Second edition published in 2016.

[208] R. D. Nesselrodt and J. K. Freericks, Exact single and two particle non-equilibrium Green's functions for the time-dependent Holstein-Hubbard model in the atomic limit *submitted to* Phys. Rev. B.

[207] Nilesh Goel and J. K. Freericks, Native multiqubit Toffoli gates on ion trap quantum computers, *submitted to* Quantum Sci. Technol.

[206] Xiao Xiao, J. K. Freericks, and A. F. Kemper, Robust measurement of wave function topology on NISQ quantum computers, *submitted to *Phys. Rev. Lett.

[205] Herbert F. Fotso, Eric Dohner, Alexander Kemper and James K. Freericks, Bridging the Gap Between the Transient and the Steady State of a Nonequilibrium Quantum System, *submitted to * Phys. Rev. B.

[204] Eduardio Munguia-Gonzalez, Sheldon Rego, and J. K. Freericks, Making squeezed-coherent states concrete by determining their wavefunction, Amer. J. Phys. (2021).

[203] Akhil Francis, D. Zhu, C. Huerta Alderete, Sonika Johri, Xiao Xiao, J. K. Freericks, C. Monroe, N. M. Linke, and A. F. Kemper, Many Body Thermodynamics on Quantum Computers via Partition Function Zeros, *submitted to* Science Adv.

[202] Xiao Xiao, J. K. Freericks, and A. F. Kemper, Determining quantum phase diagrams of topological Kitaev-inspired models on NISQ quantum hardware, *submitted to* Quantum.

[201] Michael Rushka, Mark Esrick, Wesley N. Mathews Jr., and J. K. Freericks, Converting translation operators into plane polar and spherical coordinates and their use in determining quantum-mechanical wavefunctions in a representation-independent fashion, *submitted to* J. Math. Phys.

[200] Anna Galler, Jeremy Canfield and James K Freericks, Schrodinger's original quantum-mechanical solution for hydrogen, Eur. J. Phys. **42**, 035405 (2021). Doi: 10.1088/1361-6404/abb9ff

[199] Tomasz Szymanski and J K Freericks, Algebraic derivation of
Kramers-Pasternack relations based on
the Schrodinger factorization method, Eur. J. Phys. **42**, 025409 (2021). Doi: 10.1088/1361-6404/abd228

[198] Jia Chen, Hai-Ping Cheng, and James K. Freericks, Quantum-Inspired Algorithm for the Factorized Form of Unitary
Coupled Cluster Theory, J. Chem. Theor. Comp. **17** 841-847 (2021). Doi: 10.1021/acs.jctc.0c01052

[197] R. D. Nesselrodt and J.K. Freericks, A pedagogical derivation of dynamical susceptibilities, Condens. Matt. Phys. **23**, 43703 (2020). Doi: 10.5488/CMP.23.43703

[196] Hai-Ping Cheng, Erik Deumens, James K. Freericks, Chenglong Li and Beverly A. Sanders, Application of Quantum Computing to Biochemical Systems: A Look to the Future Front. Chem. **8**, 587143 (2020). Doi: 10.3389/fchem.2020.587143

[195] Lorenzo Del Re, Brian Rost, A. F. Kemper, and J. K. Freericks, Driven-dissipative quantum mechanics on a lattice: Simulating a fermionic reservoir
on a quantum computer, Phys. Rev. B **102**, 125112 (2020). Doi: 10.1103/PhysRevB.102.125112

[194] Herbert F. Fotso and James K. Freericks, Characterizing the Non-equilibrium
Dynamics of Field-Driven Correlated
Quantum Systems, Front. Phys. **8**, 324 (2020). Doi: 10.3389/fphy.2020.00324

[193] M. Rushka, and J. K. Freericks, A completely algebraic solution of the simple harmonic oscillator, Am. J. Phys. **88**, 976--985 (2020). Doi: 10.1119/10.0001702

[192] Akhil Francis, J. K. Freericks, and A. F. Kemper, Quantum computation of magnon spectra, Phys. Rev. B **101**, 014411 (2020). Doi: 10.1103/PhysRevB.101.014411

[191] William F. Courtney, Lucas B. Vieira, Paul S. Julienne, and James K. Freericks, Incorporating the Stern-Gerlach delayed-choice quantum eraser into the undergraduate
quantum mechanics curriculum, Am. J. Phys. **88**, 298--307 (2020). Doi: 10.1119/10.0000519

[190] J. K. Freericks, D. Cutler, A. Kruse, and L. B. Vieira, Teaching quantum mechanics to over 28,000 nonscientists Physics Teacher **57**, 326--329 (2019). Doi: 10.1119/1.5098924

[189] Jeffrey Cohn, Khadijeh Sona Najafi, Forest Yang, Barbara Jones, and James K. Freericks, Minimal Effective Gibbs Ansatz (MEGA): A simple protocol for extracting an accurate thermal representation for quantum simulation Phys. Rev. A **102** 022622 (2020). Doi: 10.1103/PhysRevA.102.022622

[188] J. Alexander Jacoby, Maurice Curran, David R. Wolf, and James K. Freericks,
Proving the existence of bound states for attractive potentials in one and two dimensions without calculus
Eur. J. Phys. **40**, 045404 (2019). Doi: 10.1088/1361-6404/ab21ed

[187] O. P. Matveev, A. M. Shvaika, T. P. Devereaux, and J. K. Freericks, Stroboscopic Tests for Thermalization of Electrons in Pump-Probe Experiments
Phys. Rev. Lett. **122**, 247402 (2019). Doi: 10.1103/PhysRevLett.122.247402

[186] Gotz S. Uhrig, Mona H. Kalthoff, and James K. Freericks, Positivity of the Spectral Densities of Retarded Floquet Green Functions,
Phys. Rev. Lett. **122**, 130604 (2019). Doi: 10.1103/PhysRevLett.122.130604

[185] Yuan Chen, Yao Wang, Chunjing Jia, Brian Moritz, Andrij M. Shvaika, James K. Freericks, and Thomas P. Devereaux, Theory for time-resolved resonant inelastic x-ray scattering,
Phys. Rev. B **99**, 104306 (2019). Doi: 10.1103/PhysRevB.99.104306

[184] Nandan Pakhira, A. M. Shvaika, and J. K. Freericks, X-ray photoemission spectroscopy in the Falicov-Kimball model,
Phys. Rev. B **99**, 125137 (2019). Doi: 10.1103/PhysRevB.99.125137

[183] O. Abdurazakov, D. Nevola, A. Rustagi, J. K. Freericks, D. B. Dougherty, and A. F. Kemper, Nonequilibrium electron dynamics in pump-probe spectroscopy: Role of excited phonon populations,
Phys. Rev. B **98**, 245110 (2018). Doi: 10.1103/PhysRevB.98.245110

[182] Tatiana Konstantinova, Jonathan D. Rameau, Alexander H. Reid, Omadillo Abdurazakov, Lijun Wu, Renkai Li, Xiaozhe Shen, Genda Gu, Yuan Huang, Laurenz Rettig, Isabella Avigo, Manuel Ligges, James K. Freericks, Alexander F. Kemper, Hermann A. Durr, Uwe Bovensiepen, Peter D. Johnson, Xijie Wang and Yimei Zhu, Nonequilibrium electron and lattice dynamics of strongly correlated Bi_{2}Sr_{2}CaCu_{2}O_{8+δ} single crystals, Science Adv.
**4**, eaap7427 (2018). Doi: 10.1126/sciadv.aap7427

[181] A. F. Kemper, O.Abdurazakov, and J. K. Freericks, General principles for the non-equilibrium relaxation of populations in quantm materials, Phys. Rev. X **8**, 041009 (2018). Doi: 10.1103/PhysRevX.8.041009

[180] A. Safavi-Naini, R. J. Lewis-Swan, J. G. Bohnet, M. Garttner, K. A. Gilmore, J. E. Jordan, J. Cohn, J. K. Freericks, A. M. Rey, and J. J. Bollinger, Verification of a Many-Ion Simulator of the Dicke Model Through Slow Quenches across a Phase Transition,
Phys. Rev. Lett.**121**, 040503 (2018). Doi: 10.1103/PhysRevLett.121.040503

[179] Mona H. Kalthoff, Gotz S. Uhrig, and J. K. Freericks, Emergence of Floquet behavior for lattice fermions driven by light pulses,
Phys. Rev. B **98**, 035138 (2018). Doi: 10.1103/PhysRevB.98.035138

[178] A.M. Shvaika, O.P. Matveev, T.P. Devereaux, J.K. Freericks,
Interpreting pulse-shape effects in pump-probe spectroscopies,
Condens. Matt. Phys., ** 21**, 33707 (2018). Doi: 10.5488/CMP.21.33707

[177] J. Cohn, A. Safavi-Naini, R. J. Lewis-Swan, J. G. Bohnet, M. Garttner, K. A. Gilmore, J. E. Jordan, A. M. Rey, J. J. Bollinger and J. K. Freericks, Bang-bang shortcut to adiabaticity in the Dicke model as realized in a Penning trap experiment,
New J. Phys. ** 20**, 055013 (2018). Doi: 10.1088/1367-2630/aac3fa

[176] M. Weitzman and J. K. Freericks, Calculating spherical harmonics without derivatives,
Condens. Matt. Phys. **21**, 33002 (2018). Doi: 10.5488/CMP.21.33002

[175] S. Balasubramanian, Shuyang Han, B. T. Yoshimura, and J. K. Freericks,
Bang-bang shortcut to adiabaticity in trapped-ion quantum simulators,
Phys. Rev. A **97**, 022313 (2018). Doi: 10.1103/PhysRevA.97.022313

[174] Thomas G. Kiely and J. K. Freericks, Relationship between the transverse-field Ising model and the XY model via the rotating-wave approximation,
Phys. Rev. A **97**, 023611 (2018). Doi: 10.1103/PhysRevA.97.023611

[173] Veljko Zlatic and J. K. Freericks, Thermoelectric transport paralel to the planes in a multilayered Mott-Hubbard heterostructure, Phys. Rev. B **96**, 235146 (2017). Doi: 10.1103/PhysRevB.96.235146

[172] Khadijeh Najafi, M. M.Maska, Kahlil Dixon, P. S. Julienne, and J. K. Freericks, Enhancing quantum order with fermions by increasing species degeneracy, Phys. Rev. A **96**, 053621 (2017). Doi: 10.1103/PhysRevA.96.053621

[171] B. Nosarzewski, B. Moritz, J. K. Freericks, A F. Kemper, and T. P. Devereaux, Amplitude mode oscillatons in pump-probe photoemission spectra from a d-wave superconductor, **96**, 184518 (2017). Doi: 10.1103/PhysRevB.96.184518

[170] A. F. Kemper, M. Sentef, B. Moritz, T. P. Devereaux, and J. K. Freericks,
Review of the theoretical description of time-resolved angle-resolved photoemission spectroscopy in electron-phonon mediated superconductors Ann. der Phys. **259**, 1600235 (2017). Doi: 10.1002/andp.201600235.

