+1
α + fn

α

]
j
+ 1

2

[
(g(m)∂2ymα)

n+1 + (g(m)∂2ymα)
n
]
j

+ 1
2

[
(h(m)∂ymα∂ym2)

n+1 + (h(m)∂ymα∂ym2)
n
]
j
. (B.10)

Next we calculate approximations to the terms in brackets on the right hand side:

[
fn+1
α + fn

α

]
j
≃ fn

α (m
n
j ) +

∂fα
∂mβ

∣∣∣∣∣
mn

j

(mn+1
β,j −mn

β,j) + fn
α (m

n
j ), (B.11)

[
(g(m)∂2ymα)

n+1 + (g(m)∂2ymα)
n
]
j
≃ (B.12)

g(mn)(∂2ym
n
α)j +

∂gα
∂mβ

∣∣∣∣∣
mn

j

(mn+1
β,j −mn

β,j) + g(mn)(∂2ym
n+1
α,j )j ,

and

[
(h(m)∂ymα∂ym2)

n+1 + (h(m)∂ymα∂ym2)
n
]
j
≃ (B.13)

(∂ym
n+1
α )j(∂ym

n
2 )jh(m

n) + (∂ym
n
α)j(∂ym

n+1
2 )jh(m

n)

+(∂ym
n
α)j(∂ym

n
2 )j

∂hα
∂mβ

∣∣∣∣∣
mn

j

(mn+1
β,j −mn

β,j).

We take the following definitions for our finite differences:

(∂ym)j ≡ mj+1 −mj−1

2∆y
(B.14)

(∂2ym)j ≡ mj+1 − 2mj +mj−1

∆y2
. (B.15)

The PDE is iterated forward in time by solving for mn+1
j in terms of mn:

Γαβ,ij m
n+1
β,j = Vα,i , (B.16)

where Γ is a matrix on both cartesian (α, β, . . .) and discrete space (i, j, . . .) indices,

and Γ and V are, generally, non-linear functions of {mn
i }.
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