[169] J. K.Freericks, O. P. Matveev, Wen Shen, A. M. Shvaika, and T. P. Devereaux, Theoretical description of pump/probe experiments in electron mediated charge-density-wave insulators, Physica Scripta **92**, 034007--1-16 (2017). Doi: 10.1088/1402-4896/aa5b6c.

[168] J. K. Freericks and H. R. Krishnamurthy, Constant matrix element approximation to time-resolved angle-resolved photoemission spectroscopy, Photonics **3**, 58--1-8 (2016). Doi: 10.3390/photonics3040058.

[167] O. P. Matveev, A. M. Shvaika, T. P. Devereaux, and J. K. Freericks,
Time-domain pumping a quantum-critical charge-density-wave-ordered material, Phys. Rev. B ** 94**, 115167--1-11 (2016).
Doi: 10.1103/PhysRevB.94.115167

[166] J. K. Freericks, Shuyang Han, Karlis Mikelsons, and H. R. Krishnamurthy,
Generalized gradient expansion for inhomogeneous dynamical mean-field theory: Application to ultracold atoms in a harmonic trap,
Phys. Rev. A ** 94**, 023614--1-14 (2016). Doi: 10.1103/PhysRevA.94.023614

[165] Alexander Kemper and James Freericks, Relationship between Population Dynamics and the Self-Energy in Driven
Non-Equilibrium Systems, Entropy **18**, 180-1--11 (2016).
Doi: 10.3390/e18050180.

[164] Bryce T. Yoshimura and J. K. Freericks,
Measuring nonequilibrium retarded spin-spin Green's functions in an
ion-trap-based quantum simulator, Phys. Rev. A ** 93**, 052314-1--11 (2016).
Doi: 10.1103/PhysRevA.93.052314.

[163] Oliver R. Albertini, Rui Zhao, Rebecca L. McCann, Simin Feng, Mauricio Terrones, James K. Freericks, Joshua A. Robinson, and Amy Y. Liu,
Zone-center phonons of bulk, few-layer, and monolayer 1T-TaS_{2}: Detection of the commensurate charge density wave phase through Raman scattering,
Phys. Rev. B **93,** 214109-1--7 (2016). Doi:
10.1103/PhysRevB.93.214109

[162] O. P. Matveev, A. M. Shvaika, T. P. Devereaux, and J. K. Freericks,
Nonequilibrium response of an electron mediated
charge-density-wave-ordered material to a large dc electric field,
Phys. Rev. B **93**, 045110-1--9 (2016).Doi: 10.1103/PhysRevB.93.045110

[161] M. H. Lim, B. T. Yoshimura, and J. K. Freericks,
Creating thermal distributions from diabatic excitations in ion-trap-based quantum simulation, New J. Phys. **18**, 043026-1--8 (2016). Doi: 10.1088/1367-2630/18/4/043026

[160] J. D. Rameau, S. Freutel, M. A. Sentef, A. F. Kemper, J. K. Freericks, I. Avigo, M. Ligges, L. Rettig, Y. Yoshida, H. Eisaki, J. Schneeloch, R. D. Zhong, Z. J. Zhu, G. D. Gu, P. D. Johnson, and U. Bovensiepen,
Energy dissipation from a correlated system driven out of equilbrium
,
Nature Commun. ** 7**, 13761--1-9 (2016). Doi: 10.1038/natcomms13761.

[159] A. F. Kemper, M. A. Sentef, B. Moritz, J. K. Freericks, and T. P.
Devereaux,
Amplitude mode oscillations in pump-probe photoemission
spectra of electron-phonon mediated superconductors,
Phys. Rev. B **92,** 224517-1--7 (2015).
Doi: 10.1103/PhysRevB.92.224517

[158] D. Dylewsky, J. K. Freericks, M. L. Wall, A. M. Rey, M. Foss-Feig,
Exact calculation of phonon effects on spin squeezing,
Phys. Rev. A **93**, 013415-1--12 (2015). Doi: 10.1103/PhysRevA.93.013415

[157] B. Yoshimura and J. K. Freericks,
Estimating the ground-state probability of a quantum simulation with product-state measurements,
Front. Phys. **3**, 85-1--11 (2015).
Doi: 10.3389/fphy.2015.00085

[156] A. Dirks, M. Mikelsons, H. R. Krishnamurthy, and J. K. Freericks,
Feshbach modulation spectroscopy,
Phys. Rev. A **92**, 053612-1--5 (2015).
Doi: 10.1103/PhysRevA.92.053612.

[155] V. N. Ermakov, S. P. Kruchinin, T. Pruschke, and J. K. Freericks,
Thermoelectricity in tunneling nanostructures,
Phys. Rev. B **92**, 155431-1--7 (2015). Doi: 10.1103/PhysRevB.92.155431.

[154] A. Khan, B. Yoshimura, and J. K. Freericks, Theoretical basis for quantum simulations with a planar ionic crystal in a Penning trap using a triangular rotating wall,
Phys. Rev. A ** 92**, 043405-1--11 (2015).
Doi: 10.1103/PhysRevA.92.043405.

[153] Anzi Hu, M. M. Maska, C. W. Clark, and J. K. Freericks,
Robust finite-temperature disordered Mott insulating phases in inhomogeneous Fermi-Fermi mixtures with density and mass imbalance, Phys. Rev. A ** 91** 063624-1--9 (2015). Doi: 10.1103/PhysRevA.91.063624. Selected for a kaleidoscope image by the editors.

[152] Bryce Yoshimura, Marybeth Stork, Danilo Dadic, Wesley C. Campbell and James K. Freericks
Creation of two-dimensional Coulomb crystals of ions in oblate Paul traps for quantum simulations, Eur. Phys. J.: Quantum Technology **1**, 14--1-17 (2014). Doi: 10.1140/epjqt14.

[151] J. K. Freericks, B. N. Nikolic, and O. Frieder, The nonequilibrium quantum many-body problem as a paradigm for extreme data science, Int. J. Mod. Phys. B **28**, 1430021--1-33 (2014).
Doi: 10.1142/S0217979214300217.

[150] M. McAneny and J. K. Freericks,
Intrinsic anharmonic effects on the phonon frequencies and effective spin-spin interactions in a quantum simulator made from trapped ions in a linear Paul trap, Phys. Rev. A ** 90**, 053405--1-9 (2014).
Doi: 10.1103/PhysRevA.90.053405

[149] G. R. Boyd, V. Zlatic', and J. K. Freericks,
Ubiquity of Linear Resistivity at Intermediate Temperature in Bad Metals,
Phys. Rev. B **91**, 075118-1--5 (2015).
Doi: 10.1103/PhysRevB.91.075118.

[148] A.F. Kemper, M.A. Sentef, B. Moritz, J.K. Freericks, and T.P. Devereaux,
Effect of dynamical spectral weight redistribution on effective interactions in time-resolved spectroscopy, Phys. Rev. B ** 90**, 075126-1--7
(2014).
Doi: 10.1103/PhysRevB.90.075126.

[147] B. Yoshimura, W. C. Campbell, and J. K. Freericks,
Diabatic ramping spectroscopy of many-body excited states for trapped-ion quantum simulators, Phys. Rev. A **90**, 062334--1-13 (2014).
Doi: 10.1103/PhysRevA.90.062334.

[146] M. A. Sentef, M. Claassen, A. F. Kemper, B. Moritz, T. Oka, J. K. Freericks, and T. P. Devereaux,
Theory of Floquet band formation and local
pseudospin textures in pump-probe photoemission
of graphene, Nature Commun. **6**, 7047-1--8 (2015).
Doi: 10.1038/ncomms8047

[145] Alexander V. Joura, J. K. Freericks, and Alexander I. Lichtenstein,
Long-lived nonequilibrium states in the Hubbard model with an electric field , Phys. Rev. B ** 91**, 245153-1--9 (2015).
Doi: 10.1103/PhysRevB.91.245153

[144] H. F. Fotso, J. Vicente, and J. K. Freericks,
Frustrated phase separation in the momentum distribution of field-driven light-heavy Fermi-Fermi mixtures of ultracold atoms,
Phys. Rev. A **90**, 053630--1-6 (2014).
Doi: 10.1103/PhysRevA.90.053630 (Selected for a kaleidoscope image.

[143] H. Fotso, K. Mikelsons, and J. K. Freericks,
Thermalization of field driven quantum systems,
Scientific Reports **4,** 4699-1--8 (2014). Doi:10.1038/srep04699

[142] A. Dirks, K. Mikelsons, H.R. Krishnamurthy, and J.K. Freericks,
Simulation of inhomogeneous distributions of ultracold atoms in an optical lattice via a massively parallel implementation of nonequilibrium strong-coupling perturbation theory,
Phys. Rev. E **89**, 023306-1--13 (2014).
Doi: 10.1103/PhysRevE.89.023306

[141] M. McAneny, B. Yoshimura, and J. K. Freericks,
Effect of defects on the phonons and the effective spin-spin interactions of an ultracold Penning trap quantum simulator,
Phys. Rev. A ** 88**, 043434-1--11 (2013).
Doi: 10.1103/PhysRevA.88.043434.

[140] W. Shen, T. P. Devereaux, and J. K. Freericks,
Exact solution for Bloch oscillations of a simple charge-density-wave insulator
Phys. Rev. B **89** 235129--1-15 (2014).
DOI: 10.1103/PhysRevB.89.235129.

[139] Manjari Gupta, H. R. Krishnamurthy, and J. K. Freericks,
Strong-coupling expansion for ultracold bosons in an optical lattice at finite temperatures in the presence of superfluidity
Phys. Rev. A **88** 053636-1--11 (2013).
Doi: 10.1103/PhysRevA.88.053636.

[138] V. Zlatic', G. R. Boyd, and J. K. Freericks,
Universal thermopower of bad metals ,
Phys. Rev. B **89**, 155101-1--5 (2014).
Doi: 10.1103/PhysRevB.89.155101

[137] Andreas Dirks, Karlis Mikelsons, H. R. Krishnamurthy, and J. K. Freericks,
Theoretical Description of Coherent Doublon Creation via Lattice Modulation
Spectroscopy,
Phys. Rev. A **89**, 021602(R)-1--5 (2014).
Doi: 10.1103/PhysRevA.89.021602

[136] Wen Shen, A. F. Kemper, T. P. Devereaux, and J. K. Freericks,
Exact solution for high harmonic generation and the
response to an ac driving field for a charge density
wave insulator,
Phys. Rev. B **90**, 115113-1--9 (2014).
Doi: 10.1103/PhysRevB.90.115113

[135] Wen Shen, T. P. Devereaux, and J. K. Freericks,
Beyond Planck-Einstein quanta: amplitude driven quantum excitation,
Phys. Rev. B ** 90**, 195104--1-6 (2014).
Doi: 10.1103/PhysRevB.90.195104

[134] Wen Shen, Yizhi Ge, A. Y. Liu, H. R. Krishnamurthy, T. P. Devereaux, and
J. K. Freericks,
Nonequilibrium "melting" of a charge density wave insulator via an ultrafast laser pulse,
Phys. Rev. Lett. **112**, 176404--1-5 (2014).
Doi: 10.1103/PhysRevLett.112.176404

[133] M. A. Sentef, A. F. Kemper, B. Moritz, J. K. Freericks,
Z.-X. Shen, and T. P. Devereaux,
Examining Electron-Boson Coupling Using Time-Resolved Spectroscopy,
Phys. Rev. X **3**, 041033--1-11 (2013). Doi: 10.1103/PhysRevX.3.041033.

[132] R. Islam, C. Senko, W. C. Campbell, S. Korenblit, J. Smith, A. Lee, E. E. Edwards, C.-C. J. Wang, J. K. Freericks, and C. Monroe,
Emergence and Frustration of Magnetism with Variable-Range Interactions in a Quantum Simulator,
Science ** 340**, 583--587 (2013). Supplementary Information.
Doi: 10.1126/science.1232296 .

[131] C.-C. Joseph Wang, Adam C. Keith, and J. K. Freericks,
Phonon mediated quantum spin simulator employing a planar ionic crystal in a Penning trap,
Phys. Rev. A **87**, 013422--1-17 (2013).
doi: 10.1103/PhysRevA.87.013422.

[130] K. Mikelsons, J. K. Freericks, and H. R. Krishnamurthy,
Quasiuniversal Transient Behavior of a Nonequilibrium Mott Insulator Driven by an Electric Field
Phys. Rev. Lett. **109**, 260402--1-5 (2012).
doi: 10.1103/PhysRevLett.109.260402.

[129] J. K. Freericks, V. Turkowski, H. R. Krishnamurthy, and M. Knap,
Spectral moment sum rules for the retarded Green's function and
self-energy of the inhomogeneous Bose-Hubbard model in equilibrium and
nonequilibrium,
Phys. Rev. A **87**, 013628--1-12 (2013).
doi: 10.1103/PhysRevA.87.013628.

[121] S. T. F. Hale and J. K. Freericks,
Many-body effects on the capacitance of multilayers made from strongly correlated materials,
Phys. Rev. B **85,** 205444-1--12 (2012).
doi:10.1103/PhysRevB.85.205444.

[117] R. Islam, E. E. Edwards, K. Kim, S. Korenblit, C. Noh, H. Carmichael,
G.-D. Lin, L.-M. Duan, C.-C. Joseph Wang, J. K. Freericks, C. Monroe,
Onset of a Quantum Phase Transition with a Trapped Ion
Quantum Simulator, Nature Commun. **2**, 377-1--6 (2011).
10.1038/ncomms1374.

[116] M. M. Maska, R. Lemanski, C. J. Williams, and J. K. Freericks,
Momentum distribution and ordering in mixtures of ultracold light
and heavy fermionic atoms, Phys. Rev. A ** 83**, 063631-1--10
(2011).
10.1103/PhysRevA.83.063631. Selected for a
kaleidoscope image
for the June, 2011 issue.

[115] K. Mikelsons and J. K. Freericks,
Density wave patterns for fermionic dipolar molecules on a
square optical lattice: Mean-field-theory analysis,
Phys. Rev. A **83**, 043609-1--7 (2011).
10.1103/PhysRevA.83.043609

[114] Anzi Hu, J. K. Freericks, M. M. Maska, C. J. Williams,
Efficiency for preforming molecules from mixtures of light Fermi and
heavy Bose atoms in optical lattices: the strong-coupling-expansion method,
Phys. Rev. A ** 83**, 043617-1--13 (2011).
10.1103/PhysRevA.83.043617.

[113] S. T. F. Hale and J. K. Freericks,
Effect of vertex corrections on the longitudinal
transport through multilayered nanostructures:
Dynamical mean-field theory approach applied to
the inhomogeneous Falicov-Kimball model,
Phys. Rev. B **83**, 035102-1--7 (2011).
10.1103/PhysRevB.83.035102

[112] O. P. Matveev, A. M. Shvaika, and J. K. Freericks,
Resonant Raman scattering effects in a nesting driven
charge-density-wave insulator: exact analysis of the spinless Falicov-Kimball
model with dynamical mean-field theory,
Phys. Rev. B ** 82**, 155115-1--12 (2010).
10.1103/PhysRevB.82.155115.

[111] E. E. Edwards, S. Korenblit, K. Kim, R. Islam, M.-S. Chang,
J. K. Freericks, G.-D. Lin, L.-M. Duan, C. Monroe,
Quantum Simulation and Phase Diagram of the Transverse Field Ising
Model with Three Atomic Spins,
Phys. Rev. B **82**, 060412-1-4(R) (2010) (Rapid Communication).
10.1103/PhysRevB.82.060412.
Selected as a recommended reading article by the editors.

[110] K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E. E. Edwards,
J. K. Freericks, G.-D. Lin, L.-M. Duan, and C. Monroe,
Quantum simulation of frustrated Ising spins with
trapped ions, Nature, **465**, 590--593 (2010).
10.1038/nature09071.
News and views on the article is available at 10.1038/465555a

[109] M. Iskin and J. K. Freericks,
Dynamical mean-field theory for light fermion-heavy boson mixtures on
optical lattices,
Phys. Rev. A **80**, 053623-1--10 (2009).
10.1103/PhysRevA.80.053623.
Virtual Journal of Atomic Quantum Fluids Volume **1**, Issue 6 (2009).

[108] B. Moritz, T. P. Devereaux, and J. K. Freericks,
Time-resolved photoemission of strongly correlated electrons driven out
of equilibrium,
Phys. Rev. B **81**, 165112-1--5 (2010).
10.1103/PhysRevB.81.165112
Virtual Journal of Ultrafast Science,
Vol. **9**, Iss. 5 (2010).

[107] J. K. Freericks, M. M. Maska, Anzi Hu, Thomas M. Hanna, C. J.
Williams, P. S. Julienne, and R. Lemanski,
Improving the efficiency of ultracold dipolar molecule formation by
first loading onto an optical lattice,
Phys. Rev. A **81**, 011605-1--4(R) (2010) (Rapid Communication).
10.1103/PhysRevA.81.011605.
Erratum: Phys. Rev. A **82**, 039901-1--2(E) (2010).
10.1103/PhysRevA.82.039901.

[106] M. Ocko, S. Zonja, G. L. Nelson,
J. K. Freericks, Lei Yu, and N. Newman,
Low temperature transport properties of Ta_{x}N,
J. Phys. D: Appl. Phys. ** 43**, 445405-1--12 (2010).
10.1088/0022-3727/43/44/445405

[105] J. K. Freericks and V. Turkowski,
Inhomogeneous spectral moment sum rules for the retarded Green function
and self-energy of strongly correlated electrons or ultracold fermionic
atoms in optical lattices, Phys. Rev. B **80**, 115119--1-13 (2009).
10.1103/PhysRevB.80.115119.
Virtual Journal of Atomic Quantum Fluids Volume **1**, Issue 4 (2009).
Selected as a recommended reading article by the
editors.
Erratum:
Phys. Rev. B **82**, 129902-1--2(E) (2010).
10.1103/PhysRevB.82.129902.

[104] M. Iskin and J. K. Freericks,
Momentum distribution of the insulating
phases of the extended Bose-Hubbard model, Phys. Rev. A 80, 063610-1--8
(2009).
10.1103/PhysRevA.80.063610.
Virtual Journal of Atomic Quantum Fluids Volume **1**, Issue 6 (2009).

[103] M. Iskin and J. K. Freericks,
Strong-coupling perturbation theory
for the extended Bose-Hubbard model, Phys. Rev. A **79**, 053634--1-9
(2009).
10.1103/PhysRevA.79.053634

[102] J. K. Freericks, H. R. Krishnamurthy, Yasuyuki Kato, Naoki Kawashima,
and Nandini Trivedi,
Strong-coupling expansion for the momentum
distribution of the Bose
Hubbard model with benchmarking against exact numerical results,
Phys. Rev. A **79**, 053631--1-22
(2009).
10.1103/PhysRevA.79.053631
>Erratum
Phys. Rev. A **85**, 019913(E)-1--1 (2012).
10.1103/PhysRevA.85.019913.

[101] O. P. Matveev, A. M. Shvaika, and J. K. Freericks,
Nonresonant Raman and inelastic X-ray scattering in the
charge-density-wave phase of the spinless Falicov-Kimball model,
Phys. Rev. B **79,** 115130--1-17 (2009).
10.1103/PhysRevB.79.115130

[100] H. Zenia,
J. K. Freericks, H. R. Krishnamurthy and Th. Pruschke,
Appearance of ``fragile'' Fermi liquids in finite width Mott insulators
sandwiched between metallic leads,
Phys. Rev. Lett. **103** 116402--1-4 (2009).
10.1103/PhysRevLett.103.116402.
Virtural Journal of Nanoscale Science and Te4chnology Volume **20**,
Issue 12 (2009).

[99]
J. K. Freericks, H. R. Krishnamurthy and Th. Pruschke,
Theoretical description of time-resolved photoemission spectroscopy:
application to pump-probe experiments,
Phys. Rev. Lett. **102,** 136401--1-4
(2009).
10.1103/PhysRevLett.102.136401
Virtual Journal of Ultrafast Science Volume **8**, Issue 5 (2009). Erratum: Phys. Rev. Lett. **119**, 189903 (2017). Doi: 10.1103/PhysRevLett.119.189903

[98] A. M. Shvaika and
J. K. Freericks,
F-electron spectral function of the Falicov-Kimball model and the
Wiener-Hopf sum equation approach, Condens. Matter Phys. **11**, 425--442
(2008). [Invited contribution in honor of Prof. I. Stasyuk's 70th birthday celebration]

[97] A. V.Joura,
J. K. Freericks,
and Th. Pruschke,
Steady-state nonequilibrium density of states of driven strongly
correlated lattice models in infinite dimensions,
Phys. Rev. Lett. **101**, 196401--1-4 (2008).
10.1103/PhysRevLett.101.196401

[96] J. K. Freericks,
Effect of anisotropic hopping on the Bose Hubbard model phase diagram:
strong-coupling perturbation theory on a square lattice,
Phys. Rev. A **78**, 013624-1--4 (2008).
10.1103/PhysRevA.78.013624

[95] M. M. Maska, R. Lemanski, J. K. Freericks, and C. J. Williams,
Pattern formation in mixtures of ultracold atoms in optical lattices,
Phys. Rev. Lett. **101** 060404-1--4 (2008).
10.1103/PhysRevLett.101.060404

[94] V. M. Turkowski and
J. K. Freericks,
Nonequilibrium sum rules for the retarded self-energy of strongly correlated
electrons, Phys. Rev. B **77**, 205102-1--16 (2008).
10.1103/PhysRevB.77.205102
Selected as a recommended reading article by the editors.
Erratum:
Phys. Rev. B **82**, 119904-1--3(E) (2010).
10.1103/PhysRevB.82.119904.

[93] J. K. Freericks,
Quenching Bloch oscillations in a strongly correlated material: The
dynamical mean-field theory approach,
Phys. Rev. B **77**, 075109-1--12 (2008)
10.1103/PhysRevB.77.075109 .

[92] O. P. Matveev, A. M. Shvaika, and J. K. Freericks,
Optical and dc transport properties of a strongly correlated charge density
wave system: exact solution in the ordered phase of the spinless
Falicov-Kimball model with dynamical mean-field theory,
Phys. Rev. B **77**, 035102-1--13 (2008)
10.1103/PhysRevB.77.035102 .

[91] V. Zlatic', R. Monnier, and J. Freericks,
Enhancement of thermal transport in the degenerate periodic
Anderson model, Phys. Rev. B **78**, 045113-1--14 (2008).
10.1103/PhysRevB.78.045113

[90] Ling Chen and
J. K. Freericks,
Electronic charge reconstruction of doped
Mott insulators in multilayered nanostructures, Phys.
Rev. B. **75,** 125114-1--8 (2007)
10.1103/PhysRevB.75.125114;
Virtual Journal of Nanoscale Science and Technology,
Vol. **15**, Iss. *13*, (2007).

[89]
V. M. Turkowski and
J. K. Freericks,
Nonequilibrium perturbation theory of the spinless
Falicov-Kimball model: Second-order truncated expansion in
U, Phys. Rev. B.**75**, 125110-1--14 (2007).
10.1103/PhysRevB.75.125110

[88] J. K. Freericks,
V. Zlatic', and
A. M. Shvaika,
Electronic thermal transport in strongly correlated multilayered
nanostructures,
Phys. Rev. B **75**, 035133-1--16 (2007).
10.1103/PhysRevB.75.035133.

[87] J. K. Freericks,
V. M. Turkowski,
and V. Zlatic',
Nonequilibrium dynamical mean-field theory,
Phys. Rev. Lett. **97**, 266408-1--4 (2006).
10.1103/PhysRevLett.97.266408

[86] J. K. Freericks
and V. Zlatic',
Nonlinear Peltier effect and the nonequilibrium Jonson-Mahan theorem,
Cond. Matter Phys. ** 9**, 603--617 (2006).

[85] V. Zlatic', R. Monnier,
J. K. Freericks,
and K. Becker,
Relationship between the thermopower and entropy of strongly correlated
electron systems,
Phys. Rev. B **76**, 085122--1-16 (2007);
10.1103/PhysRevB.76.085122.

[84] V. M. Turkowski and
J. K. Freericks,,
Spectral moment sum rules for
strongly correlated electrons in time-dependent electric fields,
Phys. Rev. B **73** 075108--1-15 (2006)
10.1103/PhysRevB.73.075108;
Erratum, Phys. Rev. B
**73**, 209902(E)-1--1 (2006).
10.1103/PhysRevB.73.209902.

[83] J.K. Freericks,
T.P. Devereaux,
M. Moraghebi, and
S.L. Cooper,
Optical sum rules that relate to the potential energy of strongly
correlated systems, Phys. Rev. Lett. **94**, 216401--1-4 (2005).
10.1103/PhysRevLett.94.216401.

[82] A. N. Tahvildar-Zadeh,
J. K. Freericks, and
B. K. Nikolic,
Thouless energy as a unifying concept for Josephson junctions tuned through
the Mott metal-insulator transition,
Phys. Rev. B **73**, 184515-1--10 (2006)
10.1103/PhysRevB.73.184515;
Virtual Journal of Applications of Superconductivity, **10**, Issue 10
(2006).

[81]
V. M. Turkowski and
J. K. Freericks,
Nonlinear response of Bloch electrons in infinite dimensions,
Phys. Rev. B **71**, 085104--1-11 (2005).
10.1103/PhysRevB.71.085104.

[80]
A. M. Shvaika, O. Vorobyov,
J. K. Freericks,
and T. P. Devereaux,
Electronic Raman scattering in correlated materials: A treatment of
nonresonant, mixed, and resonant scattering with dynamical mean field theory,
Phys. Rev. B **71**, 045120--1-17 (2005).
10.1103/PhysRevB.71.045120.

[79] J. K. Freericks,
Dynamical mean field theory for strongly correlated inhomogeneous multilayered
nanostructures,
Phys. Rev. B **70**, 195342--1-14 (2004).
10.1103/PhysRevB.70.195342.

[78] J. K. Freericks,
V. M. Turkowski, and
V. Zlatic',
F-electron spectral function of the Falicov-Kimball model in
infinite dimensions: The half-filled case,
Phys. Rev. B **71**, 115111--1-12 (2005).
10.1103/PhysRevB.71.115111.

[77] D. O. Demchencko, A. V. Joura, and
J. K. Freericks,
Effect of particle-hole asymmetry on the Mott-Hubbard metal-insulator transition
Phys. Rev. Lett. **92**, 216401--1-4 (2004).
10.1103/PhysRevLett.92.216401.

[76]
A. M. Shvaika, O. Vorobyov,
J. K. Freericks,
and T. P. Devereaux,
Resonant Enhancement of Inelastic Light Scattering in Strongly Correlated
Materials, Phys. Rev. Lett. **93**, 137402--1-4 (2004).
10.1103/PhysRevLett.93.137402.

[75] A. V. Joura, D. O. Demchencko, and
J. K. Freericks,
Thermal transport in the Falicov-Kimball model on a Bethe lattice,
Phys. Rev. B ** 69**, 165105--1-5 (2004).
10.1103/PhysRevB.69.165105.

[74] J. K. Freericks,
Crossover from tunneling to incoherent (bulk) transport in a correlated
nanostructure, Appl. Phys. Lett. ** 84**, 1383--1385 (2004)
10.1063/1.1650872;
Virtual Journal of Nanoscale Science and Technology, **9**, Issue 8
(2004);
Virtual Journal of Applications of Superconductivity, **6**, Issue 5
(2004).

[73] Ling Chen, B. A. Jones, and
J. K. Freericks,
Charge-density-wave order parameter of the Falicov-Kimball model
in infinite dimensions, Phys. Rev. B **68**, 153102--1-4 (2003).
10.1103/PhysRevB.68.153102.

[72]
R. Lemanski,
J.K. Freericks and G. Banach,
Charge stripes due to electron correlations in the
two-dimensional spinless Falicov-Kimball model,
J. Stat. Phys. **116**, 699--718 (2004).
10.1023/B:JOSS.0000037213.25834.33.

[71] T. P. Devereaux,
G. E. D. McCormack and
J. K. Freericks,
Inelastic x-ray scattering as a probe of electronic correlations,
Phys. Rev. B **68**, 075105--1-11 (2003).
10.1103/PhysRevB.68.075105.

[70] A. M. Shvaika and
J. K. Freericks,
Equivalence of the Falicov-Kimball and Brandt-Mielsch forms for the free energy
of the infinite-dimensional Falicov-Kimball model,
Phys. Rev. B **67**, 153103--1-3 (2003).
10.1103/PhysRevB.67.153103.

[69] J. K. Freericks
and V. Zlatic',
Exact dynamical mean field theory of the Falicov-Kimball model,
Rev. Mod. Phys. **75**, 1333--1382 (2003).
10.1103/RevModPhys.75.1333.

[68] J. K. Freericks,
D. Demchenko, A. Joura,
and V. Zlatic',
Optimizing thermal transport in the Falicov-Kimball model: binary-alloy
picture, Phys. Rev. B **68**, 195120--1-12 (2003).
10.1103/PhysRevB.68.195120.

[67] J. K. Freericks,
T. P. Devereaux,
R. Bulla,
and
Th. Pruschke,
Nonresonant inelastic light scattering in the Hubbard model,
Phys. Rev. B **67**, 155102--1-8 (2003).
10.1103/PhysRevB.67.155102.

[66]J. K. Freericks,
B. K. Nikolic,
and P. Miller,
Temperature dependence of Superconductor-Correlated Metal-Superconductor
Josephson junctions, Appl. Phys. Lett. **82**, 970--972 (2003)
10.1063/1.1543236;
Virtual Journal of Applications of Superconductivity, **4**, Issue 4
(2003). Erratum
Appl. Phys. Lett. **83**, 1275 (2003).
10.1063/1.1600849

[65] T. P. Devereaux,
G. E. D. McCormack and
J. K. Freericks,
Inelastic x-ray scattering in correlated (Mott) insulators,
Phys. Rev. Lett. **90**, 067402--1-4 (2003).
10.1103/PhysRevLett.90.067402.

[64] F. Venturini, M. Opel,
T. P. Devereaux,
J. K. Freericks, I. Tutto, B. Revaz,
E. Walker, H. Berger, L. Forro, and R. Hackl,
Observation of an unconventional
metal-insulator transition in overdoped CuO_{2} compounds,
Phys. Rev. Lett. **89**, 107003--1-4 (2002).
10.1103/PhysRevLett.89.107003.

[63]
R. Lemanski,
J.K. Freericks and G. Banach,
Stripe phases in the
two-dimensional Falicov-Kimball model,
Phys. Rev. Lett. **89** 196403-1--4 (2002).
10.1103/PhysRevLett.89.196403.

[62]
B.M. Letfulov and
J. K. Freericks,
Phase separation in the combined
Falicov-Kimball and static Holstein model, Phys. Rev. B **66**,
033102-1--4 (2002).
10.1103/PhysRevB.66.033102.

[61]
J. K. Freericks,
Amy Y. Liu,
A. Quandt,
and J. Geerk,
Nonconstant electronic density of states tunneling inversion for A15
superconductors: Nb_{3}Sn,
Phys. Rev. B **65**, 224510--1-10 (2002).
10.1103/PhysRevB.65.224510.

[60] J. K. Freericks,
E. H. Lieb,
and D. Ueltschi,
Phase separation due to quantum mechanical
correlations, Phys. Rev. Lett. **88,** 106401--1-4 (2002).
10.1103/PhysRevLett.88.106401
[Reprinted in
*Condensed Matter Physics and Exactly Soluble Models:
Selecta of Elliott H. Lieb*, Edited by B. Nachtergaele, J. P. Solovej,
and J. Yngvason (Springer, Berlin, 2004), pp. 119--122].

[59] J. K. Freericks,
B. K. Nikolic,
and P. Miller,
Optimizing the speed of a Josephson junction with dynamical mean-field theory,
Int. J. Mod. Phys. B **16**, 531--561 (2002).
doi:10.1142/S0217979202007379.

[58] J. K. Freericks
and V. Zlatic',
Thermal transport in the Falicov-Kimball model,
Phys. Rev. B **64**, 245118--1-10 (2001)
10.1103/PhysRevB.64.245118;
Erratum: Phys.
Rev. B **66**, 249901--1-2 (2002).
10.1103/PhysRevB.66.249901.

[57]
B. K. Nikolic,
J. K. Freericks,
and P. Miller,
Intrinsic reduction of Josephson critical current in short ballistic SNS weak
links, Phys. Rev. B **64,** 212507--1-4 (2001).
10.1103/PhysRevB.64.212507.

[56] J. K. Freericks,
E. H. Lieb,
and D. Ueltschi,
Segregation in the
Falicov-Kimball model, Commun. Math. Phys. **227**, 243--279 (2002).
10.1007/s002200200632.

[55]
B. K. Nikolic,
J. K. Freericks,
and P. Miller,
Suppression of the ``quasiclassical'' proximity gap in
correlated-metal--superconductor structures,
Phys. Rev. Lett. **88**, 077002-1--4 (2002)
10.1103/PhysRevLett.88.077002;
Virtual Journal of Nanoscale Science & Technology, Vol. **5**,
Iss. **7**.

[54]
B. K. Nikolic,
J. K. Freericks,
and P. Miller,
Equilibrium properties of double-screened-dipole-barrier SINIS Josephson
junctions, Phys. Rev. B **65**, 064529-1--11 (2002)
10.1103/PhysRevB.65.064529;
Virtual Journal of Applications of Superconductivity, Vol. **2**,
Iss. **3**.

[53] J. K. Freericks,
T. P. Devereaux, and
R. Bulla,
An exact theory for Raman scattering in correlated metals and
insulators, Phys. Rev. B **64,** 233114 (2001).
10.1103/PhysRevB.64.233114.

[52] J. K. Freericks
and T. P. Devereaux,
Raman scattering through a metal-insulator transition,
Phys. Rev. B **64,** 125110 (2001).
10.1103/PhysRevB.64.125110.

[51] B.M. Letfulov and
J. K. Freericks,
Dynamical mean-field theory of a double-exchange model with diagonal
disorder, Phys. Rev. B **64**, 174409 (2001).
10.1103/PhysRevB.64.174409.

[50] J. K. Freericks,
B. K. Nikolic,
and P. Miller,
Tuning a Josephson junction through a quantum critical point,
Phys. Rev. B **64,** 054511 (2001)
10.1103/PhysRevB.64.054511;
Erratum:
Phys. Rev. B **68**, 099901 (2003).
10.1103/PhysRevB.68.099901.

[49] J. K. Freericks
and V. Zlatic',
Gap ratio in anharmonic charge-density-wave systems,
Phys. Rev. B **64,** 073109 (2001).
10.1103/PhysRevB.64.073109.

[48] V. Zlatic',
J. K. Freericks,
R. Lemanski, and
G. Czycholl,
Exact solution of the multi-component Falicov-Kimball model in infinite
dimensions, Phil. Mag. B **81**, 1443 (2001).
10.1080/13642810110066470.

[47]
Sven P. Rudin,
Amy Y. Liu,
J. K. Freericks,
and A. Quandt,
Comparison of structural transformations and superconductivity in
compressed Sulfur and Selenium,
Phys. Rev. B **63,** 224107 (2001).
10.1103/PhysRevB.63.224107.

[46]
Ch. Gruber, N. Macris, Ph. Royer, and
J. K. Freericks,
Higher period ordered phases on the Bethe lattice,
Phys. Rev. B. **63**, 165111-1--11 (2001).
10.1103/PhysRevB.63.165111.

[45] P. Miller and
J. K. Freericks,
Microscopic self-consistent theory of
Josephson junctions including dynamical electron correlations,
J. Phys.: Conden. Mat. **13** 3187--3213 (2001).
10.1088/0953-8984/13/13/326.

[44] J. K. Freericks
and P. Miller,
Dynamical charge susceptibility of the spinless Falicov-Kimball model,
Phys. Rev. B **62**, 10022--10032 (2000).
10.1103/PhysRevB.62.10022
.

[43] J. K. Freericks
and
R. Lemanski,
Segregation and charge-density-wave order in the spinless
Falicov-Kimball model, Phys. Rev. B **61** 13438--13444 (2000).
10.1103/PhysRevB.61.13438
.

[42] Woonki Chung
and J. K. Freericks,
Competition between phase separation and ``classical'' intermediate
valence in an exactly solved model, Phys. Rev. Lett. **84**, 2461--2464
(2000).
10.1103/PhysRevLett.84.2461.

[41] J. K. Freericks,
V. Zlatic',
and M. Jarrell,
Approximate scaling relation for the anharmonic electron-phonon problem,
Phys. Rev. B **61**, R838--841 (2000) (Rapid Communication).
10.1103/PhysRevB.61.R838
.

[40] A. N. Tahvildar-Zadeh,
M. Jarrell,
Th. Pruschke,
and J. K. Freericks,
Evidence for exhaustion in the conductivity of the
infinite-dimensional periodic Anderson model, Phys. Rev. B **60**,
10782--10787 (1999).
10.1103/PhysRevB.60.10782
.

[39] M. Niemeyer,
J. K. Freericks,
and H. Monien,
Strong-coupling perturbation theory for the two-dimensional Bose-Hubbard
model in a magnetic field,
Phys. Rev. B **60** 2357--2362 (1999).
10.1103/PhysRevB.60.2357
.

[38] J. K. Freericks,
Ch. Gruber, and N. Macris,
Phase separation and the segregation principle in
the infinite-U spinless Falicov-Kimball model,
Phys. Rev. B **60** 1617--1626 (1999).
10.1103/PhysRevB.60.1617
.

[37] A. Y. Liu,,
A. A. Quong,
J. K. Freericks,
E. J. Nicol,
and E. C. Jones,
Structural phase stability and electron-phonon coupling in Lithium,
Phys. Rev. B **59**, 4028--4035 (1999).
10.1103/PhysRevB.59.4028
.

[36] S. P. Rudin, R. Bauer,
A. Y. Liu, and
J. K. Freericks,
Reevaluating electron-phonon coupling strengths: Indium as a
test case for ab initio and
many-body-theory methods, Phys. Rev. B **58**, 14511--14517 (1998).
10.1103/PhysRevB.58.14511
.

[35] P. Miller,
J. K. Freericks,
and
E. J. Nicol,
Possible experimentally observable effects of vertex corrections in
superconductors, Phys. Rev. B **58**, 14498--14510 (1998).
10.1103/PhysRevB.58.14498
.

[34] J. K. Freericks,
V. Zlatic', Woonki Chung,
and M. Jarrell,
Vertex-corrected perturbation theory for the electron-phonon problem
with non-constant density of states, Phys. Rev. B **58**, 11613--11623
(1998).
10.1103/PhysRevB.58.11613
.

[33] J. K. Freericks
and V. Zlatic',
Anomalous magnetic response of the spin-one-half
Falicov-Kimball model, Phys. Rev. B **58** 322--329 (1998).
10.1103/PhysRevB.58.322.

[32] Woonki Chung
and J. K. Freericks,
Charge-transfer metal-insulator transitions in the spin-one-half Falicov-Kimball
model, Phys. Rev. B **57** 11955--11961 (1998).
10.1103/PhysRevB.57.11955
.

[31] A. N. Tahvildar-Zadeh,
M. Jarrell,
and J. K. Freericks,
Low-temperature coherence in the periodic Anderson model:
Predictions for photoemission of heavy Fermions, Phys. Rev. Lett.
**80** 5168--5171 (1998).
10.1103/PhysRevLett.80.5168.

[30] J. K. Freericks,
E. J. Nicol,
A. Y. Liu,
and A. A. Quong,
Vertex-corrected tunneling inversion in electron-phonon
mediated superconductors: Pb, Phys. Rev. B,** 55**,
11651--11658 (1997).
10.1103/PhysRevB.55.11651
.

[29] A. N. Tahvildar-Zadeh,
M. Jarrell,
and J. K. Freericks,
Protracted screening in the periodic Anderson model, Phys. Rev. B
** 55,** 3332-3335 (1997) (Rapid Communication)
10.1103/PhysRevB.55.R3332
.

[28] A. N. Tahvildar-Zadeh,
J. K. Freericks,
and M. Jarrell,
Magnetic phase diagram of the Hubbard model in three dimensions:
the second-order local approximation, Phys. Rev. B ** 55**,
942-946 (1997).
10.1103/PhysRevB.55.942.

[27] J. K. Freericks,
M. Jarrell,
and G. D. Mahan,
The anharmonic electron-phonon problem,
Phys. Rev. Lett. **77,** 4588-4591 (1996)
10.1103/PhysRevLett.77.4588.;
Erratum: Phys. Rev. Lett. **79,** 1783 (1997).
10.1103/PhysRevLett.79.1783.

[26] J. K. Freericks
and G. D. Mahan,
Strong-coupling expansions for the anharmonic Holstein
model and for the Holstein-Hubbard model, Phys. Rev. B ** 54**,
9372-9384 (1996)
10.1103/PhysRevB.54.9372
;
Erratum: Phys. Rev. B **56**, 11321-11325 (1997).
10.1103/PhysRevB.56.11321
.

[25] J. K. Freericks,
Ch. Gruber, and N. Macris,
Phase separation in the binary-alloy
problem: the one-dimensional spinless Falicov-Kimball model,
Phys. Rev. B **53**, 16189-16196 (1996).
10.1103/PhysRevB.53.16189
.

[24] J. K. Freericks
and H. Monien,
Strong-coupling expansions for the pure and disordered Bose
Hubbard model, Phys. Rev. B ** 53**, 2691-2700 (1996).
10.1103/PhysRevB.53.2691
.

[23] J. K. Freericks
and M. Jarrell,
Competition between electron-phonon attraction and weak Coulomb
repulsion, Phys. Rev. Lett., ** 75**, 2570-2573 (1995).
10.1103/PhysRevLett.75.2570

[22]
Th. Pruschke,
M. Jarrell,
and J. K. Freericks,
Anomalous Normal-State Properties of High-Tc Superconductors --
Intrinsic Properties of Strongly Correlated Electron Systems?, Adv. Phys.
**44** 187--210 (1995).
10.1080/00018739500101526.

[21] M. Jarrell,
J. K. Freericks,
and
Th. Pruschke,
Optical conductivity
of the infinite-dimensional Hubbard model, Phys. Rev. B** 51
**, 11704-11711 (1995).
10.1103/PhysRevB.51.11704
.

[20] J. K. Freericks
and M. Jarrell,
Magnetic phase diagram of the
Hubbard model, Phys. Rev. Lett. ** 74 **, 186-189 (1995).
10.1103/PhysRevLett.74.186.

[19] J. K. Freericks
and E. H. Lieb,
The ground state of a general
electron-phonon Hamiltonian is a spin singlet, Phys. Rev. B ** 51
**, 2812-2821 (1995).
10.1103/PhysRevB.51.2812
.

[18] J. K. Freericks
and M. Jarrell,
Iterated perturbation theory for
the attractive Holstein and Hubbard models, Phys. Rev. B ** 50
**, 6939-6953 (1994).
10.1103/PhysRevB.50.6939
.

[17] J. K. Freericks,
Conserving approximations for the attractive
Holstein and Hubbard models, Phys. Rev. B ** 50**, 403-417
(1994).
10.1103/PhysRevB.50.403
.

[16] J. K. Freericks
and H. Monien,
Phase diagram of the Bose Hubbard
model, Europhys. Lett. ** 26**, 545-550 (1994).
10.1209/0295-5075/26/7/012

[15] J. K. Freericks
and
D. J. Scalapino,
Weak-coupling expansions for
the attractive Holstein and Hubbard models, Phys. Rev. B ** 49,
** 6368-6371 (1994).
10.1103/PhysRevB.49.6368
.

[14] J. K. Freericks,
M. Jarrell, and
D. J. Scalapino,
The
electron-phonon problem in infinite dimensions, Europhys. Lett.
** 25**, 37-42 (1994).
10.1209/0295-5075/25/1/007

[13] J. K. Freericks,
Local approximation to the spinless Falicov-Kimball
model, Phys. Rev. B ** 48,** 14797-14801 (1993).
10.1103/PhysRevB.48.14797
.

[12] J. K. Freericks,
M. Jarrell, and
D. J. Scalapino,
Holstein model
in infinite dimensions,
Phys. Rev. B ** 48,** 6302-6314 (1993).
10.1103/PhysRevB.48.6302
.

[11] J. K. Freericks,
Strong-coupling expansions for the attractive
Holstein and Hubbard models, Phys. Rev. B ** 48,** 3881-3891
(1993).
10.1103/PhysRevB.48.3881
.

[10] J. K. Freericks,
Spinless Falicov-Kimball model (annealed
binary alloy) from large to small dimensions, Phys. Rev. B ** 47,
** 9263-9272 (1993).
10.1103/PhysRevB.47.9263
.

[9] J. K. Freericks
and
L. M. Falicov,
Heavy-fermion systems in magnetic
fields: the metamagnetic transition, Phys. Rev. B ** 46,
** 874-879 (1992).
10.1103/PhysRevB.46.874
.

[8] J. K. Freericks
and
L. M. Falicov,
Thermodynamic model of the
insulator-metal transition in nickel iodide, Phys. Rev. B ** 45,
** 1896-1899 (1992).
10.1103/PhysRevB.45.1896
.

[7] J. K. Freericks
and
L. M. Falicov,
Enlarged symmetry groups of
finite-size clusters with periodic boundary conditions, Lett. Math. Phys.
** 22,** 277-285 (1991).
10.1007/BF00405602.

[6] J. K. Freericks
and L. M. Falicov,
Hidden symmetries of finite-size
clusters with periodic boundary conditions, Phys. Rev. B ** 44,
** 2895-2904 (1991).
10.1103/PhysRevB.44.2895
.

[5] J. K. Freericks,
L. M. Falicov, and D. S. Rokhsar,
Exact solutions
of frustrated ordinary and chiral eight-site Hubbard models, Phys. Rev. B
** 44,** 1458-1475 (1991).
10.1103/PhysRevB.44.1458
.

[4] J. K. Freericks
and
L. M. Falicov,
Exact many-body solution of the
periodic-cluster t-t'-J model for cubic systems: ground-state
properties, Phys. Rev. B ** 42,** 4960-4978 (1990).
10.1103/PhysRevB.42.4960
.

[3] J. K. Freericks
and
L. M. Falicov,
Two-state one-dimensional
spinless Fermi gas, Phys. Rev. B ** 41,** 2163-2172 (1990).
10.1103/PhysRevB.41.2163
.

[2] J. K. Freericks
and
L. M. Falicov, Dephasing effects in a
two-dimensional magnetic-breakdown linked-orbit network: Magnesium, Phys.
Rev. B ** 39,** 5678-5683 (1989).
10.1103/PhysRevB.39.5678
.

[1] J. K. Freericks
and M. B. Halpern,
Conformal deformations by
the currents of affine g, Ann. Phys. ** 188,** 258-306 (1988).
doi:10.1016/0003-4916(88)90103-0.
Erratum: Ann. Phys. ** 190,** 212 (1989).
doi:10.1016/0003-4916(89)90265-0.

[57] Luogen Xu, J. T. Lee and J. K. Freericks, Test of the unitary coupled-cluster variational quantum eigensolver
for a simple strongly correlated condensed-matter system, Mod. Phys. Lett. B **34**, 2040049 (2020). (Conference Proceedings for Electron Correlation in Superconductors and
Nanostructures). Doi: 10.1142/S0217984920400497

[56] R. D. Nesselrodt, J. Canfield, and J. K. Freericks, Comparison Between the f-Electron and Conduction-Electron Density of States in the Falicov-Kimball Model at Low Temperature,
J. Supercond. Nov. Mag. **33**, 2419-2425 (2020) (conference proceedings for Superstripes 2019). Doi: 10.1007/s10948-019-05400-5

[55] J. K. Freericks, O. P. Matveev, A. M. Shvaika, and T. P. Devereaux,
Nonresonant pump/probe electronic Raman scattering within nonequilibrium dynamical mean-field theory, Proc. SPIE ** 10638** Ultafast Bangap Photonics III, 1063807 (2018) (SPIE Defense + Security Conference 2018). Doi: 10.1117/12.2305103.

[55] J. Z. Boretsky, J. R. Cohn and J. K. Freericks,
Spin and pseudospin towers of the Hubbard model on a bipartite lattice,
Int. J. Mod. Phys. B **32**, 1840021 (2018). Doi: 10.1142/S0217979218400210

[54] J. K. Freericks, O. Abdurazakov, and A. F. Kemper,
Relaxation of nonequilibrium populations after a pump: the breaking of Mathiessen's rule, Proc. SPIE ** 10193** Ultafast Bangap Photonics II, 1019303--1-8 (2017) (SPIE Defense + Security Conference 2017). Doi: 10.1117/12.2261872.

[53] Shankar Balasubramanian and J. K. Freericks,
Exact time evolution of the asymmetric Hubbard dimer,
J. Supercond. Nov.Mag. **30**, 97--102 (2017) (conference proceedings for Superstripes 2016). Doi: 10.1007/s10948-016-3811-9.

[52] A. F. Kemper, H. R. Krishnamurthy, and J. K. Freericks,
The role of average time dependence on the relaxation of excited electron populations in nonequilibrium many-body physics,
Fort. Phys. ** 65**, 1600042--1-8 (2017) (conference proceedings for FQMT15).
Doi: 10.1002/prop.201600042.

[51] J. K. Freericks, O. P. Matveev, A. M. Shvaika, and T. P. Devereaux,
Theoretical description of pump/probe experiments in nesting induced charge density wave insulators,
Proc. SPIE **9835**, Ultrafast Bandgap Photonics, 98351F-1--7 (2016).
Doi: 10.1117/12.2223335.

[50] J. K. Freericks, J. R. Cohn, P. G. J. van Dongen, and H. R. Krishnamurthy,
Infinite single-particle bandwidth of the Mott-Hubbard insulator,
Int. J. Mod. Phys. B **30**, 1642001-1--11 (2016). Doi: 10.1142/S0217979216420017.

[49] O. P. Matveev, A. M. Shvaika, T. P. Devereaux, and J. K. Freericks,
Nonequilibrium dynamical mean-field theory for the charge-density-wave phase of the Falicov-Kimball model,
J. Supercond. Nov. Magn. **29**, 581-585 (2016).
Doi: 10.1007/s10948-015-3304-2

[48] J. K. Freericks and J. Cruz-Rojas,
Current biasing a multilayered device as a
boundary condition for inhomogeneous dynamical mean-field theory,
Quantum Matter ** 4**, 293--301 (2015).
Doi: 10.1166/qm.2015.1194

[47] Veljko Zlatic', Greg Boyd and Jim K. Freericks,
Universal thermopower of bad metals,
J. Phys.: Conf. Ser. **592**, 012056-1--6 (2015).
Doi: 10.1088/1742-6596/592/1/012056.

[46] J. K. Freericks, H. R. Krishnamurthy, M.A. Sentef, and T.P. Devereaux,
Gauge invariance in the theoretical description of time-resolved angle-resolved pump/probe photoemission spectroscopy,
Physica Scripta ** 2015** T165, 014012-1--6 (2015) (conference proceedings for FQMT2013).
Doi: 10.1088/0031-8949/2015/T165/014012.

[45] J. K. Freericks, Khadijeh Najafi, A. F. Kemper, and T. P. Devereaux,
Nonequilibrium sum rules for the Holstein model,
in *Femtosecond electron imaging and spectroscopy: Proceedings of the conference on femtosecond electron imaging and spectroscopy, FEIS 2013, December 9-12, 2013 Key West, FL, USA* edited by Martin Berz, Phillip M. Duxbury, Kyoko Makino, and Chong-Yu Ruan, pp. 83--95, Advances in Imaging and Electron Physics, **191**, series editor Peter W. Hawkes, (United Kingdom, Academic Press, 2015).
Doi:10.1016/bs.aiep.2015.03.012

[44] V. Zlatic and J. K. Freericks,
Thermal transport of a delta-doped multilayer with strongly correlated electrons,
in *New materials for thermoelectric applications: Theory and Experiment*,
edited by V. Zlatic and A. C. Hewson (Dordrecht, Springer-Netherlands, 2013),
pp. 93--113
(Nato science for peace and security series B: Physics and biophysics).
Doi: 10.1007/978-94-007-4984-9

[43] K. Mikelsons, J. K. Freericks, and H. R. Krishnamurthy, Strong coupling expansion for the nonequilibrium properties of ultracold atoms on an optical lattice, 2012 High Performance Computing Modernization Program Contributions to DOD Mission Success (proceedings for the cancelled HPCMP Users Group Conference 2012, available on CD-ROM).

[42] J. K. Freericks, A. Y. Liu, A. F. Kemper, and T. P. Devereaux,
Pulsed high harmonic generation of light due to pumped Bloch oscillations in noninteracting metals,
Phys. Scripta **T151**, 014062-1--7 (2012) (proceedings of the
Frontiers of Quantum and Mesoscopic Thermodynamics 2011, Prague, Czech Republic).
Doi: 10.1088/0031-8949/2012/T151/014062

[38] B. Moritz, T. P. Devereaux, and J. K. Freericks,
Temporal response of nonequilibrium correlated electrons,
(proceedings of the Conference on Computational Physics 2009),
Comp. Phys. Commun. **182**, 109--111 (2011).
10.1016/j.cpc.2010.05.020.

[37] O. P. Matveev, A. M. Shvaika, and J. K. Freericks,
Total electronic Raman scattering in the
charge-density-wave phase of the spinless Falicov-Kimball model,
(proceedings of the Statistical Physics: Modern Trends and Applications
June 23-25, 2009 Lviv, Ukraine) J. Phys. Stud. (Ukraine) **13**,
4703--1-8 (2009).

[36]
J. K. Freericks,
Optimizing pre-formed molecules in mixtures of ultracold ^{40}K and
^{87}Rb on an optical lattice:
A challenge grant and capabilities application project,
in * Proceedings of the HPCMP Users Group Conference 2009,
San Diego, CA, June 15--18, 2009*, edited by D. E. Post,
(IEEE Computer Society, Los Alamitos, CA, 2009), p. 205--212.

[35] J. K. Freericks,
Impurity problems for steady-state nonequilibrium
dynamical mean-field theory, (proceedings of the Frontiers of Quantum
and Mesoscopic Thermodynamics 2008, conference), Physica E **42**,
520--524 (2010).
10.1016/j.physe.2009.06.036.

[34] J. K. Freericks,
H. R. Krishnamurthy, Yizhi Ge, A. Y. Liu, and Th. Pruschke,
Theoretical description of time-resolved pump/probe photoemission in
TaS_{2}: a single-band DFT+DMFT(NRG) study within the
quasiequilibrium approximation,
(proceedings of the 32nd international
conference in theoretical physics, Coherence and correlations in nanosystems,
Ustron, Poland, 2008)
phys. stat. sol. b **246**, 948--954 (2009).
10.1002/pssb.200881555.

[33]
J. K. Freericks,
``Modeling mixtures of different mass ultracold atoms in optical lattices:
an illustration of high efficiency and linear scaling
on the Cray XT4 via a capability applications project at ERDC'',
in * Proceedings of the HPCMP Users Group Conference 2008,
Seattle, WA, July 14--17,
2008* edited by D. E. Post (IEEE Computer Society, Los Alamitos, CA, 2008),
pp. 424--430.
10.1109/DoD.HPCMP.UGC.2008.38.

[32]
J. K. Freericks and A. V. Joura,
``Nonequilibrium density of states and
distribution functions for strongly correlated materials across the Mott
transition,'' in *Electron transport in nanosystems*, edited by Janez
Bonca and Sergei Kruchinin (Springer, Berlin, 2008) pp. 219--236.

[31] J. K. Freericks,
Transient response of strongly correlated materials to large electric fields:
Utilizing the large memory capacity of ARSC's Midnight machine in a capability
applications project
in * Proceedings of the HPCMP Users Group Conference 2007,
Pittsburgh, PA, June 18--21,
2007* edited by D. E. Post (IEEE Computer Society, Los Alamitos, CA, 2007),
pp. 222--230.
10.1109/HPCMP-UGC.2007.78

[30] J. K. Freericks
and V. Zlatic',
Enhancement of thermoelectric performance in
strongly correlated multilayered nanostructures,
(proceedings of the 25th international
conference in theoretical physics, Ustron, Poland, 2006)
phys. stat. sol. b **244**, 2351--2356 (2007).
10.1002/pssb.200674611.
(Image from article
selected for the
cover.)

[29] J. K. Freericks,
V. M. Turkowski,
and V. Zlatic',
Nonlinear response of strongly correlated materials to large electric fields,
in * Proceedings of the HPCMP Users Group Conference 2006,
Denver, CO, June 26--29,
2006* edited by D. E. Post (IEEE Computer Society, Los Alamitos, CA, 2006),
pp. 218--226.
http://doi.ieeecomputersociety.org/10.1109/HPCMP-UGC.2006.52.

[28] J. K. Freericks
and V. M. Turkowski,
Steady state nonequilibrium dynamical mean-field theory and the
quantum Boltzmann equation, J. Phys.: Confer. Ser. **35**, 39--52 (2006).
(Workshop
on Progress in nonequilibrium physics III, Kiel, Germany, August, 2005).
10.1088/1742-6596/35/1/004.

[27] V. Zlatic',
R. Monnier,
and J.K. Freericks,
Thermoelectricity of
EuCu_{2}(Ge_{1-x}Si_{x})_{2}
intermetallics,
Physica B **378--380** 661--662 (2006)
(Proceedings of the Strongly Correlated
Electrons Systems 2005 conference, Vienna, Austria, July, 2005).
10.1016/j.physb.2006.01.448.

[26] J.K. Freericks
and T.P. Devereaux,
Sum rules for inelastic scattering in the Hubbard model,
Physica B **378--380** 650--653 (2006)
(Proceedings of the Strongly Correlated
Electrons Systems 2005 conference, Vienna, Austria, July, 2005).
10.1016/j.physb.2006.01.186.

[25] J. K. Freericks,
V. M. Turkowski,
and V. Zlatic',
Real-time formalism for studying the nonlinear response of "smart" materials
to an electric field, in
* Proceedings of the HPCMP Users Group Conference 2005,
Nashville, TN, June 28--30,
2005* edited by D. E. Post (IEEE Computer Society, Los Alamitos, CA, 2005),
pp. 25--34.
http://doi.ieeecomputersociety.org/10.1109/DOD_UGC.2005.58.

[24] J. K. Freericks,
A. N. Tahvildar-Zadeh, and
B. K. Nikolic,
Use of a generalized Thouless energy in describing transport properties
of Josephson junctions, (proceedings of the Applied Superconductivity
Conference, Jacksonville, FL, 2004) IEEE Trans. Appl.
Supercond. **15**, 896--899 (2005).
10.1109/TASC.2005.850107.

[23] J. K. Freericks,
Strongly correlated multilayered nanostructures near the Mott transition,
(proceedings of the 24th international
conference in theoretical physics, Ustron, Poland, 2004)
phys. stat. sol. b **242**, 189--195 (2005).
10.1002/pssb.200460021.

[22] A. M. Shvaika, O. Vorobyov,
J. K. Freericks,
and T. P. Devereaux,
Resonant Enhancement of Electronic Raman Scattering,
(proceedings of the Spectroscopy in Novel Systems conference
in Barcelona Spain, 2004) J. Phys. Chem. Solids **67**, 336--339 (2006).
10.1016/j.jpcs.2005.10.048.

[21] J. K. Freericks,
V. M. Turkowski,
and V. Zlatic',
Parallelizing the Keldysh formalism for strongly correlated electrons, in
* Proceedings of the HPCMP Users Group Conference 2004, Williamsburg, VA,
June 7--11, 2004* edited by R. E. Peterkin
(IEEE Computer Society, Los Alamitos, CA, 2004), p. 7--16.
http://doi.ieeecomputersociety.org/10.1109/DOD_UGC.2004.32.

[20] J. K. Freericks,
V. M. Turkowski,
and V. Zlatic',
F-electron spectral function near a quantum critical point,
(proceedings of the Strongly Correlated Electron
Systems conference, Karlsruhe, Germany), Physica B **359--361C**,
684--686 (2005).
10.1016/j.physb.2005.01.192.

[19] A. M. Shvaika, O. Vorobyov,
J. K. Freericks,
and T. P. Devereaux,
Resonant electronic Raman scattering near a quantum critical point,
(proceedings of the Strongly Correlated Electron
Systems conference, Karlsruhe, Germany), Physica B **359--361C**,
705--707 (2005).
10.1016/j.physb.2005.01.200.

[18] V. Zlatic' and J. K. Freericks, Describing the valence-change transition by the DMFT solution of the Falicov-Kimball model, (Proceedings of the NATO ARW on strongly correlated electrons, Hvar, Croatia) Nato Science series II: Mathematics Physics and Chemistry: Vol. 110 (Kluwer, Dordrecht, 2003), p. 287--296.

[17] J. K. Freericks, T. P. Devereaux, and R. Bulla, Inelastic light scattering and the correlated metal-insulator transition, Proceedings of the NATO ARW on strongly correlated electrons, Hvar, Croatia) Nato Science series II: Mathematics Physics and Chemistry: Vol. 110 (Kluwer, Dordrecht, 2003), p. 115--122.

[16] J. K. Freericks,
B. K. Nikolic,
and P. Miller,
Superconductor-Correlated Metal-Superconductor
Josephson junctions: an optimized class for high speed digital electronics,
(Proceedings of the Applied Superconductivity Conference, Houston, Texas)
IEEE Trans. Appl. Supercond. **13**, 1089--1092 (2003).
10.1109/TASC.2003.814162.

[15] B. K. Nikolic
and J. K. Freericks,
Mesoscopic spintronics: Fluctuation and localization effects in spin-polarized
quantum transport,
*Toward the controllable quantum states*,
edited by H. Takayanagi and J. Nitta (World Scientific, 2003).
Google searchable version.)

[14] V. Zlatic' and
J. K. Freericks,
DMFT solution of the Falicov-Kimball model with an internal structure,
(Proceedings of the Strongly Correlated Electrons conference, Krakow, Poland)
Acta Physica Polonica B **34**, 931--944 (2003).

[13] J. K. Freericks,
T. P. Devereaux, and
R. Bulla,
Inelastic Light Scattering
and the Correlated metal-Insulator Transition, (Proceedings of the
Strongly Correlated Electrons conference, Krakow, Poland)
Acta Physica Polonica B **34**, 737--748 (2003).

[12] J. K. Freericks
and V. Zlatic',
Application of the multicomponent
Falicov-Kimball model to intermediate-valence materials: YbInCu_{4} and
EuNi_{2}(Si_{1-x}Ge_{x})_{2},
(Proceedings of the Physics of Magnetism, Poznan, Poland),
physica status solidi (b) **236**, 265--271 (2003).
10.1002/pssb.200301665.

[11] V. Zlatic' and
J. K. Freericks,
Theory of valence transitions in Ytterbium and Europium intermetallics,
(Proceedings of the XIIth school of modern physics on
phase transitions and critical phenomena, Ladek Zrdoj, Poland)
Acta Physica Polonica B **32**, 3253--3266 (2001).

[10] J. K. Freericks,
T. P. Devereaux, and
R. Bulla,
B1g Raman scattering through a quantum critical point,
(Proceedings of the XIIth school of modern physics on
phase transitions and critical phenomena, Ladek Zrdoj, Poland)
Acta Physica Polonica B **32**, 3219--3232 (2001).

[9] J. K. Freericks
and T. P. Devereaux,
Non-resonant
Raman scattering through a metal-insulator transition: an exact analysis
of the Falicov-Kimball model, (Proceedings of the Workshop on Soft Matter
Theory, Lviv, Ukraine) Conden. Matter Phys. (Ukraine) ** 4**, 149--160
(2001).

[8] V. Zlatic' and
J. K. Freericks,
Theory of valence transitions in ytterbium-based compounds,
in *
Open Problems in Strongly Correlated
Electron Systems*, edited by J. Bonca, P. Prelovsek, A. Ramsak,
and S. Sarkar, (Kluwer, Dordrecht, 2001) p. 371--380 [NATO Science Series, II.
Mathematics, Physics, and Chemistry--Vol. 15] (Proceedings of NATO ARW
conference, Bled, Slovenia, 2001).

[7] J. K. Freericks,
S. P. Rudin,
and A. Y. Liu,
First-principles determination of superconducting properties of metals,
Physica B **284-288**, 425-426 (2000)
(for the LT-22 international conference).
10.1016/S0921-4526(99)01994-8.

[6] J. K. Freericks and A. Y. Liu, The quantum world around us: teaching quantum and solid state physics to non-science majors, The Changing Role of Physics Department in Modern Universities: Proceedings of International Conference on Undergraduate Education, AIP Conference Proceedings 399 (American Institute of Physics, Woodbury, NY, 1997).

[5] J. K. Freericks,
E. J. Nicol,
A. Y. Liu,
and A. A. Quong,
Vertex-corrected tunneling inversion in superconductors,
Czechoslovak Journal of Physics ** 46,** Supplement S2,
603-604 (1996).
10.1007/BF02583609.

[4]
E. J. Nicol and
J. K. Freericks,
Vertex corrections to the theory
of superconductivity, Physica C ** 235-240**, 2379-2380
(1994).
10.1016/0921-4534(94)92410-4.

[3] J. K. Freericks and M. Jarrell, Simulation of the electron-phonon interaction in infinite dimensions, in Computer Simulations in Condensed Matter Physics VII, edited by D. P. Landau, K. K. Mon, and H.-B. Schuttler (Springer-Verlag, Heidelberg, Berlin, 1994).

[2] H. Monien and J. K. Freericks, Phase diagram of the Bose Hubbard model, in Strongly Correlated Electronic Materials Los Alamos Symposium 1993, edited by K. Bedell, E. Abrahams, A. Balatsky, D. Meltzer, and Z. Wang (Addison-Wesley, New York, 1994).

[1]
L. M. Falicov and
J. K. Freericks,
Electronic Structure of Highly
Correlated Systems,
in Condensed Matter Theories, Vol. 8, edited by
L. Blum and F. Bary Malik (Plenum Press, 1992). *[Preprint version only,
no figures.]*

[1] V. Turkowski and J.K.Freericks,
Nonequilibrium
dynamical mean-field theory of
strongly correlated electrons, in
*Strongly Correlated
Systems: Coherence and Entanglement*, edited by J. M. P. Carmelo,
J. M. B.
Lopes dos Santos, V. Rocha Vieira, and P. D. Sacramento (World Scientific,
Singapore, 2007), pp. 187--210.

[9] James K. Freericks and Jozef Strecka, Strongly correlated electron systems and quantum
magnetism, Condens. Matt. Phys. **23** 40101 (2020). Doi: 10.5488/CMP.23.40101

[8] O. P. Matveev, J. K. Freericks and A. M. Shvaika, Nonequilibrium dynamical mean-field theory for the charge-density-wave phase of the Falicov-Kimball model, Institute of Condensed Matter Physics Report (2014).

[7] J. K. Freericks,
Viewpoint:
Changing repulsion into attraction with the quantum Hippy Hippy Shake,
Physics **4**, 45 (2011) (Physics Viewpoint article for APS).
10.1103/Physics.4.45.

[6] J. K. Freericks, Atomic ``Triple-Dog'' Dare: Using HPC Resources to Help Create Dipolar Matter'', HPC Insights, SC210 edition, Fall, 2010, pp. 16--18 (2010).

[5] J. K. Freericks, Grain boundaries: Guilty as charged,[4] J. K. Freericks, Nonlinear response of materials to large electric fields: A capabilities application project on the Cray XT3, ERDC MSRC Resource, Spring, 2006, pp. 10-12.

[3] J. K. Freericks,
Georgetown Answers Industry's Call,
*The Industrial Physicist,* p. 24--25, October, 2000.

[2] J. K. Freericks, Electron correlations in solid state physics (Ph. D. dissertation, 1991), Lawrence Berkeley Laboratories report LBL-30641.

[1] J. K. Freericks, Time-reversal invariance tests in muon capture (A. B. thesis, 1985).

Last modified August 11, 2004.

Jim Freericks, Professor of Physics, freericks@physics.georgetown.edu